

On the Burning Number of Generalized Petersen Graphs

Kai An Sim1 · Ta Sheng Tan¹ · Kok Bin Wong¹

Received: 19 May 2017 / Revised: 14 November 2017 / Published online: 30 November 2017 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract The burning number $b(G)$ of a graph G is used for measuring the speed of contagion in a graph. In this paper, we study the burning number of the generalized Petersen graph $P(n, k)$. We show that for any fixed positive integer k , $\lim_{n\to\infty} \frac{b(P(n,k))}{\sqrt{\frac{n}{k}}}$ = 1. Furthermore, we give tight bounds for *b*(*P*(*n*, 1)) and $b(P(n, 2)).$

Keywords Burning number · Generalized Petersen graphs

Mathematics Subject Classification 05C57 · 05C80

1 Introduction

Graph burning is a discrete-time process that can be used to model the spread of social contagion in social networks. It was introduced by Bonato et al. [\[2](#page-13-0),[3,](#page-13-1)[8\]](#page-13-2). This process is defined on the vertex set of a simple finite graph. Throughout the process, each vertex is either *burned* or *unburned*. Initially, at time step $t = 0$, all vertices are unburned. At the beginning of every time step $t \geq 1$, an unburned vertex is chosen to burn (if

Ta Sheng Tan tstan@um.edu.my

Communicated by Sandi Klavžar.

B Kok Bin Wong kbwong@um.edu.my Kai An Sim simkaian@gmail.com

¹ Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

such a vertex is available). After that, if a vertex is burned in time step $t - 1$, then in time step *t*, each of its unburned neighbours becomes burned. A burned vertex will remain burned throughout the process. The process ends when all vertices are burned, in which case we say the graph is *burned*.

Suppose a graph *G* is burned in *m* time steps in a burning process. For $1 \le i \le m$, we denote the vertex we choose to burn at the beginning of time step i by x_i . The sequence (x_1, x_2, \ldots, x_m) is called a *burning sequence* for *G*. Each x_i is called a *burning source* of *G*. The *burning number* of a graph *G*, denoted by $b(G)$, is the length of a shortest burning sequence for *G*. It is straightforward to see that $b(K_n) = 2$. For paths and cycles, Bonato et al. [\[3](#page-13-1)] determined their burning numbers exactly.

Theorem 1.1 [\[3,](#page-13-1) Theorem 9 and Corollary 10] *Let Pn be a path with n vertices and Cn be a cycle with n vertices. Then,*

$$
b(P_n) = \left\lceil n^{1/2} \right\rceil = b(C_n).
$$

For general graphs, they showed that the burning number of any graph *G* can be bounded by its radius *r* and diameter *d*, giving $\left\lceil (d+1)^{1/2} \right\rceil \leq b(G) \leq r+1$. In the same paper, they also gave an upper bound on the burning number of any connected graph *G* of order *n*, showing that $b(n) \leq 2\sqrt{n-1}$. This upper bound was later improved to roughly $\frac{\sqrt{6}}{2}\sqrt{n}$ by Land and Lu [\[5\]](#page-13-3). It was conjectured in [\[3\]](#page-13-1) that $b(G) \leq \lceil \sqrt{n} \rceil$ for any connected graph *G* of order *n*. Very recently, Bonato and Lidbetter [\[4](#page-13-4)] verified this conjecture for spider graphs, which are trees with exactly one vertex of degree at least 3.

Determining $b(G)$ for general graphs is a non-trivial problem. It is known that computing the burning number of a graph is NP-complete [\[1\]](#page-13-5). The burning number of the hypercube Q_n is asymptotically $\frac{n}{2}$ [\[7\]](#page-13-6), but the exact value of $b(Q_n)$ is still unknown. Several other results on burning number of graphs have also been studied recently. For example, Mitsche, Pralat and Roshanbin investigated the burning number of graph products in [\[7](#page-13-6)] and they also focused on the probabilistic aspects of the burning number in $[6]$ $[6]$.

In this paper, we are interested in the burning number of the *generalized Petersen graphs*. Let $n \geq 3$ and k be integers such that $1 \leq k \leq n-1$. The generalized Petersen graph $P(n, k)$ is defined to be the graph on $2n$ vertices with vertex set

$$
V(P(n,k)) = \{u_i, v_i : i = 0, 1, 2, \dots, n-1\}
$$

and edge set

$$
E(P(n,k)) = \{u_iu_{i+1}, u_iv_i, v_iv_{i+k}: i = 0, 1, 2, \ldots, n-1\},\
$$

where subscripts are taken modulo *n*. Let $D_1 = \{u_i : i = 0, 1, 2, \ldots, n-1\}$ and $D_2 = \{v_i : i = 0, 1, 2, \ldots, n-1\}$. The subgraph induced by D_1 is called the *outer rim*, while the subgraph induced by D_2 is called the *inner rim*. A *spoke* of $P(n, k)$ is an edge of the form $u_i v_i$ for some $0 \le i \le n - 1$.

The following are the main results of this paper.

