1 Introduction

Let \({\mathcal {A}}\) denotes the class of analytic functions \(f\) defined in the open unit disk \(E=\{z : |z|<1 \}\) with the normalization \(f(0)=f'(0)-1=0\) and \({\mathcal {A}}_{0}=\left\{ g: \, g(z)=f(z)/z, \, f\in {\mathcal {A}}\right\} \). Let \(S\) be the subclass of \(\mathcal {A}\) consisting of functions univalent in \(E\). A function \(f\) in \(\mathcal {A}\) is said to be starlike of order \(\beta \) if it satisfies

$$\begin{aligned} \mathfrak {R}\left( \frac{zf'(z)}{f(z)}\right) >\beta , \, \, \, z\in E, \end{aligned}$$

for some \(\beta \, \, (0\le \beta <1)\). We denote by \(S^{*}(\beta )\), the subclass of \(S\) consisting of functions which are starlike of order \(\beta \) in \(E\). Set \(S^{*}(0)=S^{*}\). For any two functions \(f(z)=z+a_{2}z^{2}+a_{3}z^{3}+\cdots \) and \(g(z)=z+b_{2}z^{2}+b_{3}z^{3}+\cdots \) in \(\mathcal {A}\), the Hadamard product (or convolution) of \(f\) and \(g\) is the function \(f *g\) defined by

$$\begin{aligned} (f *g)(z)=z+ \sum _{n=2}^\infty a_nb_nz^n. \end{aligned}$$

For \(f\in {\mathcal {A}}\), Fournier and Ruscheweyh [4] introduced the operator

$$\begin{aligned} V_{\lambda }(f)(z):=\int _{0}^{1}\lambda (t)\frac{f(tz)}{t}\mathrm{d}t, \end{aligned}$$
(1.1)

where \(\lambda \) is a non-negative real-valued integrable function satisfying the condition \(\int _{0}^{1}\lambda (t)\mathrm{d}t=1\). This operator contains some of the well-known operators (such as Alexander, Libera, Bernardi, and Komatu) as its special cases. This operator has been studied by a number of authors for various choices of \(\lambda (t)\) [1, 3, 4, 6, 9, 12]. Fournier and Ruscheweyh [4] applied the Duality theory [10, 11] to prove the starlikeness of the linear integral transform \(V_{\lambda }(f)\) over functions \(f\) in the class

$$\begin{aligned} {\mathcal {P}}(\beta ):=\left\{ f\in {\mathcal {A}}:\exists \phi \in {{\mathbb {R}}} | \mathfrak {R}e^{i\phi }\left( f'(z)-\beta \right) >0, \, \, z\in E\right\} . \end{aligned}$$

In 2001, Kim and Rønning [5] investigated starlikeness properties of the integral transform (1.1) for functions \(f\) in the class

$$\begin{aligned} {\mathcal {P}}_{\gamma }(\beta ):=\left\{ f\in {\mathcal {A}}:\exists \phi \in {{\mathbb {R}}} | \mathfrak {R}e^{i\phi }\left( (1-\gamma )\frac{f(z)}{z}+\gamma f'(z)-\beta \right) >0, \, \, z\in E\right\} . \end{aligned}$$

Recently in 2008, Ponnusamy and Rønning [9] discussed the same problem for the functions in the class

$$\begin{aligned} {\mathcal {R}}_{\gamma }(\beta ):=\left\{ f\in {\mathcal {A}}:\exists \phi \in {{\mathbb {R}}} | \mathfrak {R}e^{i\phi }\left( f'(z)+\gamma zf''(z)-\beta \right) >0, \, z\in E\right\} . \end{aligned}$$

It is evident that \({\mathcal {R}}_{\gamma }(\beta )\) is closely related to the class \({\mathcal {P}}_{\gamma }(\beta )\). Clearly, \(f\in {\mathcal {R}}_{\gamma }(\beta )\) if and only if \(zf'\) belongs to \({\mathcal {P}}_{\gamma }(\beta )\).

In a very recent paper, Ali et al. [1] discussed this problem for the functions \(f\) in the class

$$\begin{aligned} \small {\mathcal {W}}_{\beta }(\alpha , \gamma )\!:=\!\left\{ f\in {\mathcal {A}}:\exists \phi \in {{\mathbb {R}}} | \mathfrak {R}e^{i\phi }\left( (1\!-\!\alpha \!+\!2\gamma )\frac{f(z)}{z}\!+\!(\alpha \!-\!2\gamma )f'(z)\!+\!\gamma zf''(z)\!-\!\beta \right) \!>\!0, \, z\!\in \! E\right\} . \end{aligned}$$
(1.2)

Note that \({{\mathcal {W}}_{\beta }(1, 0)}\equiv {\mathcal {P}}(\beta )\), \({{\mathcal {W}}_{\beta }(\alpha , 0)}\equiv {\mathcal {P}}_{\alpha }(\beta )\) and \({{\mathcal {W}}_{\beta }(1+2\gamma , \gamma )}\equiv {\mathcal {R}}_{\gamma }(\beta )\).

In Sect. 3 of the paper, we shall mainly tackle the problem: For given \(0\le \delta \le 1/2\), to find conditions on \(\beta \) such that \(V_{\lambda }(f)\in S^{*}(\delta )\) whenever \(f\in {{\mathcal {W}}_{\beta }(\alpha , \gamma )}\). In Sect. 4, we find easier criteria of starlikeness of the integral operator \(V_{\lambda }(f)\). While in the last section of the paper, we discussed applications of results obtained for various choices of \(\lambda (t)\).

To prove our result, we shall need the duality theory for convolutions, so we include here some basic concepts and results from this theory. For a subset \(\mathcal {B}\subset {\mathcal {A}}_{0}\) we define

$$\begin{aligned} {\mathcal {B}}^{*}=\left\{ g\in {\mathcal {A}}_{0}: \, (f*g)(z)\ne 0, \, z\in E, \, \text {for all} \, f\in {\mathcal {B}}\right\} . \end{aligned}$$

The set \({\mathcal {B}}^{*}\) is called the dual of \({\mathcal {B}}\). Further, the second dual of \({\mathcal {B}}\) is defined as \({\mathcal {B}}^{**}=({\mathcal {B}}^{*})^{*}\). The basic reference to this theory is the book by Ruscheweyh [11] (see also [10]). We shall need the following fundamental result.

Theorem 1.1

(Duality Principle) Let

$$\begin{aligned} {\mathcal {B}}=\left\{ \beta +(1-\beta )\left( \frac{1+xz}{1+yz}\right) : \, |x|=|y|=1\right\} , \, \, \beta \in {{\mathbb {R}}}, \, \beta \ne 1. \end{aligned}$$

We have

  1. (1)

    \({\mathcal {B}}^{**}=\left\{ g\in {\mathcal {A}}_{0}: \, \exists \phi \in {{\mathbb {R}}} \, \text {such that} \, \mathfrak {R}\left( e^{i\phi }(g(z)-\beta )\right) >0, \, \, z\in E\right\} \).

  2. (2)

    If \(\Gamma _{1}\) and \(\Gamma _{2}\) are two continuous linear functionals on \(\mathcal {B}\) with \(0\not \in \Gamma _{2}\), then for every \(g\in {\mathcal {B}}^{**}\) we can find \({v}\in {\mathcal {B}}\) such that

    $$\begin{aligned} \frac{\Gamma _{1}(g)}{\Gamma _{2}(g)}=\frac{\Gamma _{1}(v)}{\Gamma _{2}(v)}. \end{aligned}$$

2 Preliminaries

We use the notations introduced in [1]. Let \(\mu \ge 0\) and \(\nu \ge 0\) satisfy

$$\begin{aligned} \mu +\nu =\alpha -\gamma \, \, \, \, \text {and} \, \, \, \, \mu \nu =\gamma . \end{aligned}$$
(2.1)

For \(\gamma =0\), \(\mu \) is also taken to be 0, in which case, \(\nu =\alpha \ge 0\). Writing \(\alpha =1+2\gamma \) in (2.1), we get \(\mu +\nu =1+\gamma =1+\mu \nu \), or \((\mu -1)(1-\nu )=0\).

  1. (i)

    When \(\gamma >0\), then writing \(\mu =1\) gives \(\nu =\gamma \).

  2. (ii)

    If \(\gamma =0\), then \(\mu =0\) and \(\nu =\alpha =1\).

In the particular case \(\alpha =1+2\gamma \), the values of \(\mu \) and \(\nu \) for \(\gamma >0\) will be taken as \(\mu =1\) and \(\nu =\gamma \) respectively, while in the case when \(\gamma =0\), we have \(\mu =0\) and \(\nu =1=\alpha \).

