

On the Burning Number of Generalized Petersen Graphs

Kai An Sim¹ \cdot Ta Sheng Tan¹ \cdot Kok Bin Wong¹

Received: 19 May 2017 / Revised: 14 November 2017 / Published online: 30 November 2017 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract The burning number b(G) of a graph G is used for measuring the speed of contagion in a graph. In this paper, we study the burning number of the generalized Petersen graph P(n, k). We show that for any fixed positive integer k, $\lim_{n\to\infty} \frac{b(P(n,k))}{\sqrt{\frac{n}{k}}} = 1$. Furthermore, we give tight bounds for b(P(n, 1)) and b(P(n, 2)).

Keywords Burning number · Generalized Petersen graphs

Mathematics Subject Classification 05C57 · 05C80

1 Introduction

Graph burning is a discrete-time process that can be used to model the spread of social contagion in social networks. It was introduced by Bonato et al. [2,3,8]. This process is defined on the vertex set of a simple finite graph. Throughout the process, each vertex is either *burned* or *unburned*. Initially, at time step t = 0, all vertices are unburned. At the beginning of every time step $t \ge 1$, an unburned vertex is chosen to burn (if

Communicated by Sandi Klavžar.

 Kok Bin Wong kbwong@um.edu.my
 Kai An Sim

simkaian@gmail.com

Ta Sheng Tan tstan@um.edu.my

¹ Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

such a vertex is available). After that, if a vertex is burned in time step t - 1, then in time step t, each of its unburned neighbours becomes burned. A burned vertex will remain burned throughout the process. The process ends when all vertices are burned, in which case we say the graph is *burned*.

Suppose a graph *G* is burned in *m* time steps in a burning process. For $1 \le i \le m$, we denote the vertex we choose to burn at the beginning of time step *i* by x_i . The sequence (x_1, x_2, \ldots, x_m) is called a *burning sequence* for *G*. Each x_i is called a *burning source* of *G*. The *burning number* of a graph *G*, denoted by b(G), is the length of a shortest burning sequence for *G*. It is straightforward to see that $b(K_n) = 2$. For paths and cycles, Bonato et al. [3] determined their burning numbers exactly.

Theorem 1.1 [3, Theorem 9 and Corollary 10] Let P_n be a path with n vertices and C_n be a cycle with n vertices. Then,

$$b(P_n) = \left\lceil n^{1/2} \right\rceil = b(C_n).$$

For general graphs, they showed that the burning number of any graph *G* can be bounded by its radius *r* and diameter *d*, giving $\lceil (d+1)^{1/2} \rceil \le b(G) \le r+1$. In the same paper, they also gave an upper bound on the burning number of any connected graph *G* of order *n*, showing that $b(n) \le 2\sqrt{n}-1$. This upper bound was later improved to roughly $\frac{\sqrt{6}}{2}\sqrt{n}$ by Land and Lu [5]. It was conjectured in [3] that $b(G) \le \lceil \sqrt{n} \rceil$ for any connected graph *G* of order *n*. Very recently, Bonato and Lidbetter [4] verified this conjecture for spider graphs, which are trees with exactly one vertex of degree at least 3.

Determining b(G) for general graphs is a non-trivial problem. It is known that computing the burning number of a graph is NP-complete [1]. The burning number of the hypercube Q_n is asymptotically $\frac{n}{2}$ [7], but the exact value of $b(Q_n)$ is still unknown. Several other results on burning number of graphs have also been studied recently. For example, Mitsche, Pralat and Roshanbin investigated the burning number of graph products in [7] and they also focused on the probabilistic aspects of the burning number in [6].

In this paper, we are interested in the burning number of the *generalized Petersen* graphs. Let $n \ge 3$ and k be integers such that $1 \le k \le n-1$. The generalized Petersen graph P(n, k) is defined to be the graph on 2n vertices with vertex set

$$V(P(n,k)) = \{u_i, v_i : i = 0, 1, 2, \dots, n-1\}$$

and edge set

$$E(P(n,k)) = \{u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i = 0, 1, 2, \dots, n-1\},\$$

where subscripts are taken modulo *n*. Let $D_1 = \{u_i : i = 0, 1, 2, ..., n - 1\}$ and $D_2 = \{v_i : i = 0, 1, 2, ..., n - 1\}$. The subgraph induced by D_1 is called the *outer rim*, while the subgraph induced by D_2 is called the *inner rim*. A *spoke* of P(n, k) is an edge of the form $u_i v_i$ for some $0 \le i \le n - 1$.

The following are the main results of this paper.

