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Abstract The burning number b(G) of a graph G is used for measuring the speed
of contagion in a graph. In this paper, we study the burning number of the gen-
eralized Petersen graph P(n, k). We show that for any fixed positive integer k,
limn→∞ b(P(n,k))√

n
k

= 1. Furthermore, we give tight bounds for b(P(n, 1)) and

b(P(n, 2)).
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1 Introduction

Graph burning is a discrete-time process that can be used to model the spread of social
contagion in social networks. It was introduced byBonato et al. [2,3,8]. This process is
defined on the vertex set of a simple finite graph. Throughout the process, each vertex
is either burned or unburned. Initially, at time step t = 0, all vertices are unburned.
At the beginning of every time step t ≥ 1, an unburned vertex is chosen to burn (if
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such a vertex is available). After that, if a vertex is burned in time step t − 1, then in
time step t , each of its unburned neighbours becomes burned. A burned vertex will
remain burned throughout the process. The process ends when all vertices are burned,
in which case we say the graph is burned.

Suppose a graph G is burned in m time steps in a burning process. For 1 ≤ i ≤ m,
we denote the vertex we choose to burn at the beginning of time step i by xi . The
sequence (x1, x2, . . . , xm) is called a burning sequence for G. Each xi is called a
burning source of G. The burning number of a graph G, denoted by b(G), is the
length of a shortest burning sequence forG. It is straightforward to see that b(Kn) = 2.
For paths and cycles, Bonato et al. [3] determined their burning numbers exactly.

Theorem 1.1 [3, Theorem 9 and Corollary 10] Let Pn be a path with n vertices and
Cn be a cycle with n vertices. Then,

b(Pn) =
⌈
n1/2

⌉
= b(Cn).

For general graphs, they showed that the burning number of any graph G can be
bounded by its radius r and diameter d, giving

⌈
(d + 1)1/2

⌉ ≤ b(G) ≤ r + 1. In the
same paper, they also gave an upper bound on the burning number of any connected
graphG of ordern, showing thatb(n) ≤ 2

√
n−1.This upper boundwas later improved

to roughly
√
6
2

√
n by Land and Lu [5]. It was conjectured in [3] that b(G) ≤ �√n�

for any connected graph G of order n. Very recently, Bonato and Lidbetter [4] verified
this conjecture for spider graphs, which are trees with exactly one vertex of degree at
least 3.

Determining b(G) for general graphs is a non-trivial problem. It is known that
computing the burning number of a graph is NP-complete [1]. The burning number of
the hypercube Qn is asymptotically n

2 [7], but the exact value of b(Qn) is still unknown.
Several other results on burning number of graphs have also been studied recently.
For example, Mitsche, Pralat and Roshanbin investigated the burning number of graph
products in [7] and they also focused on the probabilistic aspects of the burning number
in [6].

In this paper, we are interested in the burning number of the generalized Petersen
graphs. Let n ≥ 3 and k be integers such that 1 ≤ k ≤ n−1. The generalized Petersen
graph P(n, k) is defined to be the graph on 2n vertices with vertex set

V (P(n, k)) = {ui , vi : i = 0, 1, 2, . . . , n − 1}

and edge set

E(P(n, k)) = {uiui+1, uivi , vivi+k : i = 0, 1, 2, . . . , n − 1},

where subscripts are taken modulo n. Let D1 = {ui : i = 0, 1, 2, . . . , n − 1} and
D2 = {vi : i = 0, 1, 2, . . . , n − 1}. The subgraph induced by D1 is called the outer
rim, while the subgraph induced by D2 is called the inner rim. A spoke of P(n, k) is
an edge of the form uivi for some 0 ≤ i ≤ n − 1.

The following are the main results of this paper.
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Theorem 1.2 Let k be a fixed positive integer. Then,

⌈√⌊n
k

⌋⌉
≤ b(P(n, k)) ≤

⌈√⌊n
k

⌋⌉
+

⌊
k

2

⌋
+ 2.