Theorem 1.2 *Let k be a fixed positive integer. Then,*

$$
\left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil \le b(P(n,k)) \le \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor + 2.
$$

In particular,

$$
\lim_{n \to \infty} \frac{b(P(n,k))}{\sqrt{\frac{n}{k}}} = 1.
$$

Theorem 1.3 *For* $n \geq 3$ *,*

$$
\lceil \sqrt{n} \rceil \le b(P(n, 1)) \le \lceil \sqrt{n} \rceil + 1.
$$

Furthermore, the bounds are tight, and if n is a square, then $b(P(n, 1)) = \sqrt{n} + 1$ *.*

Theorem 1.4 *For* $n \geq 3$ *,*

$$
\left\lceil \sqrt{\frac{n}{2}} \right\rceil + 1 \le b(P(n, 2)) \le \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 2.
$$

Furthermore, the bounds are tight, and if $\frac{n}{2}$ *is a square, then* $b(P(n, 2)) = \sqrt{\frac{n}{2} + 2}$ *.*

We use standard graph terminology throughout the paper. The *distance* between two vertices *u* and *v* in a graph *G*, denoted by $dist_G(u, v)$, is the length of a shortest path from *u* to *v* in the graph *G*. By convention, $dist_G(u, u) = 0$. Furthermore, we shall write dist(u, v) for dist_{G}(u, v) if the graph in question is clear. Given a non-negative integer *s*, the *s*-*th closed neighbourhood* of a vertex *u*, denoted by $N_s^G[u]$, is the set of vertices whose distance from *u* is at most *s*, i.e.

$$
N_s^G[u] = \{v \in V(G): \text{dist}_G(u, v) \le s\}.
$$

Again, if the graph in question is clear, we shall write $N_s[u]$ for $N_s^G[u]$.

Let (x_1, x_2, \ldots, x_m) be a burning sequence of a graph *G*. As in [\[3](#page-13-1), Section 2], for each pair *i* and *j*, with $1 \le i < j \le m$, we have dist $(x_i, x_j) \ge j - i$ and

$$
V(G) = N_{m-1}[x_1] \cup N_{m-2}[x_2] \cup \dots \cup N_0[x_m].
$$
 (1)

The plan of the paper is as follows. In Sect. [2,](#page-3-0) we provide bounds for the burning number of $P(n, k)$ and show that $b(P(n, k))$ is asymptotically $\sqrt{\frac{n}{k}}$. In Sect. [3,](#page-5-0) we determine the exact values of $b(P(n, k))$ for $1 \le n \le 8$. Then, we prove Theorems [1.3](#page-2-0) and [1.4](#page-2-1) in Sect. [4.](#page-7-0)

2 General Case

Lemma 2.1 *For* $n \geq 3$ *and* $1 \leq k \leq n$ *,*

$$
b(P(n,k)) \ge \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil.
$$

Proof Let *C* be a cycle with $\left\lfloor \frac{n}{k} \right\rfloor$ vertices, $V(C) = \{0, 1, 2, ..., \left\lfloor \frac{n}{k} \right\rfloor - 1\}$ and $E(C) = \{i(i+1): 0, 1, \ldots, \lfloor \frac{n}{k} \rfloor - 1\}$, where the integers are taken modulo $\lfloor \frac{n}{k} \rfloor$. Recall that the outer rim and inner rim of $P(n, k)$ are $D_1 = \{u_0, u_1, \ldots, u_{n-1}\}\$ and $D_2 = \{v_0, v_1, \ldots, v_{n-1}\}$, respectively.

For each $m \in \{0, 1, 2, \ldots, n-1\}$, let

$$
f(m) = \begin{cases} p, & \text{if } m = pk + q, & 0 \le p < \left\lfloor \frac{n}{k} \right\rfloor, \quad 0 \le q \le k - 1; \\ \left\lfloor \frac{n}{k} \right\rfloor - 1, & \text{if } m = \left\lfloor \frac{n}{k} \right\rfloor k + q, \quad 0 \le q < k - 1. \end{cases} \tag{2}
$$

Let $\varphi: V(P(n, k)) \to V(C)$ be defined by

$$
\varphi(u_i) = f(i) = \varphi(v_i), \quad \forall i \in \{0, 1, 2, \dots, n - 1\}.
$$
 (3)

Clearly, φ is surjective.

Let (x_1, x_2, \ldots, x_s) be a burning sequence of $P(n, k)$. We construct a burning sequence for *C* using the map φ as follows:

- (a) At the beginning of time step 1, burn $y_1 = \varphi(x_1)$;
- (b) At the beginning of time step t ($2 \le t \le s$), if $\varphi(x_t)$ is still unburned, then burn $y_t = \varphi(x_t)$; otherwise, burn any unburned vertex $y_t \in V(C)$.

Note that in (b) above, if at the beginning of time step t ($2 \le t \le s$), no unburned vertex can be found, then $(y_1, y_2, \ldots, y_{t-1})$ is a burning sequence of *C*. So, we may assume that such an unburned vertex can be found at the beginning of every time step. We shall show that (y_1, y_2, \ldots, y_s) is a burning sequence of *C*. This follows from φ is surjective and the following claim.