Theorem 1.2 Let k be a fixed positive integer. Then,

$$\left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil \le b(P(n,k)) \le \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor + 2.$$

In particular,

$$\lim_{n \to \infty} \frac{b(P(n,k))}{\sqrt{\frac{n}{k}}} = 1.$$

Theorem 1.3 For $n \ge 3$,

$$\lceil \sqrt{n} \rceil \le b(P(n, 1)) \le \lceil \sqrt{n} \rceil + 1.$$

Furthermore, the bounds are tight, and if n is a square, then $b(P(n, 1)) = \sqrt{n} + 1$.

Theorem 1.4 For $n \ge 3$,

$$\left\lceil \sqrt{\frac{n}{2}} \right\rceil + 1 \le b(P(n,2)) \le \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 2.$$

Furthermore, the bounds are tight, and if $\frac{n}{2}$ *is a square, then* $b(P(n, 2)) = \sqrt{\frac{n}{2}} + 2$.

We use standard graph terminology throughout the paper. The *distance* between two vertices u and v in a graph G, denoted by $dist_G(u, v)$, is the length of a shortest path from u to v in the graph G. By convention, $dist_G(u, u) = 0$. Furthermore, we shall write dist(u, v) for $dist_G(u, v)$ if the graph in question is clear. Given a non-negative integer s, the *s*-th closed neighbourhood of a vertex u, denoted by $N_s^G[u]$, is the set of vertices whose distance from u is at most s, i.e.

$$N_s^G[u] = \{ v \in V(G) : \operatorname{dist}_G(u, v) \le s \}.$$

Again, if the graph in question is clear, we shall write $N_s[u]$ for $N_s^G[u]$.

Let $(x_1, x_2, ..., x_m)$ be a burning sequence of a graph G. As in [3, Section 2], for each pair i and j, with $1 \le i < j \le m$, we have $dist(x_i, x_j) \ge j - i$ and

$$V(G) = N_{m-1}[x_1] \cup N_{m-2}[x_2] \cup \dots \cup N_0[x_m].$$
(1)

The plan of the paper is as follows. In Sect. 2, we provide bounds for the burning number of P(n, k) and show that b(P(n, k)) is asymptotically $\sqrt{\frac{n}{k}}$. In Sect. 3, we determine the exact values of b(P(n, k)) for $1 \le n \le 8$. Then, we prove Theorems 1.3 and 1.4 in Sect. 4.

2 General Case

Lemma 2.1 *For* $n \ge 3$ *and* $1 \le k < n$ *,*

$$b(P(n,k)) \ge \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil.$$

Proof Let *C* be a cycle with $\lfloor \frac{n}{k} \rfloor$ vertices, $V(C) = \{0, 1, 2, ..., \lfloor \frac{n}{k} \rfloor - 1\}$ and $E(C) = \{i(i + 1): 0, 1, ..., \lfloor \frac{n}{k} \rfloor - 1\}$, where the integers are taken modulo $\lfloor \frac{n}{k} \rfloor$. Recall that the outer rim and inner rim of P(n, k) are $D_1 = \{u_0, u_1, ..., u_{n-1}\}$ and $D_2 = \{v_0, v_1, ..., v_{n-1}\}$, respectively.

For each $m \in \{0, 1, 2, ..., n - 1\}$, let

$$f(m) = \begin{cases} p, & \text{if } m = pk + q, & 0 \le p < \lfloor \frac{n}{k} \rfloor, & 0 \le q \le k - 1; \\ \lfloor \frac{n}{k} \rfloor - 1, & \text{if } m = \lfloor \frac{n}{k} \rfloor k + q, & 0 \le q < k - 1. \end{cases}$$
(2)

Let $\varphi : V(P(n, k)) \to V(C)$ be defined by

$$\varphi(u_i) = f(i) = \varphi(v_i), \quad \forall i \in \{0, 1, 2, \dots, n-1\}.$$
(3)

Clearly, φ is surjective.

Let $(x_1, x_2, ..., x_s)$ be a burning sequence of P(n, k). We construct a burning sequence for *C* using the map φ as follows:

- (a) At the beginning of time step 1, burn $y_1 = \varphi(x_1)$;
- (b) At the beginning of time step t ($2 \le t \le s$), if $\varphi(x_t)$ is still unburned, then burn $y_t = \varphi(x_t)$; otherwise, burn any unburned vertex $y_t \in V(C)$.

Note that in (b) above, if at the beginning of time step t ($2 \le t \le s$), no unburned vertex can be found, then $(y_1, y_2, \ldots, y_{t-1})$ is a burning sequence of C. So, we may assume that such an unburned vertex can be found at the beginning of every time step. We shall show that (y_1, y_2, \ldots, y_s) is a burning sequence of C. This follows from φ is surjective and the following claim.