In particular,

lim
n→∞

b(P(n, k))√
n
k

= 1.

Theorem 1.3 For n ≥ 3,

⌈√
n
⌉ ≤ b(P(n, 1)) ≤ ⌈√

n
⌉ + 1.

Furthermore, the bounds are tight, and if n is a square, then b(P(n, 1)) = √
n + 1.

Theorem 1.4 For n ≥ 3,

⌈√
n

2

⌉
+ 1 ≤ b(P(n, 2)) ≤

⌈√
n

2

⌉
+ 2.

Furthermore, the bounds are tight, and if n
2 is a square, then b(P(n, 2)) =

√
n
2 + 2.

We use standard graph terminology throughout the paper. The distance between
two vertices u and v in a graph G, denoted by distG(u, v), is the length of a shortest
path from u to v in the graphG. By convention, distG(u, u) = 0. Furthermore, we shall
write dist(u, v) for distG(u, v) if the graph in question is clear. Given a non-negative
integer s, the s-th closed neighbourhood of a vertex u, denoted by NG

s [u], is the set
of vertices whose distance from u is at most s, i.e.

NG
s [u] = {v ∈ V (G): distG(u, v) ≤ s}.

Again, if the graph in question is clear, we shall write Ns[u] for NG
s [u].

Let (x1, x2, . . . , xm) be a burning sequence of a graph G. As in [3, Section 2], for
each pair i and j , with 1 ≤ i < j ≤ m, we have dist(xi , x j ) ≥ j − i and

V (G) = Nm−1[x1] ∪ Nm−2[x2] ∪ · · · ∪ N0[xm]. (1)

The plan of the paper is as follows. In Sect. 2, we provide bounds for the burning

number of P(n, k) and show that b(P(n, k)) is asymptotically
√

n
k . In Sect. 3, we

determine the exact values of b(P(n, k)) for 1 ≤ n ≤ 8. Then, we prove Theorems 1.3
and 1.4 in Sect. 4.
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2 General Case

Lemma 2.1 For n ≥ 3 and 1 ≤ k < n,

b(P(n, k)) ≥
⌈√⌊n

k

⌋⌉
.

Proof Let C be a cycle with
⌊ n
k

⌋
vertices, V (C) = {0, 1, 2, . . . , ⌊ n

k

⌋ − 1} and
E(C) = {i(i + 1): 0, 1, . . . , ⌊ n

k

⌋ − 1}, where the integers are taken modulo
⌊ n
k

⌋
.

Recall that the outer rim and inner rim of P(n, k) are D1 = {u0, u1, . . . , un−1} and
D2 = {v0, v1, . . . , vn−1}, respectively.

For each m ∈ {0, 1, 2, . . . , n − 1}, let

f (m) =
{
p, if m = pk + q, 0 ≤ p <

⌊ n
k

⌋
, 0 ≤ q ≤ k − 1;⌊ n

k

⌋ − 1, if m = ⌊ n
k

⌋
k + q, 0 ≤ q < k − 1 .

(2)
Let ϕ : V (P(n, k)) → V (C) be defined by

ϕ(ui ) = f (i) = ϕ(vi ), ∀i ∈ {0, 1, 2, . . . , n − 1}. (3)

Clearly, ϕ is surjective.
Let (x1, x2, . . . , xs) be a burning sequence of P(n, k). We construct a burning

sequence for C using the map ϕ as follows:

(a) At the beginning of time step 1, burn y1 = ϕ(x1);
(b) At the beginning of time step t (2 ≤ t ≤ s), if ϕ(xt ) is still unburned, then burn

yt = ϕ(xt ); otherwise, burn any unburned vertex yt ∈ V (C).

Note that in (b) above, if at the beginning of time step t (2 ≤ t ≤ s), no unburned
vertex can be found, then (y1, y2, . . . , yt−1) is a burning sequence of C . So, we may
assume that such an unburned vertex can be found at the beginning of every time step.
We shall show that (y1, y2, . . . , ys) is a burning sequence of C . This follows from ϕ

is surjective and the following claim.