Claim If $z \in V(P(n, k))$ is burned at time step t_0 , then its image $\varphi(z)$ in *C* is burned at time step $t_1 \leq t_0$.

Proof If $z = x_1$, then it is burned at time step 1. Its image $\varphi(z) = y_1$ is also burned at time step 1. The claim is true. Assume that the claim is true for a $t_0 < s$.

Suppose *z* is burned at time step $t_0 + 1$. If *z* is a burning source, then $z = x_{t_0+1}$. By (b), $\varphi(z)$ is burned at time step $t_0 + 1$ provided that $\varphi(x_{t_0+1})$ is unburned. If $\varphi(x_{t_0+1})$ is burned, then it must be burned at an earlier time step. So, the claim holds.

We may assume that $z \neq x_{t_0+1}$. Note that for any two distinct vertices $w_1, w_2 \in$ $V(P(n, k))$ such that $\varphi(w_1), \varphi(w_2) \in V(C)$ and $|\varphi(w_1) - \varphi(w_2)| \leq 1$ or $|\varphi(w_1) - \varphi(w_2)|$ $\varphi(w_2)| = \lfloor \frac{n}{k} \rfloor - 1$, then $\varphi(w_1) = \varphi(w_2)$ or $\varphi(w_1)$ and $\varphi(w_2)$ are adjacent in *C*. We shall distinguish two cases.

Case 1 Let $z = u_l$. Then, it is adjacent to v_l , u_{l+1} and u_{l-1} where the subscript are taken modulo *n*. Furthermore, either v_l , u_{l+1} or u_{l-1} is burned at time step t_0 . So, by induction, $\varphi(v_l)$, $\varphi(u_{l+1})$ or $\varphi(u_{l-1})$ is burned at time step $t_1 \leq t_0$ respectively. By Eqs. [\(2\)](#page-3-1) and [\(3\)](#page-3-2), $|\varphi(u_l) - \varphi(v_l)| = 0$, $|\varphi(u_l) - \varphi(u_{l-1})| \le 1$ and $|\varphi(u_l) - \varphi(u_{l+1})| \le 1$ where $l = 1, 2, ..., n - 2$ and $|\varphi(u_0) - \varphi(u_{n-1})| = \lfloor \frac{n}{k} \rfloor - 1$. This means that $\varphi(z) = \varphi(u_l)$ is burned at time step $t_1 + 1 \le t_0 + 1$.

Case 2 Let $z = v_l$. It is adjacent to u_l , v_{l+k} and u_{l-k} where the subscript are taken modulo *n*. Either u_l , v_{l-k} or v_{l+k} is burned at time step t_0 . Here, we denote $v_{-i} = v_{n-i}$ for a non-negative *i*. So, by induction, $\varphi(u_l)$, $\varphi(v_{l+k})$ or $\varphi(v_{l-k})$ is burned at time step $t_1 \le t_0$ respectively. By Eqs. [\(2\)](#page-3-1) and [\(3\)](#page-3-2), we have $|\varphi(v_l) - \varphi(u_l)| = 0$,

$$
|\varphi(v_l) - \varphi(v_{l-k})| = \begin{cases} \lfloor \frac{n}{k} \rfloor - 1, & \text{if } l = 0, 1, 2, \dots, k-1; \\ 1, & \text{if } l = k, k+1, \dots, \lfloor \frac{n}{k} \rfloor k - 1; \\ 0, & \text{if } l = \lfloor \frac{n}{k} \rfloor k, \lfloor \frac{n}{k} \rfloor k + 1, \dots, n-1. \end{cases}
$$

and

$$
|\varphi(v_l) - \varphi(v_{l+k})|
$$

=
$$
\begin{cases} 1, & \text{if } l = 0, 1, 2, ..., (\lfloor \frac{n}{k} \rfloor - 1) k - 1; \\ 0, & \text{if } l = (\lfloor \frac{n}{k} \rfloor - 1) k, (\lfloor \frac{n}{k} \rfloor - 1) k + 1, ..., n - 1 - k; \\ \lfloor \frac{n}{k} \rfloor - 1, & \text{if } l = n - k, n - k + 1, ..., n - 1. \end{cases}
$$

This means that $\varphi(z) = \varphi(v_l)$ is burned at time step $t_1 + 1 \le t_0 + 1$.

This completes the proof of the claim.