Claim If $z \in V(P(n, k))$ is burned at time step t_0 , then its image $\varphi(z)$ in *C* is burned at time step $t_1 \le t_0$.

Proof If $z = x_1$, then it is burned at time step 1. Its image $\varphi(z) = y_1$ is also burned at time step 1. The claim is true. Assume that the claim is true for a $t_0 < s$.

Suppose z is burned at time step $t_0 + 1$. If z is a burning source, then $z = x_{t_0+1}$. By (b), $\varphi(z)$ is burned at time step $t_0 + 1$ provided that $\varphi(x_{t_0+1})$ is unburned. If $\varphi(x_{t_0+1})$ is burned, then it must be burned at an earlier time step. So, the claim holds.

We may assume that $z \neq x_{t_0+1}$. Note that for any two distinct vertices $w_1, w_2 \in V(P(n,k))$ such that $\varphi(w_1), \varphi(w_2) \in V(C)$ and $|\varphi(w_1) - \varphi(w_2)| \leq 1$ or $|\varphi(w_1) - \varphi(w_2)| = \lfloor \frac{n}{k} \rfloor - 1$, then $\varphi(w_1) = \varphi(w_2)$ or $\varphi(w_1)$ and $\varphi(w_2)$ are adjacent in *C*. We shall distinguish two cases.

Case 1 Let $z = u_l$. Then, it is adjacent to v_l, u_{l+1} and u_{l-1} where the subscript are taken modulo *n*. Furthermore, either v_l, u_{l+1} or u_{l-1} is burned at time step t_0 . So, by induction, $\varphi(v_l), \varphi(u_{l+1})$ or $\varphi(u_{l-1})$ is burned at time step $t_1 \le t_0$ respectively. By Eqs. (2) and (3), $|\varphi(u_l) - \varphi(v_l)| = 0, |\varphi(u_l) - \varphi(u_{l-1})| \le 1$ and $|\varphi(u_l) - \varphi(u_{l+1})| \le 1$ where l = 1, 2, ..., n - 2 and $|\varphi(u_0) - \varphi(u_{n-1})| = \lfloor \frac{n}{k} \rfloor - 1$. This means that $\varphi(z) = \varphi(u_l)$ is burned at time step $t_1 + 1 \le t_0 + 1$.

Case 2 Let $z = v_l$. It is adjacent to u_l , v_{l+k} and u_{l-k} where the subscript are taken modulo *n*. Either u_l , v_{l-k} or v_{l+k} is burned at time step t_0 . Here, we denote $v_{-i} = v_{n-i}$ for a non-negative *i*. So, by induction, $\varphi(u_l)$, $\varphi(v_{l+k})$ or $\varphi(v_{l-k})$ is burned at time step $t_1 \le t_0$ respectively. By Eqs. (2) and (3), we have $|\varphi(v_l) - \varphi(u_l)| = 0$,

$$|\varphi(v_l) - \varphi(v_{l-k})| = \begin{cases} \lfloor \frac{n}{k} \rfloor - 1, & \text{if } l = 0, 1, 2, \dots, k-1; \\ 1, & \text{if } l = k, k+1, \dots, \lfloor \frac{n}{k} \rfloor k - 1; \\ 0, & \text{if } l = \lfloor \frac{n}{k} \rfloor k, \lfloor \frac{n}{k} \rfloor k + 1, \dots, n-1. \end{cases}$$

and

$$\begin{aligned} |\varphi(v_l) - \varphi(v_{l+k})| \\ &= \begin{cases} 1, & \text{if } l = 0, 1, 2, \dots, \left(\lfloor \frac{n}{k} \rfloor - 1\right) k - 1; \\ 0, & \text{if } l = \left(\lfloor \frac{n}{k} \rfloor - 1\right) k, \left(\lfloor \frac{n}{k} \rfloor - 1\right) k + 1, \dots, n - 1 - k; \\ \lfloor \frac{n}{k} \rfloor - 1, & \text{if } l = n - k, n - k + 1, \dots, n - 1. \end{cases} \end{aligned}$$

This means that $\varphi(z) = \varphi(v_l)$ is burned at time step $t_1 + 1 \le t_0 + 1$.

This completes the proof of the claim.

Therefore, given any burning sequence of P(n, k), we can construct a burning sequence for *C* with shorter or the same length. Hence, $b(P(n, k)) \ge b(C) = \left[\sqrt{\lfloor \frac{n}{k} \rfloor}\right]$, where the last equality follows from Theorem 1.1.