Define

$$\begin{aligned} {\phi }_{\mu ,\nu }(z)=1+\sum _{n=1}^{\infty }\frac{(n\nu +1)(n\mu +1)}{n+1}z^{n}, \end{aligned}$$
(2.2)

and

$$\begin{aligned} {\psi }_{\mu ,\nu }(z) = {\phi }_{\mu ,\nu }^{-1}(z)= & {} 1+\sum _{n=1}^{\infty }\frac{n+1}{(n\nu +1)(n\mu +1)}z^{n} \nonumber \\= & {} \int _{0}^{1}\int _{0}^{1}\frac{\mathrm{d}s\mathrm{d}t}{(1-t^{\nu }s^{\mu }z)^2}. \end{aligned}$$
(2.3)

Here \({\phi }_{\mu ,\nu }^{-1}\) denotes the convolution inverse of \({\phi }_{\mu ,\nu }\) such that \({\phi }_{\mu ,\nu }*{\phi }_{\mu ,\nu }^{-1}=z/(1-z)\). If we take \(\gamma =0\), then \(\mu =0\), \(\nu =\alpha \) in (2.3), we have

$$\begin{aligned} {\psi }_{0,\alpha }(z)=1+\sum _{n=1}^{\infty }\frac{n+1}{n\alpha +1}z^{n}=\int _{0}^{1}\frac{\mathrm{d}t}{(1-t^{\alpha }z)^2}. \end{aligned}$$

If \(\gamma >0\), then \(\nu >0\), \(\mu >0\), and making the change of variables \(u=t^{\nu }\), \(v=s^{\mu }\) results in

$$\begin{aligned} {\psi }_{\mu ,\nu }(z)=\frac{1}{\mu \nu }\int _{0}^{1}\int _{0}^{1}\frac{u^{1/{\nu }-1}v^{1/{\mu }-1}}{(1-uvz)^2}\mathrm{d}u\mathrm{d}v. \end{aligned}$$

Thus the function \({\psi }_{\mu ,\nu }\) can be written as

$$\begin{aligned} {\psi }_{\mu ,\nu }(z)=\left\{ \begin{array}{l@{\quad }l} \frac{1}{\mu \nu }\int _{0}^{1}\int _{0}^{1}\frac{u^{1/{\nu }-1}v^{1/{\mu }-1}}{(1-uvz)^2}\mathrm{d}u\mathrm{d}v, &{} \gamma >0; \\ \int _{0}^{1}\frac{\mathrm{d}t}{(1-t^{\alpha }z)^2}, &{} \gamma =0, \alpha >0. \end{array}\right. \end{aligned}$$
(2.4)

Further let \(g\) be the solution of the initial-value problem

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}t^{1/{\nu }}(1+g(t))=\left\{ \begin{array}{l@{\quad }l} \frac{2}{\mu \nu }t^{1/{\nu }-1}\int _{0}^{1}\frac{1-\delta (1+st)}{(1-\delta )(1+st)^2}s^{1/{\mu }-1}\mathrm{d}s, &{}\quad \gamma >0; \\ \frac{2}{\alpha }\frac{{1-\delta (1+t)}}{(1-\delta )(1+t)^2}t^{1/{\alpha }-1}, &{} \quad \gamma =0, \alpha >0. \end{array}\right. \end{aligned}$$
(2.5)

satisfying \(g(0)=1\), where \(\delta \in [0,1/2]\). A simple calculation leads to the solution given by

$$\begin{aligned} g(t)=\frac{2}{\mu \nu }\int _{0}^{1}\int _{0}^{1}\frac{{1-\delta (1+swt)}}{(1-\delta )(1+swt)^2}s^{1/{\mu }-1}w^{{1/{\nu }-1}}\mathrm{d}s\mathrm{d}w-1. \end{aligned}$$
(2.6)

In particular

$$\begin{aligned} g_{\alpha }(t)=\frac{2}{\alpha }{t^{-1/{\alpha }}}\int _{0}^{t}{u^{{1/{\alpha }}-1}}\frac{{1-\delta (1+u)}}{(1-\delta )(1+u)^2}\mathrm{d}u-1, \, \, \gamma =0, \, \alpha >0. \end{aligned}$$
(2.7)

3 Main Results

Theorem 3.1

Let \(\mu \ge 0\), \(\nu \ge 0\) satisfy (2.1), and \(\beta <1\) satisfy

$$\begin{aligned} \frac{\beta }{1-\beta }=-\int _{0}^{1}\lambda (t)g(t)\mathrm{d}t, \end{aligned}$$
(3.1)

where \(g\) is the solution of the initial-value problem (2.5). Further let

$$\begin{aligned} \Lambda _{\nu }(t)= & {} \int _{t}^{1}\frac{\lambda (x)}{x^{1/{\nu }}}\mathrm{d}x, \, \, \, \, \, {\nu }>0, \end{aligned}$$
(3.2)
$$\begin{aligned} \Pi _{\mu ,\nu }(t)= & {} \left\{ \begin{array}{ll} \int _{t}^{1}\Lambda _{\nu }(x){x}^{1/{\nu }-1-1/{\mu }}\mathrm{d}x, &{}\quad \gamma >0;\\ \Lambda _{\alpha }(t), &{}\quad \gamma =0, (\mu =0, \, \nu =\alpha >0). \end{array}\right. \end{aligned}$$
(3.3)

and assume that \(\displaystyle t^{1/{\nu }}\Lambda _{\nu }(t)\rightarrow 0\), and \(\displaystyle t^{1/{\mu }}\Pi _{\mu ,\nu }(t)\rightarrow 0\) as \(t\rightarrow 0^{+}\). Then for \(\delta \in [0,1/2]\), we have \(V_{\lambda }({{\mathcal {W}}}_{\beta }(\alpha , \gamma )) \subset S^{*}(\delta )\) if and only if \({\mathcal {L}}_{\Pi _{\mu ,\nu }}(h_{\delta })\ge 0\), where \({\mathcal {L}}_{\Pi _{\mu ,\nu }}(h_{\delta })\) and \(h_{\delta }\) are defined by following equations:

$$\begin{aligned} {\mathcal {L}}_{\Pi _{\mu ,\nu }}(h_{\delta })=\left\{ \begin{array}{ll} \mathfrak {R}\int _{0}^{1}\Pi _{\mu ,\nu }(t)t^{1/{\mu }-1}\left( \frac{h(tz)}{tz}-\frac{1-\delta (1+t)}{(1-\delta )(1+t)^2}\right) \mathrm{d}t, &{} \quad \gamma >0; \\ \mathfrak {R}\int _{0}^{1}\Pi _{0,\alpha }(t)t^{1/{\alpha }-1}\left( \frac{h(tz)}{tz}-\frac{1-\delta (1+t)}{(1-\delta )(1+t)^2}\right) \mathrm{d}t, &{} \quad \gamma =0. \end{array}\right. \end{aligned}$$
(3.4)

and

$$\begin{aligned} h_{\delta }(z)=\frac{z\left( 1+\frac{\epsilon +2\delta -1}{2-2\delta }z\right) }{(1-z)^{2}}, \, \, \, \, |\epsilon |=1, \end{aligned}$$
(3.5)

respectively. This conclusion does not hold for any smaller values of \(\beta \).

Proof

The case \(\gamma =0 (\mu =0,\, \nu =\alpha \)) corresponds to the Theorem 1.2 in [2], so we will prove the result only when \(\gamma >0\).