Therefore, given any burning sequence of $P(n, k)$, we can construct a burning sequence for *C* with shorter or the same length. Hence, $b(P(n, k)) \ge b(C) = \left[\sqrt{\frac{n}{k}}\right]$, where the last equality follows from Theorem 1.1. $\sqrt{\left\lfloor \frac{n}{k} \right\rfloor}$, where the last equality follows from Theorem [1.1.](#page-1-0)

Lemma 2.2 *For n* > 3 *and* $1 \le k \le n$,

$$
b(P(n,k)) \le \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor + 2.
$$

Proof Recall that the outer rim and inner rim of $P(n, k)$ are $D_1 = \{u_0, u_1, \ldots, u_{n-1}\}\$ and $D_2 = \{v_0, v_1, \ldots, v_{n-1}\}\)$, respectively. Let $r = \lfloor \frac{n}{k} \rfloor$. We shall construct a burning sequence for $P(n, k)$ of length at most $\left[\sqrt{r}\right] + \left[\frac{k}{2}\right] + 2$. Note that a subgraph *G* induced by the vertices $v_0, v_k, v_{2k}, \ldots, v_{(r-1)k}$ in $\overline{P(n, k)}$ is a path or cycle of order *r*. By Theorem [1.1,](#page-1-0) $b(G) = \lceil \sqrt{r} \rceil$. So, there is a burning sequence $(x_1, x_2, ..., x_{\lceil \sqrt{r} \rceil})$ of *G*. We shall take $x_1, x_2, \ldots, x_{\lceil \sqrt{r} \rceil}$ as the first part of our burning sequence for *P*(*n*, *k*).

Note that at time step $\lceil \sqrt{r} \rceil$, all $v_0, v_k, v_{2k}, \ldots, v_{(r-1)k}$ are burned. If at time step $\lceil \sqrt{r} \rceil$, u_{rk} is unburned, then we set $x_{\lceil \sqrt{r} \rceil+1} = u_{rk}$. Otherwise, we set $x_{\lceil \sqrt{r} \rceil+1}$ to be any unburned vertex. Since u_{ik} is adjacent to v_{ik} for $0 \le i \le (r-1)$, at time step $\lceil \sqrt{r} \rceil + 1$, all $u_0, u_k, u_{2k}, \ldots, u_{(r-1)k}, u_{rk}$ are burned. Furthermore, at most $k - 1$ vertices are unburned in the path $u_{ik}u_{ik+1}u_{ik+2} \ldots u_{(i+1)k}$ $u_{ik}u_{ik+1}u_{ik+2} \ldots u_{(i+1)k}$ $u_{ik}u_{ik+1}u_{ik+2} \ldots u_{(i+1)k}$ in the outer rim (see Fig. 1).

Fig. 1 Filled vertices are burned, whereas empty vertices are unburned

Now, for $j \geq \lceil \sqrt{r} \rceil + 2$, we can choose x_j to be any unburned vertex. Note that at time step $\lceil \sqrt{r} \rceil + 1 + \lfloor \frac{k}{2} \rfloor$, all the vertices in the outer rim are burned. Since u_i and v_i are adjacent, at time step $\lceil \sqrt{r} \rceil + 2 + \lfloor \frac{k}{2} \rfloor$, all vertices in the inner rim are also burned. Hence, the lemma follows.

Proof of Theorem [1.2](#page-1-1) By Lemmas [2.1](#page-3-3) and [2.2,](#page-4-0) we have

$$
\left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil \le b(P(n,k)) \le \left\lceil \sqrt{\left\lfloor \frac{n}{k} \right\rfloor} \right\rceil + \left\lfloor \frac{k}{2} \right\rfloor + 2.
$$

By noting that $\lim_{n\to\infty}$ $\sqrt{\lfloor \frac{n}{k} \rfloor}$ $\sqrt{\frac{n}{k}}$ = 1 and lim_{n→∞} $\frac{k}{2}$ +2 $\frac{2\mu}{\sqrt{\frac{n}{k}}}$ = 0, we conclude lim *n*→∞ *b*(*P*(*n*, *k*)) $\sqrt{\frac{n}{k}}$ $=$ 1.

3 Case $1 \leq N \leq 8$

We shall give the exact burning numbers for the case $1 \le n \le 8$ in this section. Note that $P(n, k)$ is isomorphic to $P(n, n - k)$. So, we may assume that $1 \leq k \leq \lfloor \frac{n}{2} \rfloor$. Recall that the *s*th closed neighbourhood of a vertex $x \in V(P(n, k))$ is

$$
N_{s}[x] = \{ y \in V(P(n,k)) : \text{dist}(y,x) \leq s \},
$$

and the outer rim and inner rim of $P(n, k)$ are $D_1 = \{u_0, u_1, \ldots, u_{n-1}\}\$ and $D_2 =$ $\{v_0, v_1, \ldots, v_{n-1}\}$, respectively.

Proposition 3.1 *Let* $3 \le n \le 8$ *and* $1 \le k \le \lfloor \frac{n}{2} \rfloor$ *. Then,*

$$
b(P(n,k)) = \begin{cases} 3, & \text{if } 3 \le n \le 6 \text{ or } n = 7, k \ne 1, \\ 4, & \text{if } n = 8 \text{ or } n = 7, k = 1. \end{cases}
$$

Fig. 2 Burning sequences

Proof Since each vertex $x \in V(P(n, k))$ is of degree 3, $|N_0[x]| = 1$, $|N_1[x]| \le 4$ and $|N_2[x]| \leq 10$.