Lemma 2.2 *For* $n \ge 3$ *and* $1 \le k < n$ *,*

$$b(P(n,k)) \le \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor + 2.$$

Proof Recall that the outer rim and inner rim of P(n, k) are $D_1 = \{u_0, u_1, \ldots, u_{n-1}\}$ and $D_2 = \{v_0, v_1, \ldots, v_{n-1}\}$, respectively. Let $r = \lfloor \frac{n}{k} \rfloor$. We shall construct a burning sequence for P(n, k) of length at most $\lceil \sqrt{r} \rceil + \lfloor \frac{k}{2} \rfloor + 2$. Note that a subgraph *G* induced by the vertices $v_0, v_k, v_{2k}, \ldots, v_{(r-1)k}$ in P(n, k) is a path or cycle of order *r*. By Theorem 1.1, $b(G) = \lceil \sqrt{r} \rceil$. So, there is a burning sequence $(x_1, x_2, \ldots, x_{\lceil \sqrt{r} \rceil})$ of *G*. We shall take $x_1, x_2, \ldots, x_{\lceil \sqrt{r} \rceil}$ as the first part of our burning sequence for P(n, k).

Note that at time step $\lceil \sqrt{r} \rceil$, all $v_0, v_k, v_{2k}, \ldots, v_{(r-1)k}$ are burned. If at time step $\lceil \sqrt{r} \rceil$, u_{rk} is unburned, then we set $x_{\lceil \sqrt{r} \rceil + 1} = u_{rk}$. Otherwise, we set $x_{\lceil \sqrt{r} \rceil + 1}$ to be any unburned vertex. Since u_{ik} is adjacent to v_{ik} for $0 \le i \le (r-1)$, at time step $\lceil \sqrt{r} \rceil + 1$, all $u_0, u_k, u_{2k}, \ldots, u_{(r-1)k}, u_{rk}$ are burned. Furthermore, at most k-1 vertices are unburned in the path $u_{ik}u_{ik+1}u_{ik+2} \ldots u_{(i+1)k}$ in the outer rim (see Fig. 1).

Fig. 1 Filled vertices are burned, whereas empty vertices are unburned

Now, for $j \ge \lceil \sqrt{r} \rceil + 2$, we can choose x_j to be any unburned vertex. Note that at time step $\lceil \sqrt{r} \rceil + 1 + \lfloor \frac{k}{2} \rfloor$, all the vertices in the outer rim are burned. Since u_i and v_i are adjacent, at time step $\lceil \sqrt{r} \rceil + 2 + \lfloor \frac{k}{2} \rfloor$, all vertices in the inner rim are also burned. Hence, the lemma follows.

Proof of Theorem 1.2 By Lemmas 2.1 and 2.2, we have

$$\left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil \le b(P(n,k)) \le \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor + 2.$$

By noting that $\lim_{n \to \infty} \frac{\left\lceil \sqrt{\lfloor \frac{n}{k} \rfloor} \right\rceil}{\sqrt{\frac{n}{k}}} = 1$ and $\lim_{n \to \infty} \frac{\left\lfloor \frac{k}{2} \right\rfloor + 2}{\sqrt{\frac{n}{k}}} = 0$, we conclude $\lim_{n \to \infty} \frac{b(P(n, k))}{\sqrt{\frac{n}{k}}} = 1.$

٠		

3 Case $1 \le N \le 8$

We shall give the exact burning numbers for the case $1 \le n \le 8$ in this section. Note that P(n, k) is isomorphic to P(n, n - k). So, we may assume that $1 \le k \le \lfloor \frac{n}{2} \rfloor$. Recall that the *s*th closed neighbourhood of a vertex $x \in V(P(n, k))$ is

$$N_s[x] = \{ y \in V(P(n,k)) : \operatorname{dist}(y,x) \le s \},\$$

and the outer rim and inner rim of P(n, k) are $D_1 = \{u_0, u_1, ..., u_{n-1}\}$ and $D_2 = \{v_0, v_1, ..., v_{n-1}\}$, respectively.

Proposition 3.1 Let $3 \le n \le 8$ and $1 \le k \le \lfloor \frac{n}{2} \rfloor$. Then,

$$b(P(n,k)) = \begin{cases} 3, & \text{if } 3 \le n \le 6 \text{ or } n = 7, k \ne 1, \\ 4, & \text{if } n = 8 \text{ or } n = 7, k = 1. \end{cases}$$

Fig. 2 Burning sequences

Proof Since each vertex $x \in V(P(n, k))$ is of degree 3, $|N_0[x]| = 1$, $|N_1[x]| \le 4$ and $|N_2[x]| \le 10$.