Let

$$\begin{aligned} H(z)=(1-\alpha +2\gamma )\frac{f(z)}{z}+(\alpha -2\gamma )f'(z)+\gamma zf''(z). \end{aligned}$$

Since \(\mu +\nu =\alpha -\gamma \) and \(\mu \nu =\gamma \), then

$$\begin{aligned} H(z)= & {} (1+\gamma -(\alpha -\gamma ))\frac{f(z)}{z}+(\alpha -\gamma -\gamma )f'(z)+\gamma zf''(z)\\= & {} (1+\mu \nu -\mu -\nu )\frac{f(z)}{z}+(\mu +\nu -\mu \nu )f'(z)+\mu \nu zf''(z). \end{aligned}$$

Writing \(f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}\), we obtain from (2.2)

$$\begin{aligned} H(z)=1+\sum _{n=1}^{\infty }a_{n+1}{(n\nu +1)(n\mu +1)}z^{n}=f'(z)*\phi _{\mu ,\nu }(z), \end{aligned}$$
(3.6)

and (2.3) gives that

$$\begin{aligned} f'(z)=H(z)*\psi _{\mu ,\nu }(z). \end{aligned}$$
(3.7)

Now, let \(f\in {{\mathcal {W}}_{\beta }(\alpha , \gamma )}\). Then, in the view of the Theorem 1.1, we may restrict our attention to functions \(f\in {{\mathcal {W}}_{\beta }(\alpha , \gamma )}\) for which

$$\begin{aligned} H(z)= & {} (1-\alpha +2\gamma )\frac{f(z)}{z}+(\alpha -2\gamma )f'(z)+\gamma zf''(z)\\= & {} \beta +(1-\beta )\left( \frac{1+xz}{1+yz}\right) , \, \, \, |x|=|y|=1. \end{aligned}$$

Thus (3.7) gives

$$\begin{aligned} f'(z)=\left( (1-\beta )\frac{1+xz}{1+yz}+\beta \right) *\psi _{\mu ,\nu }(z), \end{aligned}$$
(3.8)

and therefore

$$\begin{aligned} \frac{f(z)}{z}=\frac{1}{z}\int _{0}^{z}\left( (1-\beta )\frac{1+xw}{1+yw}+\beta \right) \mathrm{d}w*\psi (z), \end{aligned}$$
(3.9)

here \(\psi :=\psi _{\mu ,\nu }\). \(\square \)

Also, a well-known result from the theory of convolutions [11] (see also [10]) implies that

$$\begin{aligned} F\in S^{*}(\delta ) \, \, \, \Leftrightarrow \, \, \, \frac{1}{z}(F*h_{\delta })(z)\ne 0, \, \, \, z\in E, \end{aligned}$$

where

$$\begin{aligned} h_{\delta }(z)=\frac{z\left( 1+\frac{\epsilon +2\delta -1}{2-2\delta }z\right) }{(1-z)^{2}}, \, \, \, \, |\epsilon |=1. \end{aligned}$$

Hence \(F\in S^{*}(\delta )\) if and only if

$$\begin{aligned} 0\ne & {} \frac{1}{z}(V_{\lambda }(f)(z)*h_{\delta }(z))=\frac{1}{z}\left[ \int _{0}^{1}\lambda (t)\frac{f(tz)}{t}\mathrm{d}t*h_{\delta }(z)\right] \\= & {} \int _{0}^{1}\frac{\lambda (t)}{1-tz}\mathrm{d}t*\frac{f(z)}{z}*\frac{h_{\delta }(z)}{z} \end{aligned}$$

Using (3.9), we have

$$\begin{aligned} 0\ne & {} \int _{0}^{1}\frac{\lambda (t)}{1-tz}\mathrm{d}t*\left[ \frac{1}{z}\int _{0}^{z}\left( (1-\beta )\frac{1+xw}{1+yw}+\beta \right) \mathrm{d}w*\psi (z)\right] *\frac{h_{\delta }(z)}{z}\\= & {} \int _{0}^{1}\frac{\lambda (t)}{1-tz}\mathrm{d}t*\frac{h_{\delta }(z)}{z}*\left[ \frac{1}{z}\int _{0}^{z}\left( (1-\beta )\frac{1+xw}{1+yw}+\beta \right) \mathrm{d}w\right] *\psi (z)\\= & {} \int _{0}^{1}\lambda (t)\frac{h_{\delta }(tz)}{tz}\mathrm{d}t*(1-\beta )\left[ \frac{1}{z}\int _{0}^{z}\left( \frac{1+xw}{1+yw}+\frac{\beta }{(1-\beta )}\right) \mathrm{d}w\right] *\psi (z)\\= & {} (1-\beta )\left[ \int _{0}^{1}\lambda (t)\frac{h_{\delta }(tz)}{tz}\mathrm{d}t+\frac{\beta }{(1-\beta )}\right] *\frac{1}{z}\int _{0}^{z}\frac{1+xw}{1+yw}\mathrm{d}w*\psi (z)\\= & {} (1-\beta )\left[ \int _{0}^{1}\lambda (t)\left( \frac{1}{z}\int _{0}^{z}\frac{h_{\delta }(tw)}{tw}\mathrm{d}w\right) \mathrm{d}t+\frac{\beta }{(1-\beta )}\right] *\frac{1+xz}{1+yz}*\psi (z). \end{aligned}$$

This holds if and only if [10], p. 23]

$$\begin{aligned}&\mathfrak {R}(1-\beta )\left[ \int _{0}^{1}\lambda (t)\left( \frac{1}{z}\int _{0}^{z}\frac{h_{\delta }(tw)}{tw}\mathrm{d}w\right) \mathrm{d}t+\frac{\beta }{(1-\beta )}\right] *\psi (z)\ge \frac{1}{2},\\\Leftrightarrow & {} \mathfrak {R}(1-\beta )\left[ \int _{0}^{1}\lambda (t)\left( \frac{1}{z}\int _{0}^{z}\frac{h_{\delta }(tw)}{tw}\mathrm{d}w\right) \mathrm{d}t+\frac{\beta }{(1-\beta )}-\frac{1}{2(1-\beta )}\right] *\psi (z)\ge 0,\\\Leftrightarrow & {} \mathfrak {R}\left[ \int _{0}^{1}\lambda (t)\left( \frac{1}{z}\int _{0}^{z}\frac{h_{\delta }(tw)}{tw}\mathrm{d}w\right) \mathrm{d}t+\frac{\beta }{(1-\beta )}-\frac{1}{2(1-\beta )}\right] *\psi (z)\ge 0,\\\Leftrightarrow & {} \mathfrak {R}\left[ \int _{0}^{1}\lambda (t)\left( \frac{1}{z}\int _{0}^{z}\frac{h_{\delta }(tw)}{tw}\mathrm{d}w\right) \mathrm{d}t-\frac{1}{2}+\frac{\beta }{2(1-\beta )}\right] *\psi (z)\ge 0,\\\Leftrightarrow & {} \mathfrak {R}\left[ \int _{0}^{1}\lambda (t)\left( \frac{1}{z}\int _{0}^{z}\frac{h_{\delta }(tw)}{tw}\mathrm{d}w-\frac{1+g(t)}{2}\right) \mathrm{d}t\right] *\psi (z)\ge 0, \, \, \, \, \text {(Using (3.1))}\\\Leftrightarrow & {} \mathfrak {R}\left[ \int _{0}^{1}\lambda (t)\left( \frac{h_{\delta }(tz)}{tz}-\frac{1+g(t)}{2}\right) \mathrm{d}t\right] *\frac{1}{z}\int _{0}^{z}\psi (w)\mathrm{d}w\ge 0,\\\Leftrightarrow & {} \mathfrak {R}\left[ \int _{0}^{1}\lambda (t)\left( \frac{h_{\delta }(tz)}{tz}\!-\!\frac{1\!+\!g(t)}{2}\right) \mathrm{d}t\right] *\sum _{n=0}^{\infty }\frac{z^n}{(n\nu \!+\!1)(n\mu \!+\!1)}\ge 0, \, \, \text { (Using (2.3))}\\\Leftrightarrow & {} \mathfrak {R}\int _{0}^{1}\lambda (t)\left( \sum _{n=0}^{\infty }\frac{z^n}{(n\nu +1)(n\mu +1)}*\frac{h_{\delta }(tz)}{tz}-\frac{1+g(t)}{2}\right) \mathrm{d}t \ge 0,\\\Leftrightarrow & {} \mathfrak {R}\int _{0}^{1}\lambda (t)\left( \int _{0}^{1}\int _{0}^{1}\frac{\mathrm{d}{\eta }\mathrm{d}{\zeta }}{(1-{\eta }^{\nu }{\zeta }^{\mu }z)}*\frac{h_{\delta }(tz)}{tz}-\frac{1+g(t)}{2}\right) \mathrm{d}t\ge 0,\\\Leftrightarrow & {} \mathfrak {R}\int _{0}^{1}\lambda (t)\left( \int _{0}^{1}\int _{0}^{1}\frac{h_{\delta }(tz{\eta }^{\nu }{\zeta }^{\mu })}{tz{\eta }^{\nu }{\zeta }^{\mu }}\mathrm{d}{\eta }\mathrm{d}{\zeta }-\frac{1+g(t)}{2}\right) \mathrm{d}t \ge 0, \end{aligned}$$

which can also be written as

$$\begin{aligned} \mathfrak {R}\int _{0}^{1}\lambda (t)\left( \int _{0}^{1}\int _{0}^{1}\frac{1}{\mu \nu }\frac{h_{\delta }(tzuv)}{tzuv}u^{1/{\nu }-1}v^{1/{\mu }-1}\mathrm{d}v\mathrm{d}u-\frac{1+g(t)}{2}\right) \mathrm{d}t\ge 0. \end{aligned}$$