Let $3 \le n \le 7$. If (x_1, x_2) is a burning sequence of $P(n, k)$, then by Eq. [\(1\)](#page-2-2),

$$
2n \le |N_1[x_1]| + |N_0[x_2]| \le 4 + 1 = 5,
$$

implying that $n < 3$, which is a contradiction. Hence, $b(P(n, k)) \geq 3$. Similarly, if (x_1, x_2, x_3) is a burning sequence of $P(8, k)$, then

$$
16 \le |N_2[x_1]| + |N_1[x_2]| + |N_0[x_3]| \le 10 + 4 + 1 = 15,
$$

again is a contradiction. Hence, $b(P(8, k)) \geq 4$.

Note that for each *x* ∈ *V*(*P*(7, 1)), $|N_2[x]| = 8$. So, if (*x*₁, *x*₂, *x*₃) is a burning sequence of $P(7, 1)$, then

$$
14 \leq |N_2[x_1]| + |N_1[x_2]| + |N_0[x_3]| \leq 8 + 4 + 1 = 13,
$$

which is a contradiction. Hence, $b(P(7, 1)) \geq 4$.

Now, the proposition can be verified easily from the burning sequences in the following table (see also Fig. [2\)](#page-6-0).

4 Case 1 ≤ *K* **≤ 2**

4.1 Proof of Theorem [1.3](#page-2-0)

Note that for each $x \in V(P(n, 1)), |N_m[x]| \le 4m$ for $m \ge 1$ and $|N_0[x]| = 1$. So, if (x_1, x_2, \ldots, x_l) is a burning sequence of $P(n, 1)$, then by Eq. [\(1\)](#page-2-2),

$$
2n \leq |N_0[x_l]| + \sum_{i=1}^{l-1} |N_{l-i}[x_i]| \leq 1 + \sum_{i=1}^{l-1} 4(l-i) = 2l^2 - 2l + 1.
$$

Since *l* ≥ 1, by completing the square, we conclude that $l \ge \frac{2+\sqrt{4-8(1-2n)}}{4} = \frac{1}{2} + \frac{1}{2}$ $\sqrt{n} - \frac{1}{4} > \sqrt{n}$. Hence, *b*(*P*(*n*, 1)) ≥ $\lceil \sqrt{n} \rceil$, and if *n* is a square, then *b*(*P*(*n*, 1)) ≥ $\left[\sqrt{n}\right]+1.$

The subgraph *C* induced by the vertices in the outer rim $D_1 = \{u_0, u_1, \ldots, u_{n-1}\}\$ is a cycle of length *n*. By Theorem [1.1,](#page-1-0) $b(C) = \lfloor \sqrt{n} \rfloor$. So, *C* has a burning sequence $(y_1, y_2, \ldots, y_{\lceil \sqrt{n} \rceil})$. We shall take $y_1, y_2, \ldots, y_{\lceil \sqrt{n} \rceil}$ as the first part of our burning sequence for $P(n, 1)$. Note that at time step $\lceil \sqrt{n} \rceil$, all the vertices in the outer rim are burned. Choose any unburned vertex *z* in the inner rim. Let $y_{\lceil \sqrt{n} \rceil+1} = z$. Since $u_i v_i$ are adjacent for $1 \le i \le n - 1$, at time step $\lfloor \sqrt{n} \rfloor + 1$ all vertices in the inner rim are also burned. Hence, $b(P(n, 1)) \leq \left[\sqrt{n}\right] + 1$, and if *n* is a square, then $b(P(n, 1)) = \sqrt{n} + 1.$

Finally, by Proposition [3.1,](#page-5-2) $b(P(5, 1)) = 3 = \left\lceil \sqrt{5} \right\rceil$. So the bounds are tight. This completes the proof of Theorem [1.3.](#page-2-0) \Box

4.2 Proof of Theorem [1.4](#page-2-1)

We shall first define an isomorphic graph of $P(n, 2)$, say $H(n)$. Let

$$
W_1 = \left\{ s_i, s'_i, t_i, t'_i : i = 1, 2, ..., \left\lfloor \frac{n}{2} \right\rfloor \right\};
$$

\n
$$
W_2 = \left\{ t_i t_{i+1}, t'_i t'_{i+1}, s_i s'_{i+1}, s_j t_j, s'_j t'_j, s_j s'_j : 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1, 1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor \right\}.
$$

If *n* is even, then let

$$
V(H(n)) = W_1;
$$

\n
$$
E(H(n)) = W_2 \cup \left\{ t_1 t_{\frac{n}{2}}, t_1' t_{\frac{n}{2}}, s_{\frac{n}{2}} s_1' \right\}.
$$
\n(4)

If *n* is odd, then let

$$
V(H(n)) = W_1 \cup \{s_0, t_0\};
$$

\n
$$
E(H(n)) = W_2 \cup \left\{ s_0 s_{\frac{n-1}{2}}, s_0 s_1', s_0 t_0, t_0 t_1, t_0 t_{\frac{n-1}{2}}', t_{\frac{n-1}{2}} t_1' \right\}.
$$
\n(5)