Let $3 \le n \le 7$. If (x_1, x_2) is a burning sequence of P(n, k), then by Eq. (1),

$$2n \le |N_1[x_1]| + |N_0[x_2]| \le 4 + 1 = 5,$$

implying that n < 3, which is a contradiction. Hence, $b(P(n, k)) \ge 3$. Similarly, if (x_1, x_2, x_3) is a burning sequence of P(8, k), then

$$16 \le |N_2[x_1]| + |N_1[x_2]| + |N_0[x_3]| \le 10 + 4 + 1 = 15,$$

again is a contradiction. Hence, $b(P(8, k)) \ge 4$.

Note that for each $x \in V(P(7, 1))$, $|N_2[x]| = 8$. So, if (x_1, x_2, x_3) is a burning sequence of P(7, 1), then

$$14 \le |N_2[x_1]| + |N_1[x_2]| + |N_0[x_3]| \le 8 + 4 + 1 = 13,$$

which is a contradiction. Hence, $b(P(7, 1)) \ge 4$.

Now, the proposition can be verified easily from the burning sequences in the following table (see also Fig. 2).

Burning sequence	Graph		
(u_0, v_1, v_2)	P(3, 1), P(4, 1), P(4, 2)		
(u_0, v_3, u_3)	P(5, 1), P(6, 1), P(6, 2)		
(u_0, u_2, v_4)	P(5, 2), P(6, 3) P(7, 1) P(7, 2) P(7, 3)		
(u_0, u_2, u_4, v_4)			
(u_0, u_3, v_4)			
(v_0, v_2, u_5)			
(u_0, u_2, v_4, u_4)	P(8, 1), P(8, 2), P(8, 3), P(8, 4)		

4 Case $1 \le K \le 2$

4.1 Proof of Theorem 1.3

Note that for each $x \in V(P(n, 1))$, $|N_m[x]| \le 4m$ for $m \ge 1$ and $|N_0[x]| = 1$. So, if (x_1, x_2, \ldots, x_l) is a burning sequence of P(n, 1), then by Eq. (1),

$$2n \le |N_0[x_l]| + \sum_{i=1}^{l-1} |N_{l-i}[x_i]| \le 1 + \sum_{i=1}^{l-1} 4(l-i) = 2l^2 - 2l + 1$$

Since $l \ge 1$, by completing the square, we conclude that $l \ge \frac{2+\sqrt{4-8(1-2n)}}{4} = \frac{1}{2} + \sqrt{n-\frac{1}{4}} > \sqrt{n}$. Hence, $b(P(n, 1)) \ge \lceil \sqrt{n} \rceil$, and if *n* is a square, then $b(P(n, 1)) \ge \lceil \sqrt{n} \rceil + 1$.

The subgraph *C* induced by the vertices in the outer rim $D_1 = \{u_0, u_1, \ldots, u_{n-1}\}$ is a cycle of length *n*. By Theorem 1.1, $b(C) = \lceil \sqrt{n} \rceil$. So, *C* has a burning sequence $(y_1, y_2, \ldots, y_{\lceil \sqrt{n} \rceil})$. We shall take $y_1, y_2, \ldots, y_{\lceil \sqrt{n} \rceil}$ as the first part of our burning sequence for P(n, 1). Note that at time step $\lceil \sqrt{n} \rceil$, all the vertices in the outer rim are burned. Choose any unburned vertex *z* in the inner rim. Let $y_{\lceil \sqrt{n} \rceil + 1} = z$. Since $u_i v_i$ are adjacent for $1 \le i \le n - 1$, at time step $\lceil \sqrt{n} \rceil + 1$ all vertices in the inner rim are also burned. Hence, $b(P(n, 1)) \le \lceil \sqrt{n} \rceil + 1$, and if *n* is a square, then $b(P(n, 1)) = \sqrt{n} + 1$.

Finally, by Proposition 3.1, $b(P(5, 1)) = 3 = \lfloor \sqrt{5} \rfloor$. So the bounds are tight. This completes the proof of Theorem 1.3.

4.2 Proof of Theorem 1.4

We shall first define an isomorphic graph of P(n, 2), say H(n). Let

$$W_{1} = \left\{ s_{i}, s_{i}', t_{i}, t_{i}' : i = 1, 2, \dots, \left\lfloor \frac{n}{2} \right\rfloor \right\};$$

$$W_{2} = \left\{ t_{i}t_{i+1}, t_{i}'t_{i+1}', s_{i}s_{i+1}', s_{j}t_{j}, s_{j}'t_{j}', s_{j}s_{j}' : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1, 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \right\}.$$

If *n* is even, then let

$$V(H(n)) = W_1;$$

$$E(H(n)) = W_2 \cup \left\{ t_1 t_{\frac{n}{2}}, t_1' t_{\frac{n}{2}}', s_{\frac{n}{2}} s_1' \right\}.$$
(4)