Writing \(w=tu\), we get

$$\begin{aligned} \mathfrak {R}\int _{0}^{1}\frac{\lambda (t)}{t^{1/{\nu }}}\left[ \int _{0}^{t}\int _{0}^{1}\frac{h_{\delta }(wzv)}{wzv}w^{1/{\nu }-1}v^{1/{\mu }-1}\mathrm{d}v\mathrm{d}w-{\mu \nu }{t^{1/{\nu }}}\frac{1+g(t)}{2}\right] \mathrm{d}t\ge 0. \end{aligned}$$

An integration by parts with respect to \(t\) and (2.5) gives

$$\begin{aligned}&\mathfrak {R}\int _{0}^{1}\Lambda _{\nu }(t)\left[ \int _{0}^{1}\frac{h_{\delta }(tzv)}{tzv}t^{1/{\nu }-1}v^{1/{\mu }-1}\mathrm{d}v-t^{1/{\nu }-1}\int _{0}^{1}\frac{1-\delta (1+st)}{(1\!-\!\delta )(1\!+\!st)^2}s^{1/{\mu }\!-\!1}\mathrm{d}s\right] \mathrm{d}t\\&\quad \ge 0. \end{aligned}$$

Again writing \(w=vt\) and \(\eta =st\) reduces the above inequality to

$$\begin{aligned}&\mathfrak {R}\int _{0}^{1}\Lambda _{\nu }(t)t^{1/{\nu }-1/{\mu }\!-\!1}\left[ \int _{0}^{t}\frac{h_{\delta }(wz)}{wz}w^{1/{\mu }-1}\mathrm{d}w-\int _{0}^{t}\frac{1-\delta (1\!+\!\eta )}{(1\!-\!\delta )(1+\eta )^2}{\eta }^{1/{\mu }-1}\mathrm{d}\eta \right] \mathrm{d}t\\&\quad \ge 0, \end{aligned}$$

which after integration by parts with respect to \(t\) yields

$$\begin{aligned} \mathfrak {R}\int _{0}^{1}\Pi _{\mu ,\nu }(t)t^{1/{\mu }-1}\left( \frac{h(tz)}{tz}-\frac{1-\delta (1+t)}{(1-\delta )(1+t)^2}\right) \mathrm{d}t\\&\quad \ge 0. \end{aligned}$$

Thus \(F\in S^{*}(\delta )\) if and only if \({\mathcal {L}}_{\Pi _{\mu ,\nu }}(h_{\delta })\ge 0\).

Finally, to prove the sharpness, let \(f\in {{\mathcal {W}}}_{\beta }(\alpha , \gamma )\) be of the form for which

$$\begin{aligned} (1-\alpha +2\gamma )\frac{f(z)}{z}+(\alpha -2\gamma )f'(z)+\gamma zf''(z)=\beta +(1-\beta )\frac{1+z}{1-z}. \end{aligned}$$

Using a series expansion we obtain that

$$\begin{aligned} f(z)=z+2(1-\beta )\sum _{n=1}^{\infty }\frac{1}{(n\nu +1)(n\mu +1)}z^{n+1}. \end{aligned}$$

Thus

$$\begin{aligned} F(z)=V_{\lambda }(f)(z)=\int _{0}^{1}\lambda (t)\frac{f(tz)}{t}\mathrm{d}t=z+2(1-\beta )\sum _{n=1}^{\infty }\frac{\tau _{n}}{(n\nu +1)(n\mu +1)}z^{n+1}, \end{aligned}$$

where \(\tau _{n}=\int _{0}^{1}\lambda (t)t^{n}\mathrm{d}t\). From (2.6), it is a simple exercise to write \(g(t)\) in a series expansion as

$$\begin{aligned} g(t)=1+\frac{2}{1-\delta }\sum _{n=1}^{\infty }\frac{(-1)^{n}(n+1-\delta )}{(n\nu +1)(n\mu +1)}t^{n}. \end{aligned}$$
(3.10)

Now, by (3.1) and (3.10), we have

$$\begin{aligned} \frac{\beta }{1-\beta }= & {} -\int _{0}^{1}\lambda (t)g(t)\mathrm{d}t\\= & {} -\int _{0}^{1}\lambda (t)\left[ 1+\frac{2}{1-\delta }\sum _{n=1}^{\infty }\frac{(-1)^{n}(n+1-\delta )}{(n\nu +1)(n\mu +1)}t^{n}\right] \mathrm{d}t\\= & {} -1-\frac{2}{1-\delta }\sum _{n=1}^{\infty }\frac{(-1)^{n}(n+1-\delta )}{(n\nu +1)(n\mu +1)}\int _{0}^{1}\lambda (t)t^{n}\mathrm{d}t. \end{aligned}$$

Therefore

$$\begin{aligned} \frac{1}{1-\beta }=-\frac{2}{1-\delta }\sum _{n=1}^{ \infty }\frac{(-1)^{n}(n+1-\delta )\tau _{n}}{(n\nu +1)(n\mu +1)}. \end{aligned}$$
(3.11)

Finally, we see that

$$\begin{aligned} F'(z)=1+2(1-\beta )\sum _{n=1}^{\infty }\frac{(n+1)\tau _{n}}{(n\nu +1)(n\mu +1)}z^{n}. \end{aligned}$$

For \(z=-1\), we have

$$\begin{aligned} F'(-1)= & {} 1+2(1-\beta )\sum _{n=1}^{\infty }\frac{(-1)^{n}(n+1)\tau _{n}}{(n\nu +1)(n\mu +1)}\\= & {} 1+2(1-\beta )\sum _{n=1}^{\infty }\frac{(-1)^{n}(n+1-\delta )\tau _{n}}{(n\nu +1)(n\mu +1)}+2(1-\beta )\sum _{n=1}^{\infty }\frac{(-1)^{n}\delta \tau _{n}}{(n\nu +1)(n\mu +1)}\\= & {} 1-(1-\delta )+\delta 2(1-\beta )\sum _{n=1}^{\infty }\frac{(-1)^{n}\tau _{n}}{(n\nu +1)(n\mu +1)}\\= & {} -\delta \left( -1+2(1-\beta )\sum _{n=1}^{\infty }\frac{(-1)^{n+1}\tau _{n}}{(n\nu +1)(n\mu +1)}\right) \\= & {} -\delta F(-1). \end{aligned}$$

Thus \(zF'(z)/F(z)\) at \(z=-1\) equals \(\delta \). This implies that the result is sharp for the order of starlikeness.

4 Consequences of Theorem 3.1

Theorem 4.1

Let \(0\le \delta \le 1/2\). Assume that both \(\Pi _{\mu ,\nu }(t)\) and \(\Lambda _{\nu }(t)\), as given in Theorem 3.1, are integrable on [0,1] and positive on (0,1). Further assume that \(\mu \ge 1\), and

$$\begin{aligned} \frac{\Pi _{\mu ,\nu }(t)}{(1+t)(1-t)^{1+2\delta }} \, \, \text {is decreasing on (0, 1)}. \end{aligned}$$
(4.1)

If \(\beta \) satisfies (3.1), then we have \(V_{\lambda }({\mathcal {W}}_{\beta }(\alpha , \gamma ))\subset S^{*}(\delta )\), where \(V_{\lambda }(f)\) is defined by (1.1).