Claim If z ∈ V (P(n, k)) is burned at time step t0, then its image ϕ(z) in C is burned
at time step t1 ≤ t0.

Proof If z = x1, then it is burned at time step 1. Its image ϕ(z) = y1 is also burned at
time step 1. The claim is true. Assume that the claim is true for a t0 < s.

Suppose z is burned at time step t0 + 1. If z is a burning source, then z = xt0+1. By
(b), ϕ(z) is burned at time step t0 + 1 provided that ϕ(xt0+1) is unburned. If ϕ(xt0+1)

is burned, then it must be burned at an earlier time step. So, the claim holds.
We may assume that z �= xt0+1. Note that for any two distinct vertices w1, w2 ∈

V (P(n, k)) such that ϕ(w1), ϕ(w2) ∈ V (C) and |ϕ(w1) − ϕ(w2)| ≤ 1 or |ϕ(w1) −
ϕ(w2)| =  n

k � − 1, then ϕ(w1) = ϕ(w2) or ϕ(w1) and ϕ(w2) are adjacent in C . We
shall distinguish two cases.
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Case 1 Let z = ul . Then, it is adjacent to vl , ul+1 and ul−1 where the subscript are
taken modulo n. Furthermore, either vl , ul+1 or ul−1 is burned at time step t0. So, by
induction, ϕ(vl), ϕ(ul+1) or ϕ(ul−1) is burned at time step t1 ≤ t0 respectively. By
Eqs. (2) and (3), |ϕ(ul)−ϕ(vl)| = 0, |ϕ(ul)−ϕ(ul−1)| ≤ 1 and |ϕ(ul)−ϕ(ul+1)| ≤ 1
where l = 1, 2, . . . , n − 2 and |ϕ(u0) − ϕ(un−1)| =  n

k � − 1. This means that
ϕ(z) = ϕ(ul) is burned at time step t1 + 1 ≤ t0 + 1.
Case 2 Let z = vl . It is adjacent to ul , vl+k and ul−k where the subscript are taken
modulo n. Either ul , vl−k or vl+k is burned at time step t0. Here, we denote v−i = vn−i

for a non-negative i . So, by induction, ϕ(ul), ϕ(vl+k) or ϕ(vl−k) is burned at time step
t1 ≤ t0 respectively. By Eqs. (2) and (3), we have |ϕ(vl) − ϕ(ul)| = 0,

|ϕ(vl) − ϕ(vl−k)| =
⎧
⎨
⎩

 n
k � − 1, if l = 0, 1, 2, . . . , k − 1;

1, if l = k, k + 1, . . . ,  n
k �k − 1;

0, if l =  n
k �k,  n

k �k + 1, . . . , n − 1.

and

|ϕ(vl) − ϕ(vl+k)|

=
⎧⎨
⎩
1, if l=0, 1, 2, . . . ,

( n
k �−1

)
k−1;

0, if l = ( n
k � − 1

)
k,

( n
k � − 1

)
k + 1, . . . , n − 1 − k;

 n
k � − 1, if l = n − k, n − k + 1, . . . , n − 1.

This means that ϕ(z) = ϕ(vl) is burned at time step t1 + 1 ≤ t0 + 1.
This completes the proof of the claim. ��
Therefore, given any burning sequence of P(n, k), we can construct a burning

sequence for C with shorter or the same length. Hence, b(P(n, k)) ≥ b(C) =⌈√⌊ n
k

⌋⌉
, where the last equality follows from Theorem 1.1. ��

Lemma 2.2 For n ≥ 3 and 1 ≤ k < n,

b(P(n, k)) ≤
⌈√⌊n

k

⌋⌉
+

⌊
k

2

⌋
+ 2.