If *n* is odd, then let

$$V(H(n)) = W_1 \cup \{s_0, t_0\};$$

$$E(H(n)) = W_2 \cup \left\{s_0 s_{\frac{n-1}{2}}, s_0 s_1', s_0 t_0, t_0 t_1, t_0 t_{\frac{n-1}{2}}', t_{\frac{n-1}{2}} t_1'\right\}.$$
(5)

Springer

Fig. 3 H(n) is isomorphic to P(n, 2) where *n* is even

Fig. 4 H(n) is isomorphic to P(n, 2) where *n* is odd

We now show that P(n, 2) is isomorphic to H(n) (see Figs. 3 and 4). Define $\phi: V(P(n, 2)) \rightarrow V(H(n))$ as follows: Let $\phi(u_i) = s'_{\frac{i}{2}+1}$ if *i* is even and $i \neq n-1$; $\phi(u_i) = s_{\frac{i-1}{2}+1}$ if *i* is odd; $\phi(u_{n-1}) = s_0$ if n-1 is even. Let $\phi(v_i) = t'_{\frac{i}{2}+1}$ if *i* is even and $i \neq n-1$; $\phi(v_i) = t_{\frac{i-1}{2}+1}$ if *i* is odd; $\phi(v_{n-1}) = t_0$ if n-1 is even. Note that the subgraph induced by all the vertices s_i, s'_i in H(n) is isomorphic to the outer rim in P(n, 2), and the subgraph induced by all the vertices t_i, t'_i in H(n) is isomorphic to the inner rim in P(n, 2). Furthermore, $s_it_i, s'_it'_i$ are the spokes in P(n, 2). So P(n, 2) is isomorphic to H(n).

Let $T_1 = \{t_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor\}$, $T_2 = \{t'_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor\}$, and level $L_i = \{s_i, s'_i, t_i, t'_i\}$ for $i = 1, 2, ..., \lfloor \frac{n}{2} \rfloor$.

Lemma 4.1 *For* $n \ge 3$,

$$b(P(n,2)) \ge \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 1.$$

Deringer

Fig. 5 Spreading of fire from $x \notin T_1 \cup T_2$. Filled vertices are burned, whereas empty vertices are unburned

Furthermore, if $\frac{n}{2}$ is a square, then $b(P(n, 2)) \ge \sqrt{\frac{n}{2}} + 2$.

Proof Note that if $x \notin T_1 \cup T_2$, then $|N_0[x]| = 1$, $|N_1[x]| \le 4$, $|N_2[x]| \le 10$, $|N_3[x]| \le 16$, $|N_4[x]| \le 22$, $|N_5[x]| \le 30$ and $|N_r[x]| \le 30 + 8(r-5)$ for $r \ge 6$ (see Fig. 5). After 5 steps, a maximum of 8 vertices are newly burned in each following step.

If $x \in T_1 \cup T_2$, then $|N_0[x]| = 1$, $|N_1[x]| \le 4$, $|N_2[x]| \le 10$, $|N_3[x]| \le 18$ and $|N_r[x]| \le 18 + 8(r-3)$ for $r \ge 4$ (see Fig. 6). After 4 steps, a maximum of 8 vertices are newly burned in each following step.

In either case, we have $|N_0[x]| = 1$, $|N_1[x]| \le 4$, $|N_2[x]| \le 10$, $|N_3[x]| \le 18$ and $|N_r[x]| \le 18 + 8(r-3) = 8r - 6$ for $r \ge 4$.

By Proposition 3.1, $b(P(n, 2)) = 3 = \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 1$ for $3 \le n \le 7$ and

$$b(P(8,2)) = 4 = \sqrt{\frac{n}{2}} + 2.$$

Hence, the lemma holds for $3 \le n \le 8$. So, we may assume $n \ge 9$. Suppose $9 \le n \le 16$, then $\left\lceil \sqrt{\frac{n}{2}} \right\rceil \le 3$. If P(n, 2) has a burning sequence of length 3, say (x_1, x_2, x_3) , then by Eq. (1), $18 \le 2n \le \sum_{i=1}^{3} |N_{3-i}[x_i]| \le 1 + 4 + 10 = 15$, a contradiction. Suppose $17 \le n \le 32$, then $\left\lceil \sqrt{\frac{n}{2}} \right\rceil \le 4$. If P(n, 2) has a burning sequence of length

Fig. 6 Spreading of fire from $x \in T_1 \cup T_2$. Filled vertices are burned, whereas empty vertices are unburned

4, say (x_1, x_2, x_3, x_4) , then $34 \le 2n \le \sum_{i=1}^4 |N_{4-i}[x_i]| \le 1 + 4 + 10 + 18 = 33$, a contradiction. So, $b(P(n, 2)) \ge \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 1$ for $3 \le n \le 32$.