Proof

For \(\mu \ge 1\), the function \(t^{{1/{\mu }}-1}\) is decreasing on (0,1). Thus the condition (4.1) along with [8], Theorem 2.3] gives

$$\begin{aligned} \mathfrak {R}\int _{0}^{1}\Pi _{\mu ,\nu }(t)t^{1/{\mu }-1}\left( \frac{h(tz)}{tz}-\frac{1-\delta (1+t)}{(1-\delta )(1+t)^2}\right) \mathrm{d}t\ge 0. \end{aligned}$$

The result now, follows from Theorem 3.1. \(\square \)

Below, we obtain the conditions to ensure starlikeness of \(V_{\lambda }(f)\). As defined in Theorem 3.1, for \(\gamma >0\),

$$\begin{aligned} \Pi _{\mu ,\nu }(t)=\int _{t}^{1}\Lambda _{\nu }(x){x}^{1/{\nu }-1-1/{\mu }}\mathrm{d}x, \, \, \, \text {and} \, \, \, \Lambda _{\nu }(t)=\int _{t}^{1}\frac{\lambda (x)}{x^{1/{\nu }}}\mathrm{d}x. \end{aligned}$$

In order to apply Theorem 4.1, we have to prove that the function

$$\begin{aligned} p(t)=\frac{\Pi _{\mu ,\nu }(t)}{(1+t)(1-t)^{1+2\delta }} \end{aligned}$$

is decreasing in (0,1). Since \(p(t)>0\) and

$$\begin{aligned} \frac{p'(t)}{p(t)}=-\frac{\Lambda _{\nu }(t)}{t^{1-{1/{\mu }}-{1/{\nu }}}\Pi _{\mu , \nu }(t)}+\frac{2(t+\delta (1+t))}{1-t^{2}}, \end{aligned}$$

or equivalently,

$$\begin{aligned} \frac{p'(t)}{p(t)}=\frac{2(t+\delta (1+t))}{(1-t^{2})\Pi _{\mu ,\nu }(t)}\left\{ \Pi _{\mu ,\nu }(t)-\frac{(1-t^{2})\Lambda _{\nu }(t)t^{{1/{\nu }}-1-{1/{\mu }}}}{2(t+\delta (1+t))}\right\} , \end{aligned}$$

so it remains to show that \(q(t)\) is increasing over (0,1), where

$$\begin{aligned} q(t):=\Pi _{\mu ,\nu }(t)-\frac{(1-t^{2})\Lambda _{\nu }(t)t^{{1/{\nu }}-1-{1/{\mu }}}}{2(t+\delta (1+t))}. \end{aligned}$$

Since \(q(1)=0\), this will imply that \(q(t)\le 0\), and thus \(p(t)\) is decreasing on (0,1). Now

$$\begin{aligned} \displaystyle q'(t)= & {} -\frac{t^{{1/{\nu }}-1-{1/{\mu }}}(1+t)}{2(t+\delta (1+t))^{2}}\Bigg \{-\lambda (t)t^{-1/{\nu }}(1-t)(t+\delta (1+t))\nonumber \\&\left. +{\Lambda }_{\nu }(t)\left( \frac{(1\!-\!t)}{t}({1/{\nu }}\!-\!1\!-\!{1/{\mu }})(t\!+\!\delta (1\!+\!t))\!-\!(1\!-\!t\!-\!\delta (1+t))(1+2\delta )\right) \right\} .\nonumber \\ \end{aligned}$$
(4.2)

So, \(q'(t)\ge 0\) for \(t\in (0,1)\) is equivalent to the inequality \(r(t)\le 0\), where \(r(t)\) is equal to

$$\begin{aligned}&-\lambda (t)t^{-1/{\nu }}(1-t)(t+\delta (1+t))\\&\quad + \Lambda _{\nu }(t)\left( \frac{(1-t)}{t}({1/{\nu }}-1-{1/{\mu }})(t+\delta (1+t))-(1-t-\delta (1+t))(1+2\delta )\right) . \end{aligned}$$

By using the idea similar to the one used to prove Theorem 3.1 in [3], we can write

$$\begin{aligned} r(t)=-A(t)X(t)+\frac{Y(t)}{t}\int _{t}^{1}A(s)\mathrm{d}s, \end{aligned}$$

where,

$$\begin{aligned} A(t)= & {} \lambda (t)t^{-1/{\nu }}, \nonumber \\ X(t)= & {} (1-t)(t+\delta (1+t)), \nonumber \\ Y(t)= & {} X(t)({1/{\nu }}-1-{1/{\mu }})+Z(t), \nonumber \\ Z(t)= & {} -t(1-t-\delta (1+t))(1+2\delta ). \end{aligned}$$
(4.3)

Clearly, \(A(t)>0\) and \(X(t)>0\) for all \(t\in (0,1).\)

Case (i). If \(Y(t)\le 0\) on (0,1), then \(r(t)\le 0\) on (0,1) and thus the result follows.

Case (ii). When \(Y(t)>0\). We may write

$$\begin{aligned} r(t)=\frac{Y(t)}{t}B(t), \, \, \text {where} \, \, B(t)=-A(t)\frac{tX(t)}{Y(t)}+\int _{t}^{1}A(s)\mathrm{d}s, \, \, \text {and} \, \, B(1)=0. \end{aligned}$$

Thus, to prove that \(r(t)\le 0\), it is enough to prove that \(B(t)\) is an increasing function of \(t\). Now

$$\begin{aligned} B'(t)= & {} -A(t)\left[ \frac{A^{\prime }(t)}{A(t)}\frac{tX(t)}{Y(t)}+\left( \frac{tX}{Y}\right) ^{\prime }(t)+1\right] \\= & {} -t^{-1/{\nu }}\lambda (t)\left[ \left( \frac{t{\lambda }^{\prime }(t)}{\lambda (t)}-\frac{1}{\nu }\right) \frac{X(t)}{Y(t)}+\left( \frac{tX}{Y}\right) '(t)+1\right] . \end{aligned}$$

For \(Y(t)>0\), \(B'(t)\ge 0\) is equivalent to

$$\begin{aligned} \frac{t{\lambda }^{\prime }(t)}{\lambda (t)}\le \frac{1}{\nu }-\left[ 1+\left( \frac{tX}{Y}\right) ^{\prime }(t)\right] \frac{Y(t)}{X(t)}. \end{aligned}$$
(4.4)

Now, following three possibilities arise:

  1. (a).

    If \(Y(t)>0\) throughout the interval (0,1), then (4.4) implies that \(B'(t)\ge 0\) on (0,1). Thus, \(B(t)\) is increasing in (0,1) which implies that, \(B(t)\le B(1)=0\). Therefore, \(r(t)\le 0\) on (0,1).

  2. (b).

    If \(Y(t)>0\) on some interval \((0,t_{0})\) and \(Y(t)\le 0\) on \([t_{0},1)\) for some \(t_{0}\in (0,1)\), then (4.4) implies that \(B'(t)\ge 0\) on \((0,t_{0})\). Thus, \(B(t)\) is increasing in \((0,t_{0})\) which implies that, \(B(t)\le B(t_{0})\) for any \(t\) in \((0,t_{0})\). Since \(B(t_{0}) \rightarrow -\infty \), this implies that \(B(t)\) is negative. Therefore, \(r(t)\le 0\) on \((0,t_{0})\). In view of Case (i), \(r(t)\le 0\) whenever \(Y(t)\le 0\). Thus, \(r(t)\le 0\) on (0,1).

  3. (c).

    If \(Y(t)\le 0\) on some interval \((0,t_{0}]\) and \(Y(t)>0\) on \((t_{0},1)\) for some \(t_{0}\in (0,1)\), then (4.4) implies that \(B'(t)\ge 0\) on \((t_{0},1)\). Thus, \(B(t)\) is increasing in \((t_{0},1)\) which implies that, \(B(t)\le B(1)=0\) for any \(t\) in \((t_{0},1)\). Therefore, \(r(t)\le 0\) on \((t_{0},1)\). In view of Case (i), \(r(t)\le 0\) whenever \(Y(t)\le 0\) which implies that, \(r(t)\le 0\) on (0,1).

Subcase (i). For \(\delta =0\), \(X(t)\) and \(Y(t)\) reduces to the simple form

$$\begin{aligned} X(t)=t(1-t) \, \, \, \text {and} \, \, \, Y(t)=t(1-t)\left( \frac{1}{\nu }-2-\frac{1}{\mu }\right) . \end{aligned}$$

Clearly \(Y(t)\le 0\) on (0,1) if \(\displaystyle \frac{1}{\nu }-2-\frac{1}{\mu }\le 0\) or simply \(\displaystyle \nu \ge {\mu }/{(2\mu +1)}\) and so \(r(t)\le 0\) in this case. On the other hand, if \(\displaystyle 0<\nu <{\mu }/{(2\mu +1)}\) on (0,1), then \(Y(t)>0\) on (0,1) and thus (4.4) gives that

$$\begin{aligned} \frac{t{\lambda }'(t)}{\lambda (t)}\le 1+\frac{1}{\mu } \end{aligned}$$

on (0,1) and hence \(r(t)\le 0\) throughout the interval (0,1).