Proof Recall that the outer rim and inner rim of P(n, k) are D1 = {u0, u1, . . . , un−1}
and D2 = {v0, v1, . . . , vn−1}, respectively. Let r = ⌊ n

k

⌋
. We shall construct a burning

sequence for P(n, k) of length at most
⌈√

r
⌉ + ⌊ k

2

⌋ + 2. Note that a subgraph G
induced by the vertices v0, vk, v2k, . . . , v(r−1)k in P(n, k) is a path or cycle of order r .
By Theorem 1.1, b(G) = ⌈√

r
⌉
. So, there is a burning sequence (x1, x2, . . . , x�√r�)

of G. We shall take x1, x2, . . . , x�√r� as the first part of our burning sequence for
P(n, k).

Note that at time step �√r�, all v0, vk, v2k, . . . , v(r−1)k are burned. If at time step
�√r�, urk is unburned, then we set x�√r�+1 = urk . Otherwise, we set x�√r�+1 to
be any unburned vertex. Since uik is adjacent to vik for 0 ≤ i ≤ (r − 1), at time
step �√r�+1, all u0, uk, u2k, . . . , u(r−1)k, urk are burned. Furthermore, at most k−1
vertices are unburned in the path uikuik+1uik+2 . . . u(i+1)k in the outer rim (see Fig. 1).
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uik

vik

uik+1

vik+1

uik+2

vik+2

uik+k−1

vik+k−1

u(i+1)k

v(i+1)k

urk

vrk

u0

v0

k − 1 vertices ≤ k − 1 vertices

Fig. 1 Filled vertices are burned, whereas empty vertices are unburned

Now, for j ≥ �√r� + 2, we can choose x j to be any unburned vertex. Note that at
time step �√r�+ 1+ ⌊ k

2

⌋
, all the vertices in the outer rim are burned. Since ui and vi

are adjacent, at time step �√r�+2+⌊ k
2

⌋
, all vertices in the inner rim are also burned.

Hence, the lemma follows. ��

Proof of Theorem 1.2 By Lemmas 2.1 and 2.2, we have

⌈√⌊n
k

⌋⌉
≤ b(P(n, k)) ≤

⌈√⌊n
k

⌋⌉
+

⌊
k

2

⌋
+ 2.

By noting that limn→∞

⌈√ n
k �

⌉
√

n
k

= 1 and limn→∞

⌊
k
2

⌋
+2√
n
k

= 0, we conclude

lim
n→∞

b(P(n, k))√
n
k

= 1.

��

3 Case 1 ≤ N ≤ 8

We shall give the exact burning numbers for the case 1 ≤ n ≤ 8 in this section. Note
that P(n, k) is isomorphic to P(n, n − k). So, we may assume that 1 ≤ k ≤ ⌊ n

2

⌋
.

Recall that the sth closed neighbourhood of a vertex x ∈ V (P(n, k)) is

Ns[x] = {y ∈ V (P(n, k)) : dist(y, x) ≤ s},

and the outer rim and inner rim of P(n, k) are D1 = {u0, u1, . . . , un−1} and D2 =
{v0, v1, . . . , vn−1}, respectively.
Proposition 3.1 Let 3 ≤ n ≤ 8 and 1 ≤ k ≤ ⌊ n

2

⌋
. Then,

b(P(n, k)) =
{
3, if 3 ≤ n ≤ 6 or n = 7, k �= 1,
4, if n = 8 or n = 7, k = 1.
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x1

x3

x2

x1

x2

x3

x1

x2x3

P (6, 2) P (6, 3)
P (7, 2)

Fig. 2 Burning sequences

Proof Since each vertex x ∈ V (P(n, k)) is of degree 3, |N0[x]| = 1, |N1[x]| ≤ 4 and
|N2[x]| ≤ 10.