Fig. 3 $H(n)$ is isomorphic to $P(n, 2)$ where *n* is even

Fig. 4 $H(n)$ is isomorphic to $P(n, 2)$ where *n* is odd

We now show that $P(n, 2)$ is isomorphic to $H(n)$ (see Figs. [3](#page-8-0) and [4\)](#page-8-1). Define $\phi: V(P(n, 2)) \to V(H(n))$ as follows: Let $\phi(u_i) = s'_{\frac{i}{2}+1}$ if *i* is even and $i \neq n-1$; $\phi(u_i) = s_{\frac{i-1}{2}+1}$ if *i* is odd; $\phi(u_{n-1}) = s_0$ if $n-1$ is even. Let $\phi(v_i) = t'_{\frac{i}{2}+1}$ if *i* is even and $i \neq n-1$; $\phi(v_i) = t_{\frac{i-1}{2}+1}$ if *i* is odd; $\phi(v_{n-1}) = t_0$ if $n-1$ is even. Note that the subgraph induced by all the vertices s_i , s'_i in $H(n)$ is isomorphic to the outer rim in $P(n, 2)$, and the subgraph induced by all the vertices t_i , t'_i in $H(n)$ is isomorphic to the inner rim in $P(n, 2)$. Furthermore, $s_i t_i$, $s'_i t'_i$ are the spokes in $P(n, 2)$. So $P(n, 2)$ is isomorphic to $H(n)$.

Let $T_1 = \{t_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor\}, T_2 = \{t'_i : 1 \le i \le \lfloor \frac{n}{2} \rfloor\}, \text{ and level } L_i = \{s_i, s'_i, t_i, t'_i\}$ for $i = 1, 2, \ldots, \lfloor \frac{n}{2} \rfloor$.

Lemma 4.1 *For* $n \geq 3$ *,*

$$
b(P(n, 2)) \ge \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 1.
$$

 \mathcal{D} Springer

Fig. 5 Spreading of fire from $x \notin T_1 \cup T_2$. Filled vertices are burned, whereas empty vertices are unburned

Furthermore, if $\frac{n}{2}$ *is a square, then* $b(P(n, 2)) \ge \sqrt{\frac{n}{2}} + 2$ *.*

Proof Note that if $x \notin T_1 \cup T_2$, then $|N_0[x]| = 1$, $|N_1[x]| \le 4$, $|N_2[x]| \le 10$, $|N_3[x]|$ ≤ 16, $|N_4[x]|$ ≤ 22, $|N_5[x]|$ ≤ 30 and $|N_r[x]|$ ≤ 30 + 8(*r* − 5) for *r* ≥ 6 (see Fig. [5\)](#page-9-0). After 5 steps, a maximum of 8 vertices are newly burned in each following step.

If *x* ∈ *T*₁ ∪ *T*₂, then $|N_0[x]| = 1$, $|N_1[x]| ≤ 4$, $|N_2[x]| ≤ 10$, $|N_3[x]| ≤ 18$ and $|N_r[x]| \leq 18 + 8(r-3)$ for $r \geq 4$ (see Fig. [6\)](#page-10-0). After 4 steps, a maximum of 8 vertices are newly burned in each following step.

In either case, we have $|N_0[x]| = 1$, $|N_1[x]| \le 4$, $|N_2[x]| \le 10$, $|N_3[x]| \le 18$ and $|N_r[x]|$ ≤ 18 + 8(*r* − 3) = 8*r* − 6 for *r* ≥ 4.

By Proposition [3.1,](#page-5-2) $b(P(n, 2)) = 3 = \left[\sqrt{\frac{n}{2}}\right] + 1$ for $3 \le n \le 7$ and

$$
b(P(8, 2)) = 4 = \sqrt{\frac{n}{2}} + 2.
$$

Hence, the lemma holds for $3 \le n \le 8$. So, we may assume $n \ge 9$. Suppose $9 \le n \le 1$ 16, then $\left[\sqrt{\frac{n}{2}}\right] \leq 3$. If $P(n, 2)$ has a burning sequence of length 3, say (x_1, x_2, x_3) , then by Eq. [\(1\)](#page-2-2), $18 \le 2n \le \sum_{i=1}^{3} |N_{3-i}[x_i]| \le 1 + 4 + 10 = 15$, a contradiction. Suppose $17 \le n \le 32$, then $\left[\sqrt{\frac{n}{2}}\right] \le 4$. If $P(n, 2)$ has a burning sequence of length

Fig. 6 Spreading of fire from $x \in T_1 \cup T_2$. Filled vertices are burned, whereas empty vertices are unburned

4, say (x_1, x_2, x_3, x_4) , then $34 \leq 2n \leq \sum_{i=1}^{4} |N_{4-i}[x_i]| \leq 1 + 4 + 10 + 18 = 33$, a contradiction. So, $b(P(n, 2)) \ge \left[\sqrt{\frac{n}{2}}\right] + 1$ for $3 \le n \le 32$.