In the case when \(\gamma =0\), we have \(\mu =0\), \(\nu =\alpha >0\). Let

$$\begin{aligned} k(t):= {\Lambda }_{\alpha }(t)t^{{1/{\alpha }}-1}, \, \, \, \text {where} \, \, \, {\Lambda }_{\alpha }(t)=\int _{t}^{1}\frac{\lambda (x)}{x^{1/{\alpha }}}\mathrm{d}x. \end{aligned}$$

To apply Theorem 2.3 in [9] along with Theorem 3.1, the function \(P(t)=\frac{k(t)}{(1+t)(1-t)^{1+2\delta }}\) must be shown decreasing on the interval (0,1). Since, \(P(t)>0\) on (0,1) and

$$\begin{aligned} \frac{P'(t)}{P(t)}=\frac{2(t+\delta (1+t))}{(1-t^{2})k(t)}\left\{ \frac{(1-t^{2})k'(t)}{2(t+\delta (1+t))}+k(t)\right\} , \end{aligned}$$

thus, \(P(t)\) is decreasing in (0,1) provided

$$\begin{aligned} Q(t):=k(t)+\frac{(1-t^{2})k'(t)}{2(t+\delta (1+t))}\le 0. \end{aligned}$$

Since, \(Q(1)=0\), thus \(Q(t)\le 0\) will certainly hold if \(Q\) is increasing on (0, 1). Now \(\displaystyle Q'(t)=\frac{(1+t)}{2(t+\delta (1+t))^{2}}\left\{ (1-t)(t+\delta (1+t))k''(t)+[2\delta (t+\delta (1+t))\right. \left. -(1-t)(1+\delta )]k'(t)\right\} ,\)

where \(\displaystyle (1-t)(t+\delta (1+t))k''(t)+[2\delta (t+\delta (1+t))-(1-t)(1+\delta )]k'(t)\) is equal to

$$\begin{aligned}&t^{{1/{\alpha }}-2}\left\{ t(1-t)(t+\delta (1+t)){\Lambda }_{\alpha }{''}(t) +\left[ 2\left( \frac{1}{\alpha }-1\right) (1-t)(t+\delta (1+t))\right. \right. \\&\quad +\,2t{\delta }(t+\delta (1+t))-t(1-t)(1+\delta )\Bigg ]\\&\quad \displaystyle {\Lambda }_{\alpha }{'}(t)+\left[ \left( \frac{1}{\alpha }-2\right) \frac{(1-t)}{t}(t+\delta (1+t))+2{\delta }(t+\delta (1+t))\right. \\&\quad \left. -(1-t)(1+\delta )\Bigg ] \left( \frac{1}{\alpha }-1\right) {\Lambda }_{\alpha }(t)\right\} . \end{aligned}$$

Thus, \(Q'(t)\ge 0\), for \(t\in (0,1)\), is equivalent to the inequality

$$\begin{aligned}&\left\{ t(1-t)(t+\delta (1+t)){\Lambda }_{\alpha }{''}(t) +\left[ 2\left( \frac{1}{\alpha }-1\right) (1-t)(t+\delta (1+t))\right. \right. \\&\quad +\,2t{\delta }(t+\delta (1+t))-t(1-t)(1+\delta )\Bigg ] {\Lambda }_{\alpha }{'}(t)\\&\quad \displaystyle +\left[ \left( \frac{1}{\alpha }-2\right) \frac{(1-t)}{t}(t+\delta (1+t)) +2{\delta }(t+\delta (1+t))\right. \\&\qquad \left. -(1-t)(1+\delta )\Bigg ] \left( \frac{1}{\alpha }-1\right) {\Lambda }_{\alpha }(t)\right\} \ge 0. \end{aligned}$$

The latter condition is equivalent to \(\Delta (t)\ge 0\), where

$$\begin{aligned} \Delta (t)\equiv & {} \left\{ -t{\lambda }{'}(t)(1-t) (t+\delta (1+t))+{\lambda }(t)\left[ \left( 2-\frac{1}{\alpha }\right) (1-t) (t+\delta (1+t))\right. \right. \\&-2t\delta (t+\delta (1+t))+t(1-t)(1+\delta )\Bigg ]\\&+\left[ \left( \frac{1}{\alpha }-2\right) (1-t)(t+\delta (1+t))+ 2t\delta (t+\delta (1+t))\right. \\&\left. -t(1-t)(1+\delta )\Bigg ]\left( \frac{1}{\alpha }-1\right) t^{{1/{\alpha }-1}}{\Lambda }_{\alpha }(t)\right\} . \end{aligned}$$

A simple computation along with (4.3) shows that \(\Delta \) can be rewritten as

$$\begin{aligned}&\small -tX(t){\lambda }'(t)+\left[ \left( 3-\frac{1}{\alpha }\right) X(t)-\left( X(t)+Z(t)\right) \right] {\lambda }(t)\nonumber \\&\quad +\left[ \left( \frac{1}{\alpha }-3\right) X(t)+\left( X(t)+Z(t)\right) \right] \left( \frac{1}{\alpha }-1\right) t^{{1/{\alpha }-1}}{\Lambda }_{\alpha }(t). \end{aligned}$$
(4.5)

Since \({\Lambda }_{\alpha }(t)\ge 0\) and setting

$$\begin{aligned} \left[ \left( \frac{1}{\alpha }-3\right) X(t)+\left( X(t)+Z(t)\right) \right] \left( \frac{1}{\alpha }-1\right) \ge 0, \end{aligned}$$

\(\Delta \ge 0\) follows from

$$\begin{aligned} -tX(t){\lambda }'(t)+\left[ \left( 3-\frac{1}{\alpha }\right) X(t)-\left( X(t)+Z(t)\right) \right] {\lambda }(t)\ge 0. \end{aligned}$$

Since \(X(t)\) is non-negative on (0,1), thus the inequality \(\Delta \ge 0\) follows from

$$\begin{aligned} \frac{t{\lambda }{'}(t)}{{\lambda }(t)}\le & {} \left( 3-\frac{1}{\alpha }\right) \!-\!\frac{X(t)+Z(t)}{X(t)} \, \, \, \text {and} \, \, \, \left[ \left( \frac{1}{\alpha }-3\right) X(t)\!+\!\left( X(t)\!+\!Z(t)\right) \right] \left( \frac{1}{\alpha }\!-\!1\right) \nonumber \\\ge & {} 0. \end{aligned}$$
(4.6)

For \(\delta =0\), (4.6) reduces to

$$\begin{aligned} \frac{t{\lambda }{'}(t)}{{\lambda }(t)}\!\le \!3-\frac{1}{\alpha } \, \, \text {for} \, \, \left( \frac{1}{\alpha }\!-\!1\right) \left( \frac{1}{\alpha }\!-\!3\right) \ge 0 \, \, \, \text {or equivalently for} \, \, \alpha \!\in \!(0,1/3]\cup [1,\infty ). \end{aligned}$$

These observations for \(\delta =0\) lead to the following result by, Ali et al. [1], Theorem 4.2].

Corollary 4.1

Assume that both \(\Pi _{\mu ,\nu }(t)\) and \(\Lambda _{\nu }(t)\), as defined in Theorem 3.1 are integrable on [0,1], and positive on (0,1). Let \(\lambda (t)\) be a normalized non-negative real-valued integrable function on [0,1]. Under the same conditions as stated in Theorem 3.1, if \(\lambda \) satisfies

$$\begin{aligned} \frac{t{\lambda }'(t)}{\lambda (t)}\le \left\{ \begin{array}{ll} 1+\frac{1}{\mu }, &{}\quad \mu \ge 1 (\gamma >0); \\ 3-\frac{1}{\alpha }, &{}\quad \gamma =0, \alpha \in (0,1/3]\cup [1,\infty ), \end{array} \right. \end{aligned}$$
(4.7)

then \(F(z)=V_{\lambda }(f)(z)\in S^{*}\). The conclusion does not hold for smaller values of \(\beta \).