Note that for $9 \le n \le 32$, $\frac{n}{2}$ is a square if and only if n = 18, 32. When n = 18, $\sqrt{\frac{n}{2}} + 2 = 5$. If P(18, 2) has a burning sequence of length 4, then $\sum_{i=1}^{4} |N_{4-i}[x_i]| \le 33$, but |V(P(18, 2))| = 36. When n = 32, $\sqrt{\frac{n}{2}} + 2 = 6$. If P(32, 2) has a burning sequence of length 5, then $\sum_{i=1}^{5} |N_{5-i}[x_i]| \le 1 + 4 + 10 + 18 + 26 = 59$, but |V(P(32, 2))| = 64. Thus, if $\frac{n}{2}$ is a square and $9 \le n \le 32$, then $b(P(n, 2)) \ge \sqrt{\frac{n}{2}} + 2$.

Suppose $n \ge 33$. If P(n, 2) has a burning sequence of length l, say (x_1, x_2, \dots, x_l) , then by Eq. (1),

$$2n \le \sum_{i=1}^{l} |N_{l-i}[x_i]| \le |N_0[x_l]| + |N_1[x_{l-1}]| + |N_2[x_{l-2}]| + \sum_{i=1}^{l-3} |N_{l-i}[x_i]|$$

$$\le 1 + 4 + 10 + \sum_{r=3}^{l-1} (8r - 6)$$

$$= 4l^2 - 10l + 9.$$

Since $l \ge 1$, by completing the square, we conclude that

$$l \ge \frac{10 + \sqrt{100 - 16(9 - 2n)}}{8} = \frac{5}{4} + \sqrt{\frac{n}{2} - \frac{11}{16}} > \sqrt{\frac{n}{2}} + 1.$$

Hence, $b(P(n, 2)) \ge \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 1$, and if $\frac{n}{2}$ is a square, then $b(P(n, 2)) \ge \sqrt{\frac{n}{2}} + 2$. This completes the proof of the lemma.

🖄 Springer

Lemma 4.2 *For* $n \ge 3$,

$$b(P(n,2)) \le \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 2.$$

Proof Let $l = \left\lceil \sqrt{\frac{n}{2}} \right\rceil$. It is sufficient to show that there is a burning sequence $(x_1, x_2, \dots, x_l, x_{l+1}, x_{l+2})$ in H(n).

Note that for $2 \le j \le l$, the term $(2j-1)l - (j-1)^2$ is increasing. Let m_0 be the largest positive integer such that $(2m_0 - 1)l - (m_0 - 1)^2 \le \lfloor \frac{n}{2} \rfloor$. Since

$$(2l-1)l - (l-1)^2 = l^2 + l - 1 \ge \left(\sqrt{\frac{n}{2}}\right)^2 + \left(\sqrt{\frac{n}{2}} - 1\right) > \frac{n}{2}$$

we must have $m_0 \leq l - 1$.

Now, we construct the first part of a burning sequence for H(n), say x_1, x_2, \ldots, x_l , as follows:

- (a) Let $x_1 = t_l$;
- (b) For each $2 \le j \le m_0$, set $x_j = t_{(2j-1)l-(j-1)^2}$ if j is odd, or $x_j = t'_{(2j-1)l-(j-1)^2}$ if j is even;
- (c) For $j \ge m_0 + 1$:
 - (i) Suppose $m_0 \leq l-2$. If $x_{m_0} = t_{(2m_0-1)l-(m_0-1)^2}$, then set $x_{m_0+1} = t_{\lfloor \frac{n}{2} \rfloor}^{\prime}$, whereas if $x_{m_0} = t_{(2m_0-1)l-(m_0-1)^2}^{\prime}$, then set $x_{m_0+1} = t_{\lfloor \frac{n}{2} \rfloor}^{\prime}$. For $m_0 + 2 \leq w \leq l$, choose x_w to be any unburned vertex (if possible).
 - (ii) Suppose $m_0 = l 1$. If $x_{l-1} = t_{(2l-3)l-(l-2)^2}$, then set $x_l = t'_{\lfloor \frac{n}{2} \rfloor}$, whereas if $x_{l-1} = t'_{(2l-3)l-(l-2)^2}$, then set $x_l = t_{\lfloor \frac{n}{2} \rfloor}$.

In Fig. 7, the filled vertices are $N_{l-i}[x_i]$ and the shaded vertices are $N_{l+2-i}[x_i]\setminus N_{l-i}[x_i]$. In particular, $L_4 \cup L_5 \cup \cdots \cup L_l \subseteq N_{l-1}[x_1]$. So $(L_1 \cup L_2 \cup \cdots \cup L_l) \setminus \{t'_1\} \subseteq N_{l+1}[x_1]$ (see Fig. 7a).