Let 3 ≤ n ≤ 7. If (x1, x2) is a burning sequence of P(n, k), then by Eq. (1),

2n ≤ |N1[x1]| + |N0[x2]| ≤ 4 + 1 = 5,

implying that n < 3, which is a contradiction. Hence, b(P(n, k)) ≥ 3. Similarly, if
(x1, x2, x3) is a burning sequence of P(8, k), then

16 ≤ |N2[x1]| + |N1[x2]| + |N0[x3]| ≤ 10 + 4 + 1 = 15,

again is a contradiction. Hence, b(P(8, k)) ≥ 4.
Note that for each x ∈ V (P(7, 1)), |N2[x]| = 8. So, if (x1, x2, x3) is a burning

sequence of P(7, 1), then

14 ≤ |N2[x1]| + |N1[x2]| + |N0[x3]| ≤ 8 + 4 + 1 = 13,

which is a contradiction. Hence, b(P(7, 1)) ≥ 4.
Now, the proposition can be verified easily from the burning sequences in the

following table (see also Fig. 2).

Burning sequence Graph

(u0, v1, v2) P(3, 1), P(4, 1), P(4, 2)
(u0, v3, u3) P(5, 1), P(6, 1), P(6, 2)
(u0, u2, v4) P(5, 2), P(6, 3)
(u0, u2, u4, v4) P(7, 1)
(u0, u3, v4) P(7, 2)
(v0, v2, u5) P(7, 3)
(u0, u2, v4, u4) P(8, 1), P(8, 2), P(8, 3), P(8, 4)

��
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4 Case 1 ≤ K ≤ 2

4.1 Proof of Theorem 1.3

Note that for each x ∈ V (P(n, 1)), |Nm[x]| ≤ 4m for m ≥ 1 and |N0[x]| = 1. So, if
(x1, x2, . . . , xl) is a burning sequence of P(n, 1), then by Eq. (1),

2n ≤ |N0[xl ]| +
l−1∑
i=1

|Nl−i [xi ]| ≤ 1 +
l−1∑
i=1

4(l − i) = 2l2 − 2l + 1.

Since l ≥ 1, by completing the square, we conclude that l ≥ 2+√
4−8(1−2n)

4 = 1
2 +√

n − 1
4 >

√
n. Hence, b(P(n, 1)) ≥ ⌈√

n
⌉
, and if n is a square, then b(P(n, 1)) ≥⌈√

n
⌉ + 1.

The subgraph C induced by the vertices in the outer rim D1 = {u0, u1, . . . , un−1}
is a cycle of length n. By Theorem 1.1, b(C) = ⌈√

n
⌉
. So, C has a burning sequence

(y1, y2, . . . , y�√
n �). We shall take y1, y2, . . . , y�√n� as the first part of our burning

sequence for P(n, 1). Note that at time step �√n�, all the vertices in the outer rim
are burned. Choose any unburned vertex z in the inner rim. Let y�√n�+1 = z. Since
uivi are adjacent for 1 ≤ i ≤ n − 1, at time step �√n� + 1 all vertices in the inner
rim are also burned. Hence, b(P(n, 1)) ≤ ⌈√

n
⌉ + 1, and if n is a square, then

b(P(n, 1)) = √
n + 1.

Finally, by Proposition 3.1, b(P(5, 1)) = 3 =
⌈√

5
⌉
. So the bounds are tight. This

completes the proof of Theorem 1.3. ��

4.2 Proof of Theorem 1.4

We shall first define an isomorphic graph of P(n, 2), say H(n). Let

W1 =
{
si , s

′
i , ti , t

′
i : i = 1, 2, . . . ,

⌊n
2

⌋}
;

W2 =
{
ti ti+1, t

′
i t

′
i+1, si s

′
i+1, s j t j , s

′
j t

′
j , s j s

′
j : 1 ≤ i ≤

⌊n
2

⌋
− 1, 1 ≤ j ≤

⌊n
2

⌋}
.