Subcase (ii). If \(0<\delta \le 1/2\) with \(\gamma >0\), then (4.4) can be rewritten as

$$\begin{aligned} \left( \frac{1}{\nu }-\frac{t{\lambda }'(t)}{\lambda (t)}\right) X(t)Y(t)\ge Y^{2}(t)+Y(t)(tX'(t)+X(t))-Y'(t)tX(t). \end{aligned}$$

Since \( Y(t)=X(t)({1/{\nu }}-1-{1/{\mu }})+Z(t)\), so the above inequality is equivalent to

$$\begin{aligned}&\left( \frac{1}{\nu }-1-\frac{1}{\mu }\right) [X(t)+Z(t)]X(t)-\left( 1+\frac{1}{\mu }-\frac{t{\lambda }'(t)}{\lambda (t)}\right) \nonumber \\&\qquad \left[ \left( \frac{1}{\nu }-1-\frac{1}{\mu }\right) X(t)+Z(t)\right] \nonumber \\&\quad \le Z'(t)(tX(t))-Z(t)(tX(t))'-Z^{2}(t). \end{aligned}$$
(4.8)

Define \(D(t)=t(1+\delta )-(1-\delta )\). Rewriting the expressions for \(X(t)\) and \(Z(t)\) in terms of \(D(t)\), we get

$$\begin{aligned} X(t)=(1-t)(D(t)+1) \, \, \, \text {and} \, \, \, Z(t)=(1+2\delta )tD(t) \end{aligned}$$

and so a simple computation gives that

$$\begin{aligned} Z'(t)(tX(t))-Z(t)(tX)'(t)-Z^{2}(t)=2\delta (1+2\delta )t^{2}(1-D^{2}(t)). \end{aligned}$$
(4.9)

Since \(D^{2}(t)\le 1\) for \(t\in [0,1]\) thus (4.9) is non-negative in (0,1). Since \(X(t)+Z(t)\) and \(X(t)\) are non-negative on (0,1), so if \(\displaystyle \left( {1}/{\nu }-1-{1}/{\mu }\right) \le 0\) or simply \(\displaystyle \nu \ge {\mu }/{(\mu +1)}\), then the inequality (4.8) holds on the interval where \(Y(t)>0\) and hence, \(r(t)\le 0\) on (0,1).

While on the other hand, for \(0<\delta \le 1/2\) with \(\gamma =0\), from (4.6) we have

$$\begin{aligned} \frac{t{\lambda }{'}(t)}{{\lambda }(t)}\le & {} \left( 3\!-\!\frac{1}{\alpha }\right) \!-\!\frac{X(t)\!+\!Z(t)}{X(t)} \, \, \text {and} \, \, \left[ \left( \frac{1}{\alpha }\!-\!3\right) X(t)+\left( X(t)+Z(t)\right) \right] \left( \frac{1}{\alpha }-1\right) \\\ge & {} 0. \end{aligned}$$

Since \(X(t)\) and \(X(t)+Z(t)\) are non-negative on (0,1), thus equivalently,

$$\begin{aligned} \frac{t{\lambda }{'}(t)}{{\lambda }(t)}\le 3-\frac{1}{\alpha }, \, \, \, \text {for} \, \, \, \alpha \in (0,1/3]. \end{aligned}$$

Hence, for \(0<\delta \le 1/2\) with \(\gamma =0\), we have \(\Delta \ge 0\) throughout the interval (0,1).

Thus, we see that above Corollary continues to hold for \(\delta \in (0,1/2]\) but with some restrictions. More precisely, we have

Theorem 4.2

Let \(\lambda (t)\) be a non-negative real-valued integrable function on [0,1]. Assume that both \(\Pi _{\mu ,\nu }(t)\) and \(\Lambda _{\nu }(t)\) are integrable on [0,1], and positive on (0,1). Let \(\lambda \) satisfying the condition

$$\begin{aligned} \frac{t{\lambda }'(t)}{\lambda (t)}\le \left\{ \begin{array}{ll} 1+\frac{1}{\mu }, &{} \quad \mu \ge 1 (\gamma >0); \\ 3-\frac{1}{\alpha }, &{} \quad \gamma =0, \alpha \in (0,1/3]. \\ \end{array} \right. \end{aligned}$$
(4.10)

Let \(f\in {{\mathcal {W}}_{\beta }(\alpha , \gamma )}\) with \(\nu \ge {\mu }/{(\mu +1)}\), and \(\beta <1\) with

$$\begin{aligned} \frac{\beta }{1-\beta }=-\int _{0}^{1}\lambda (t)g(t)\mathrm{d}t, \end{aligned}$$
(4.11)

where \(g(t)\) is defined by (2.6) with \(\delta \in (0,1/2]\).Then \(F(z)=V_{\lambda }(f)(z)\in S^{*}(\delta )\). The conclusion does not hold for smaller values of \(\beta \).

Remark 4.1

  1. 1.

    For \(\alpha =1+2\gamma \) with \(\gamma >0\) and \(\mu =1\), Theorem 4.2 yields Theorem 3.1 in [3] with \(0<\delta \le 1/2\).

  2. 2.

    With \(\delta =0\), our Corollary 4.1 coincides with the Theorem 4.2 in [1].

5 Applications

In this section, we present a number of applications of Theorem 4.2 for various well-known integral operators. Let \((a)_{n}\) denote the Pochhammer symbol, defined in terms of the Gamma function, by

$$\begin{aligned} (a)_{n}:= \frac{\Gamma (a+n)}{\Gamma (a)}=\left\{ \begin{array}{ll} 1, &{}\quad n=0, \\ a(a+1)...(a+n-1), &{}\quad \hbox {n} \in \mathbb {N}. \end{array}\right. \end{aligned}$$

Define the Gaussian hypergeometric function by

$$\begin{aligned} _{2}F_{1}(a,b;c;z)=F(a,b;c;z)=\sum _{n=0}^{\infty }\frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}z^{n}, \, \, \, |z|<1, \end{aligned}$$

where \(a\), \(b\) and \(c\) are complex numbers with \(c\ne 0,-1,-2,\ldots \). Note that the series \(_{2}F_{1}\) converges absolutely for \(z\in E\). Now let \(\Phi \) be defined by \(\Phi (1-t)=1+\sum _{n=1}^{\infty }b_{n}(1-t)^n\), \(b_n\ge 0\) for \(n\ge 1\), and

$$\begin{aligned} \lambda (t)=K{t}^{b-1}(1-t)^{c-a-b}{\Phi }(1-t), \end{aligned}$$
(5.1)

where \(K\) is a constant chosen such that \(\int _{0}^{1}\lambda (t)\mathrm{d}t=1\). The following result holds in this instance.

Theorem 5.1

Let \(a\), \(b\), \(c\), \(\alpha >0\), \({\nu }\ge {\mu }/(\mu +1)\) and \(\beta <1\) satisfy

$$\begin{aligned} \frac{\beta }{1-\beta }=-K\int _{0}^{1}t^{b-1}(1-t)^{c-a-b}{\Phi }(1-t)g(t)\mathrm{d}t, \end{aligned}$$

where \(K\) is a constant such that \(\displaystyle K\int _{0}^{1}t^{b-1}(1-t)^{c-a-b}{\Phi }(1-t)\mathrm{d}t=1\) and \(g\) is given by (2.6). Then for \(\delta \in [0,1/2]\), we have \(V_{\lambda }({{\mathcal {W}}}_{\beta }(\alpha , \gamma )) \subset S^{*}(\delta )\) provided the following condition hold

$$\begin{aligned} c\ge a+b \, \, \, \text {and} \, \, \, b\le \left\{ \begin{array}{ll} 2+\frac{1}{\mu }, &{}\quad \gamma >0 (\mu \ge 1); \\ 4-\frac{1}{\alpha }, &{} \quad \gamma >0, \alpha \in (1/4,1/3],\\ \end{array}\right. \end{aligned}$$
(5.2)

where

$$\begin{aligned} V_{\lambda }(f)(z)=K\int _{0}^{1}t^{b-1}(1-t)^{c-a-b}{\Phi }(1-t)\frac{f(tz)}{t}\mathrm{d}t. \end{aligned}$$

The value of \(\beta \) is sharp.

Proof

Using (5.1), we have

$$\begin{aligned} \frac{t{\lambda }'(t)}{{\lambda }(t)}=(b-1)-\frac{(c-a-b)t}{1-t}-\frac{t{\Phi }'(1-t)}{{\Phi }(1-t)}. \end{aligned}$$

The condition (4.10) is satisfied when

$$\begin{aligned} (b-1)-\frac{(c-a-b)t}{1-t}-\frac{t{\Phi }'(1-t)}{{\Phi }(1-t)}\le \left\{ \begin{array}{ll} 1+\frac{1}{\mu }, &{}\quad \mu \ge 1 (\gamma >0); \\ 3-\frac{1}{\alpha }, &{}\quad \gamma =0, \alpha \in (0,1/3]. \\ \end{array} \right. \end{aligned}$$

Since \(\Phi (1-t)=1+\sum _{n=1}^{\infty }b_{n}(1-t)^n\), \(b_n\ge 0\) for \(n\ge 1\), so the functions \(\Phi (1-t)\) and \({\Phi }'(1-t)\) are non-negative in (0,1). Therefore, a simple computation of \((b-1)-\frac{(c-a-b)t}{1-t}\) with \(c-a-b\ge 0\), implies that the condition (4.10) is satisfied whenever \(b\) satisfies (5.2). Hence the result follows by applying Theorem 4.2. \(\square \)