Note that for $9 \le n \le 32$, $\frac{n}{2}$ is a square if and only if $n = 18, 32$. When $n = 18$, $\sqrt{\frac{n}{2}} + 2 = 5$. If *P*(18, 2) has a burning sequence of length 4, then $\sum_{i=1}^{4} |N_{4-i}[x_i]| \le$ 33, but $|V(P(18, 2))| = 36$. When $n = 32$, $\sqrt{\frac{n}{2} + 2} = 6$. If $P(32, 2)$ has a burning sequence of length 5, then $\sum_{i=1}^{5} |N_{5-i}[x_i]| \leq 1 + 4 + 10 + 18 + 26 = 59$, but $|V(P(32, 2))| = 64$. Thus, if $\frac{n}{2}$ is a square and $9 \le n \le 32$, then $b(P(n, 2)) \ge \sqrt{\frac{n}{2}} + 2$.

Suppose $n \ge 33$. If $P(n, 2)$ has a burning sequence of length *l*, say $(x_1, x_2, ..., x_l)$, then by Eq. (1) ,

$$
2n \le \sum_{i=1}^{l} |N_{l-i}[x_i]| \le |N_0[x_l]| + |N_1[x_{l-1}]| + |N_2[x_{l-2}]| + \sum_{i=1}^{l-3} |N_{l-i}[x_i]|
$$

$$
\le 1 + 4 + 10 + \sum_{r=3}^{l-1} (8r - 6)
$$

$$
= 4l^2 - 10l + 9.
$$

Since $l \geq 1$, by completing the square, we conclude that

$$
l \ge \frac{10 + \sqrt{100 - 16(9 - 2n)}}{8} = \frac{5}{4} + \sqrt{\frac{n}{2} - \frac{11}{16}} > \sqrt{\frac{n}{2}} + 1.
$$

Hence, $b(P(n, 2)) \ge \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 1$, and if $\frac{n}{2}$ is a square, then $b(P(n, 2)) \ge \sqrt{\frac{n}{2}} + 2$. This completes the proof of the lemma.

² Springer

Lemma 4.2 *For* $n \geq 3$ *,*

$$
b(P(n, 2)) \le \left\lceil \sqrt{\frac{n}{2}} \right\rceil + 2.
$$

Proof Let $l = \left\lfloor \sqrt{\frac{n}{2}} \right\rfloor$. It is sufficient to show that there is a burning sequence $(x_1, x_2, \ldots, x_l, x_{l+1}, x_{l+2})$ in $H(n)$.

Note that for $2 \le j \le l$, the term $(2j - 1)l - (j - 1)^2$ is increasing. Let m_0 be the largest positive integer such that $(2m_0 - 1)l - (m_0 - 1)^2 \le \lfloor \frac{n}{2} \rfloor$. Since

$$
(2l-1)l - (l-1)^2 = l^2 + l - 1 \ge \left(\sqrt{\frac{n}{2}}\right)^2 + \left(\sqrt{\frac{n}{2}} - 1\right) > \frac{n}{2},
$$

we must have $m_0 \leq l - 1$.

Now, we construct the first part of a burning sequence for $H(n)$, say x_1, x_2, \ldots, x_l , as follows:

- (a) Let $x_1 = t_1$;
- (b) For each $2 \le j \le m_0$, set $x_j = t_{(2j-1)l-(j-1)^2}$ if *j* is odd, or $x_j = t'_{(2j-1)l-(j-1)^2}$ if *j* is even;
- (c) For $j \ge m_0 + 1$:
	- (i) Suppose $m_0 \le l 2$. If $x_{m_0} = t_{(2m_0-1)l-(m_0-1)^2}$, then set $x_{m_0+1} = t'_{\lfloor \frac{n}{2} \rfloor}$, whereas if $x_{m_0} = t'_{(2m_0-1)l-(m_0-1)^2}$, then set $x_{m_0+1} = t_{\lfloor \frac{n}{2} \rfloor}$. For $m_0 + 2 \le$ $w \leq l$, choose x_w to be any unburned vertex (if possible).
	- (ii) Suppose $m_0 = l 1$. If $x_{l-1} = t_{(2l-3)l-(l-2)^2}$, then set $x_l = t'_{\lfloor \frac{n}{2} \rfloor}$, whereas if $x_{l-1} = t'_{(2l-3)l-(l-2)^2}$, then set $x_l = t_{\lfloor \frac{n}{2} \rfloor}$.

In Fig. [7,](#page-12-0) the filled vertices are $N_{l-i}[x_i]$ and the shaded vertices are $N_{l+2-i}[x_i]\setminus N_{l-i}$ $[x_i]$. In particular, $L_4 \cup L_5 \cup \cdots \cup L_l \subseteq N_{l-1}[x_1]$. So $(L_1 \cup L_2 \cup \cdots \cup L_l) \setminus \{t'_1\}$ ⊆ $N_{l+1}[x_1]$ (see Fig. [7a](#page-12-0)).