If n is even, then let

V (H(n)) = W1;
E(H(n)) = W2 ∪

{
t1t n2 , t

′
1t

′
n
2
, s n

2
s′
1

}
. (4)

If n is odd, then let

V (H(n)) = W1 ∪ {s0, t0} ;
E(H(n)) = W2 ∪

{
s0s n−1

2
, s0s

′
1, s0t0, t0t1, t0t

′
n−1
2

, t n−1
2
t ′1

}
. (5)

123



On the Burning Number of Generalized Petersen Graphs 1665

u0 u1

u2

u3

u4u5

un−2

un−1

t1

t2

t3

tn
2

s1

s2

s3

sn
2

s1

s2

s3

sn
2

t1

t2

t3
tn
2

P (n, 2) H(n)

T1 T2

L1

L2

L3

Ln
2

Fig. 3 H(n) is isomorphic to P(n, 2) where n is even

u0

u1

u2

u3

u4un−4

un−3

un−2

un−1

t1

t2

t3

tn−1
2

s1

s2

s3

sn−1
2

s1

s2

s3

sn−1
2

t1

t2

t3

tn−1
2

s0

t0

P (n, 2) H(n)

T1 T2

L1

L2

L3

Ln−1
2

Fig. 4 H(n) is isomorphic to P(n, 2) where n is odd

We now show that P(n, 2) is isomorphic to H(n) (see Figs. 3 and 4). Define
φ : V (P(n, 2)) → V (H(n)) as follows: Let φ(ui ) = s′

i
2+1

if i is even and i �= n − 1;

φ(ui ) = s i−1
2 +1 if i is odd; φ(un−1) = s0 if n−1 is even. Let φ(vi ) = t ′i

2+1
if i is even

and i �= n − 1; φ(vi ) = t i−1
2 +1 if i is odd; φ(vn−1) = t0 if n − 1 is even. Note that

the subgraph induced by all the vertices si , s′
i in H(n) is isomorphic to the outer rim

in P(n, 2), and the subgraph induced by all the vertices ti , t ′i in H(n) is isomorphic to
the inner rim in P(n, 2). Furthermore, si ti , s′

i t
′
i are the spokes in P(n, 2). So P(n, 2)

is isomorphic to H(n).
Let T1 = {ti : 1 ≤ i ≤  n

2 �}, T2 = {t ′i : 1 ≤ i ≤  n
2 �}, and level Li = {si , s′

i , ti , t
′
i }

for i = 1, 2, . . . ,  n
2 �.

Lemma 4.1 For n ≥ 3,

b(P(n, 2)) ≥
⌈√

n

2

⌉
+ 1.
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N0[x] N1[x]
N2[x]

N3[x]

N4[x]
N5[x]

x x x x

x x

Fig. 5 Spreading of fire from x /∈ T1∪T2. Filled vertices are burned, whereas empty vertices are unburned

Furthermore, if n
2 is a square, then b(P(n, 2)) ≥

√
n
2 + 2.

Proof Note that if x /∈ T1 ∪ T2, then |N0[x]| = 1, |N1[x]| ≤ 4, |N2[x]| ≤ 10,
|N3[x]| ≤ 16, |N4[x]| ≤ 22, |N5[x]| ≤ 30 and |Nr [x]| ≤ 30+8(r −5) for r ≥ 6 (see
Fig. 5). After 5 steps, a maximum of 8 vertices are newly burned in each following
step.

If x ∈ T1 ∪ T2, then |N0[x]| = 1, |N1[x]| ≤ 4, |N2[x]| ≤ 10, |N3[x]| ≤ 18 and
|Nr [x]| ≤ 18+8(r −3) for r ≥ 4 (see Fig. 6). After 4 steps, a maximum of 8 vertices
are newly burned in each following step.

In either case, we have |N0[x]| = 1, |N1[x]| ≤ 4, |N2[x]| ≤ 10, |N3[x]| ≤ 18 and
|Nr [x]| ≤ 18 + 8(r − 3) = 8r − 6 for r ≥ 4.

By Proposition 3.1, b(P(n, 2)) = 3 =
⌈√

n
2

⌉
+ 1 for 3 ≤ n ≤ 7 and

b(P(8, 2)) = 4 =
√
n

2
+ 2.