Suppose $2 \le j \le m_0$. Note that x_j is contained in level $L_{(2j-1)l-(j-1)^2}$ and x_{j-1} is contained in level $L_{(2j-3)l-(j-2)^2}$. There are exactly $2l - 2j + 4 = ((2j-1)l - (j-1)^2) - ((2j-3)l - (j-2)^2) + 1$ levels between $L_{(2j-1)l-(j-1)^2}$ and $L_{(2j-3)l-(j-2)^2}$ (inclusive). All these levels are contained in $N_{l-j+3}[x_{j-1}] \cup N_{l-j+2}[x_j]$ (see Fig. 7b).

Suppose $m_0 \le l-2$. By the choice of m_0 , $(2m_0+1)l - m_0^2 > \lfloor \frac{n}{2} \rfloor$. So, the number of levels between $L_{\lfloor \frac{n}{2} \rfloor}$ and $L_{(2m_0-1)l-(m_0-1)^2}$ (inclusive) is at most

$$\left\lfloor \frac{n}{2} \right\rfloor - \left((2m_0 - 1)l - (m_0 - 1)^2 \right) + 1 < (2m_0 + 1)l - m_0^2 - \left((2m_0 - 1)l - (m_0 - 1)^2 \right) + 1 = 2l - 2m_0 + 2.$$

All these levels are contained in $N_{l-m_0+2}[x_{m_0}] \cup N_{l-m_0+1}[x_{m_0+1}]$ (see Fig. 7b).

Fig. 7 Construction

Suppose $m_0 = l - 1$. Then, x_{l-1} is in level $L_{(2l-3)l-(l-2)^2}$ and x_l is in level $L_{\lfloor \frac{n}{2} \rfloor}$. Note that

$$(2l-3)l - (l-2)^2 + 2 = l^2 + l - 2 > \frac{n}{2} - 1 \ge \lfloor \frac{n}{2} \rfloor - 1.$$

Hence, we have

$$(2l-3)l - (l-2)^2 + 2 \ge \left\lfloor \frac{n}{2} \right\rfloor.$$

Therefore,

$$L_{(2l-3)l-(l-2)^2} \cup L_{(2l-3)l-(l-2)^2+1} \cup \dots \cup L_{\lfloor \frac{n}{2} \rfloor} \subseteq N_3[x_{l-1}] \cup N_2[x_l],$$

(see Fig. 7c).

If we set $x_{l+1} = t'_1$ and x_{l+2} to be any unburned vertex at time step l+1 (if possible), then $(x_1, x_2, ..., x_l, x_{l+1}, x_{l+2})$ is a burning sequence of H(n) when n is even. If nis odd, it is also a burning sequence by noticing that $\{s_0, t_0\} \in N_{l+1}[x_1]$ (see Figs. 4 and 7a). This completes the proof of the lemma.

The first part of Theorem 1.4 follows from Lemmas 4.1 and 4.2. Furthermore, if $\frac{n}{2}$ is a square, then $b(P(n, 2)) = \sqrt{\frac{n}{2}} + 2$. Finally, by Proposition 3.1, $b(P(3, 2)) = 3 = \left\lceil \sqrt{\frac{3}{2}} \right\rceil + 1$. So the bounds are tight. This completes the proof of Theorem 1.4. \Box

Acknowledgements This project is supported by Postgraduate Research Grant (PPP) - Research PG068-2015A by University of Malaya.

References

- 1. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Burning a graph is hard. Discrete Appl. Math. 232, 73–87 (2017)
- Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social contagion. Lect. Notes Comput. Sci. 8882, 13–22 (2014)
- 3. Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph. Internet Math. 1-2, 85-100 (2016)
- 4. Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-forests. arXiv:1707.09968
- Land, M.R., Lu, L.: An upper bound on the burning number of graphs. In: Bonato, A., Graham, F., Pralat P. (eds) Algorithms and Models for the Web Graph. WAW 2016. Lecture Notes in Computer Science, vol. 10088. Springer, Cham (2016)
- Mitsche, D., Pralat, P., Roshanbin, E.: Burning graphs: a probabilistic perspective. Graphs Combin. 33(2), 449–471 (2017)
- Mitsche, D., Pralat, P., Roshanbin, E.: Burning number of graph products. http://www.math.ryerson.ca/ ~pralat/papers/graph_products.pdf
- Roshanbin, E.: Burning a graph as a model for the spread of social contagion. Ph.D. Thesis, Dalhousie University, Halifax, Nova Scotia (2016)