Suppose $2 \le j \le m_0$. Note that *x_j* is contained in level $L_{(2j-1)l-(j-1)^2}$ and x_{j-1} is contained in level $L_{(2, i-3)l-(i-2)^2}$. There are exactly $2l - 2j + 4 = ((2j - 1)l - (j - 1)l)$ 1)²) − ((2*j* − 3)*l* − (*j* − 2)²) + 1 levels between $L_{(2j-1)l-(j-1)2}$ and $L_{(2j-3)l-(j-2)2}$ (inclusive). All these levels are contained in $N_{l-j+3}[x_{j-1}]\cup N_{l-j+2}[x_j]$ (see Fig. [7b](#page-12-0)).

Suppose $m_0 \le l - 2$. By the choice of m_0 , $(2m_0 + 1)l - m_0^2 > \lfloor \frac{n}{2} \rfloor$. So, the number of levels between $L_{\lfloor \frac{n}{2} \rfloor}$ and $L_{(2m_0-1)l-(m_0-1)^2}$ (inclusive) is at most

$$
\left\lfloor \frac{n}{2} \right\rfloor - ((2m_0 - 1)l - (m_0 - 1)^2) + 1 < (2m_0 + 1)l - m_0^2
$$
\n
$$
- ((2m_0 - 1)l - (m_0 - 1)^2) + 1
$$
\n
$$
= 2l - 2m_0 + 2.
$$

All these levels are contained in $N_{l-m_0+2}[x_{m_0}] \cup N_{l-m_0+1}[x_{m_0+1}]$ (see Fig. [7b](#page-12-0)).

Fig. 7 Construction

Suppose $m_0 = l - 1$. Then, x_{l-1} is in level $L_{(2l-3)l-(l-2)^2}$ and x_l is in level $L_{\lfloor \frac{n}{2} \rfloor}$. Note that

$$
(2l-3)l - (l-2)^2 + 2 = l^2 + l - 2 > \frac{n}{2} - 1 \ge \left\lfloor \frac{n}{2} \right\rfloor - 1.
$$

Hence, we have

$$
(2l-3)l - (l-2)^2 + 2 \ge \left\lfloor \frac{n}{2} \right\rfloor.
$$

Therefore,

$$
L_{(2l-3)l-(l-2)^2} \cup L_{(2l-3)l-(l-2)^2+1} \cup \cdots \cup L_{\lfloor \frac{n}{2} \rfloor} \subseteq N_3[x_{l-1}] \cup N_2[x_l],
$$

(see Fig. $7c$).

If we set $x_{l+1} = t'_1$ and x_{l+2} to be any unburned vertex at time step $l+1$ (if possible), then $(x_1, x_2, \ldots, x_l, x_{l+1}, x_{l+2})$ is a burning sequence of $H(n)$ when *n* is even. If *n* is odd, it is also a burning sequence by noticing that $\{s_0, t_0\} \in N_{l+1}[x_1]$ (see Figs. [4](#page-8-1) and 7a) This completes the proof of the lemma and [7a](#page-12-0)). This completes the proof of the lemma.

The first part of Theorem [1.4](#page-2-1) follows from Lemmas [4.1](#page-8-2) and [4.2.](#page-10-1) Furthermore, if $\frac{n}{2}$ is a square, then $b(P(n, 2)) = \sqrt{\frac{n}{2}} + 2$. Finally, by Proposition [3.1,](#page-5-2) $b(P(3, 2)) =$ $3 = \sqrt{\frac{3}{2}}$ $+ 1.$ So the bounds are tight. This completes the proof of Theorem [1.4.](#page-2-1) \Box

Acknowledgements This project is supported by Postgraduate Research Grant (PPP) - Research PG068- 2015A by University of Malaya.

References

- 1. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Burning a graph is hard. Discrete Appl. Math. **232**, 73–87 (2017)
- 2. Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social contagion. Lect. Notes Comput. Sci. **8882**, 13–22 (2014)
- 3. Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph. Internet Math. **1–2**, 85–100 (2016)
- 4. Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-forests. [arXiv:1707.09968](http://arxiv.org/abs/1707.09968)
- 5. Land, M.R., Lu, L.: An upper bound on the burning number of graphs. In: Bonato, A., Graham, F., Pralat P. (eds) Algorithms and Models for the Web Graph. WAW 2016. Lecture Notes in Computer Science, vol. 10088. Springer, Cham (2016)
- 6. Mitsche, D., Pralat, P., Roshanbin, E.: Burning graphs: a probabilistic perspective. Graphs Combin. **33**(2), 449–471 (2017)
- 7. Mitsche, D., Pralat, P., Roshanbin, E.: Burning number of graph products. [http://www.math.ryerson.ca/](http://www.math.ryerson.ca/~pralat/papers/graph_products.pdf) [~pralat/papers/graph_products.pdf](http://www.math.ryerson.ca/~pralat/papers/graph_products.pdf)
- 8. Roshanbin, E.: Burning a graph as a model for the spread of social contagion. Ph.D. Thesis, Dalhousie University, Halifax, Nova Scotia (2016)