Hence, the lemma holds for 3 ≤ n ≤ 8. So, we may assume n ≥ 9. Suppose 9 ≤ n ≤
16, then

⌈√
n
2

⌉
≤ 3. If P(n, 2) has a burning sequence of length 3, say (x1, x2, x3),

then by Eq. (1), 18 ≤ 2n ≤ ∑3
i=1 |N3−i [xi ]| ≤ 1 + 4 + 10 = 15, a contradiction.

Suppose 17 ≤ n ≤ 32, then
⌈√

n
2

⌉
≤ 4. If P(n, 2) has a burning sequence of length
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x x x

N0[x]
N1[x]

N2[x]
Fig. 6 Spreading of fire from x ∈ T1∪T2. Filled vertices are burned, whereas empty vertices are unburned

4, say (x1, x2, x3, x4), then 34 ≤ 2n ≤ ∑4
i=1 |N4−i [xi ]| ≤ 1 + 4 + 10 + 18 = 33, a

contradiction. So, b(P(n, 2)) ≥
⌈√

n
2

⌉
+ 1 for 3 ≤ n ≤ 32.

Note that for 9 ≤ n ≤ 32, n
2 is a square if and only if n = 18, 32. When n = 18,√

n
2 + 2 = 5. If P(18, 2) has a burning sequence of length 4, then

∑4
i=1 |N4−i [xi ]| ≤

33, but |V (P(18, 2))| = 36. When n = 32,
√

n
2 + 2 = 6. If P(32, 2) has a burning

sequence of length 5, then
∑5

i=1 |N5−i [xi ]| ≤ 1 + 4 + 10 + 18 + 26 = 59, but

|V (P(32, 2))| = 64. Thus, if n
2 is a square and 9 ≤ n ≤ 32, then b(P(n, 2)) ≥

√
n
2+2.

Suppose n ≥ 33. If P(n, 2) has a burning sequence of length l, say (x1, x2, . . . , xl),
then by Eq. (1),

2n ≤
l∑

i=1

|Nl−i [xi ]| ≤ |N0[xl ]| + |N1[xl−1]| + |N2[xl−2]| +
l−3∑
i=1

|Nl−i [xi ]|

≤ 1 + 4 + 10 +
l−1∑
r=3

(8r − 6)

= 4l2 − 10l + 9.

Since l ≥ 1, by completing the square, we conclude that

l ≥ 10 + √
100 − 16(9 − 2n)

8
= 5

4
+

√
n

2
− 11

16
>

√
n

2
+ 1.

Hence, b(P(n, 2)) ≥
⌈√

n
2

⌉
+ 1, and if n

2 is a square, then b(P(n, 2)) ≥
√

n
2 + 2.

This completes the proof of the lemma. ��
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Lemma 4.2 For n ≥ 3,

b(P(n, 2)) ≤
⌈√

n

2

⌉
+ 2.

Proof Let l =
⌈√

n
2

⌉
. It is sufficient to show that there is a burning sequence

(x1, x2, . . . , xl , xl+1, xl+2) in H(n).
Note that for 2 ≤ j ≤ l, the term (2 j − 1)l − ( j − 1)2 is increasing. Let m0 be the

largest positive integer such that (2m0 − 1)l − (m0 − 1)2 ≤ ⌊ n
2

⌋
. Since

(2l − 1)l − (l − 1)2 = l2 + l − 1 ≥
(√

n

2

)2

+
(√

n

2
− 1

)
>

n

2
,

we must have m0 ≤ l − 1.
Now, we construct the first part of a burning sequence for H(n), say x1, x2, . . . , xl ,

as follows:

(a) Let x1 = tl ;
(b) For each 2 ≤ j ≤ m0, set x j = t(2 j−1)l−( j−1)2 if j is odd, or x j = t ′

(2 j−1)l−( j−1)2

if j is even;
(c) For j ≥ m0 + 1:

(i) Suppose m0 ≤ l − 2. If xm0 = t(2m0−1)l−(m0−1)2 , then set xm0+1 = t ′ n
2 �,

whereas if xm0 = t ′
(2m0−1)l−(m0−1)2

, then set xm0+1 = t n
2 �. For m0 + 2 ≤

w ≤ l, choose xw to be any unburned vertex (if possible).
(ii) Suppose m0 = l − 1. If xl−1 = t(2l−3)l−(l−2)2 , then set xl = t ′ n

2 �, whereas if
xl−1 = t ′

(2l−3)l−(l−2)2
, then set xl = t n

2 �.
In Fig. 7, the filled vertices are Nl−i [xi ] and the shaded vertices are Nl+2−i [xi ]\Nl−i

[xi ]. In particular, L4 ∪ L5 ∪ · · · ∪ Ll ⊆ Nl−1[x1]. So (L1 ∪ L2 ∪ · · · ∪ Ll) \ {t ′1} ⊆
Nl+1[x1] (see Fig. 7a).

Suppose 2 ≤ j ≤ m0. Note that x j is contained in level L(2 j−1)l−( j−1)2 and x j−1 is
contained in level L(2 j−3)l−( j−2)2 . There are exactly 2l − 2 j + 4 = ((2 j − 1)l − ( j −
1)2)− ((2 j − 3)l − ( j − 2)2)+ 1 levels between L(2 j−1)l−( j−1)2 and L(2 j−3)l−( j−2)2

(inclusive). All these levels are contained in Nl− j+3[x j−1]∪Nl− j+2[x j ] (see Fig. 7b).
Supposem0 ≤ l−2. By the choice ofm0, (2m0+1)l−m2

0 >
⌊ n
2

⌋
. So, the number

of levels between L n
2 � and L(2m0−1)l−(m0−1)2 (inclusive) is at most

⌊n
2

⌋
− ((2m0 − 1)l − (m0 − 1)2) + 1 < (2m0 + 1)l − m2

0

− ((2m0 − 1)l − (m0 − 1)2) + 1

= 2l − 2m0 + 2.

All these levels are contained in Nl−m0+2[xm0 ] ∪ Nl−m0+1[xm0+1] (see Fig. 7b).
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t1
L1

L2

L3

L4

tl = x1

Ll

t1

xj−1

xj

t n
2

= xl

xl−1

t n
2

...
...

...
...

...
...

...
...

...
...

...
...

l levels

l − j + 2 levels

l − j + 1 levels

≤ 3 levels

(b)

(a)

(c)

Fig. 7 Construction

Suppose m0 = l − 1. Then, xl−1 is in level L(2l−3)l−(l−2)2 and xl is in level L n
2 �.

Note that

(2l − 3)l − (l − 2)2 + 2 = l2 + l − 2 >
n

2
− 1 ≥

⌊n
2

⌋
− 1.

Hence, we have

(2l − 3)l − (l − 2)2 + 2 ≥
⌊n
2

⌋
.

Therefore,

L(2l−3)l−(l−2)2 ∪ L(2l−3)l−(l−2)2+1 ∪ · · · ∪ L n
2 � ⊆ N3[xl−1] ∪ N2[xl ],

(see Fig. 7c).
If we set xl+1 = t ′1 and xl+2 to be any unburned vertex at time step l+1 (if possible),

then (x1, x2, . . . , xl , xl+1, xl+2) is a burning sequence of H(n) when n is even. If n
is odd, it is also a burning sequence by noticing that {s0, t0} ∈ Nl+1[x1] (see Figs. 4
and 7a). This completes the proof of the lemma. ��

The first part of Theorem 1.4 follows from Lemmas 4.1 and 4.2. Furthermore, if
n
2 is a square, then b(P(n, 2)) =

√
n
2 + 2. Finally, by Proposition 3.1, b(P(3, 2)) =

3 =
⌈√

3
2

⌉
+ 1. So the bounds are tight. This completes the proof of Theorem 1.4. ��
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