Writing \(\gamma =0\), \(\alpha >0\) in Theorem 5.1 leads to the following corollary:

Corollary 5.1

Let \(a\), \(b\), \(c\), \(\alpha >0,\) and \(\beta <1\) satisfy

$$\begin{aligned} \frac{\beta }{1-\beta }=-K\int _{0}^{1}t^{b-1}(1-t)^{c-a-b}{\Phi }(1-t)g_{\alpha }(t)\mathrm{d}t, \end{aligned}$$

where \(K\) is a constant such that \(\displaystyle K\int _{0}^{1}t^{b-1}(1-t)^{c-a-b}{\Phi }(1-t)\mathrm{d}t=1\) and \(g_{\alpha }\) is given by (2.7). If \(f\in {\mathcal {W}}_{\beta }(\alpha , 0)\equiv {\mathcal {P}}_{\alpha }(\beta )\), then the function

$$\begin{aligned} V_{\lambda }(f)(z)=K\int _{0}^{1}t^{b-1}(1-t)^{c-a-b}{\Phi }(1-t)\frac{f(tz)}{t}\mathrm{d}t \end{aligned}$$

belongs to \(S^{*}(\delta )\) with \(\delta \in (0,1/2]\) whenever \(a\), \(b\), \(c\) are related by \(c\ge a+b\) and \(b\le 4-\frac{1}{\alpha }\), \(\alpha \in (1/4,1/3]\), for all \(t\in (0,1)\). The value of \(\beta \) is sharp.

Writing \(\alpha =1+2\gamma \), \(\gamma >0\) and \(\mu =1\) in Theorem 5.1 gives the following corollary, which is an improvement of the Theorem 4.3 in [3]:

Corollary 5.2

Let \(a\), \(b\), \(c>0\), \(\gamma \ge 1/2\) and \(\beta <1\) satisfy

$$\begin{aligned} \frac{\beta }{1-\beta }=-K\int _{0}^{1}t^{b-1}(1-t)^{c-a-b}{\Phi }(1-t)g_{\gamma }(t)\mathrm{d}t, \end{aligned}$$

where \(K\) is constant such that \(\displaystyle K\int _{0}^{1}t^{b-1}(1-t)^{c-a-b}{\Phi }(1-t)\mathrm{d}t=1\) and \(g_{\gamma }\) is given by (2.7). If \(f\in {\mathcal {W}}_{\beta }(1+2\gamma , \gamma )\), then the function

$$\begin{aligned} V_{\lambda }(f)(z)=K\int _{0}^{1}t^{b-1}(1-t)^{c-a-b}{\Phi }(1-t)\frac{f(tz)}{t}\mathrm{d}t \end{aligned}$$

belongs to \(S^{*}(\delta )\) with \(\delta \in (0,1/2]\) whenever \(a\), \(b\), \(c\) are related by \(c\ge a+b\) and \(0<b\le 3\), for all \(t\in (0,1)\) and \(\gamma >1/2\). The value of \(\beta \) is sharp.

The following special case of Theorem 5.1 corresponds to Bernardi operator, which we state as a theorem.

Theorem 5.2

Let \(c>-1\), \(\nu \ge {\mu }/(\mu +1)\) and \(\beta <1\) satisfy

$$\begin{aligned} \frac{\beta }{1-\beta }=-(c+1)\int _{0}^{1}t^{c}g(t)\mathrm{d}t, \end{aligned}$$

where \(g\) in given by (2.6). If \(f\in {\mathcal {W}}_{\beta }(\alpha , \gamma )\), then the Bernardi Transform

$$\begin{aligned} V_{\lambda }(f)(z)=(1+c)\int _{0}^{1}t^{c-1}f(tz)\mathrm{d}t \end{aligned}$$

belongs to \(S^{*}(\delta )\) with \(\delta \in (0,1/2]\) if

$$\begin{aligned} c\le \left\{ \begin{array}{ll} 1+\frac{1}{\mu }, &{}\quad \mu \ge 1 (\gamma >0); \\ 3-\frac{1}{\alpha }, &{}\quad \gamma =0, \alpha \in (1/4,1/3]. \\ \end{array}\right. \end{aligned}$$

The value of \(\beta \) is sharp.

Taking \(\gamma =0\), \(\alpha >0\) Theorem 5.2 reduces to the following corollary:

Corollary 5.3

Let \(-1<c\le 3-1/{\alpha }\), \(\alpha \in (1/4,1/3]\) and \(\beta <1\) satisfy

$$\begin{aligned} \frac{\beta }{1-\beta }=-(c+1)\int _{0}^{1}t^{c}g_{\alpha }(t)\mathrm{d}t, \end{aligned}$$

where \(g_{\alpha }\) is given by (2.7). If \(f\in {\mathcal {W}}_{\beta }(\alpha , 0)\equiv {\mathcal {P}}_{\alpha }(\beta )\), then the function

$$\begin{aligned} V_{\lambda }(f)(z)=(1+c)\int _{0}^{1}t^{c-1}f(tz)\mathrm{d}t \end{aligned}$$

belongs to \(S^{*}(\delta )\) with \(\delta \in (0,1/2]\). The value of \(\beta \) is sharp.

Remark 5.1

For \(\alpha =1+2\gamma \), \(\gamma >0\) and \(\mu =1\) in Theorem 5.2 yields Corollary 4.1 in [3].

To prove the next theorem, we define

$$\begin{aligned} {\lambda }(t)=\left\{ \begin{array}{ll} (a+1)(b+1)\frac{t^{a}(1-t^{b-a})}{b-a}, &{}\quad b\ne a; \\ (a+1)^{2}t^{a}\log (1/t), &{} \quad b=a, \end{array}\right. \end{aligned}$$
(5.3)

where \(b>-1\) and \(a>-1\).

Theorem 5.3

Let \(b>-1\), \(a>-1\), \({\nu }\ge {\mu }/(\mu +1)\) and \(\alpha >0\). Let \(\beta <1\) satisfy

$$\begin{aligned} \frac{\beta }{1-\beta }=-\int _{0}^{1}{\lambda }(t)g(t)\mathrm{d}t, \end{aligned}$$

where \(g\) is given by (2.6) and \(\lambda (t)\) is defined by (5.3). If \(f\in {\mathcal {W}}_{\beta }(\alpha , \gamma )\), then the convolution operator

$$\begin{aligned} G_{f}(a,b;z)=\left\{ \begin{array}{ll} \frac{(a+1)(b+1)}{b-a}\int _{0}^{1}{t^{a-1}(1-t^{b-a})}f(tz)\mathrm{d}t, &{} b\ne a; \\ {(a+1)^2}\int _{0}^{1}{t^{a-1}}\log (1/t)f(tz)\mathrm{d}t, &{} b=a. \end{array}\right. \end{aligned}$$

belongs to \(S^{*}(\delta )\) with \(\delta \in (0,1/2]\) if

$$\begin{aligned} a\le \left\{ \begin{array}{ll} 1+\frac{1}{\mu }, &{} \quad \mu \ge 1 (\gamma >0); \\ 3-\frac{1}{\alpha }, &{} \quad \gamma =0, \alpha \in (1/4,1/3]. \\ \end{array} \right. \end{aligned}$$
(5.4)

The value of \(\beta \) is sharp.

Proof

We omitted the proof as it follows on the same lines as discussed in Theorem 5.3 [1].

Remark 5.2

  1. 1.

    For \(\alpha =1+2\gamma \), \(\gamma >0\) and \(\mu =1\) in Theorem 5.3 yields Theorem 4.1 in [3].

  2. 2.

    For \(\gamma =0\), Theorem 5.3 gives a result similar to Theorem 2.1 [2].

Now, we define

$$\begin{aligned} {\lambda }(t)=\frac{(1+a)^{p}}{\Gamma (p)}t^{a}\left( \log (1/t)\right) ^{p-1}, \, \, \, a>-1, \, \, p\ge 0. \end{aligned}$$

In this case, \(V_{\lambda }\) reduces to the Komatu operator

$$\begin{aligned} V_{\lambda }(f)(z)=\frac{(1+a)^{p}}{\Gamma (p)}\int _{0}^{1}\left( \log \left( \frac{1}{t}\right) \right) ^{p-1}t^{a-1}f(tz)\mathrm{d}t, \, \, \, a>-1, \, \, p\ge 0. \end{aligned}$$

For \(p = 1\) Komatu operator gives the Bernardi integral operator. For this \(\lambda \), the following result holds.

Theorem 5.4

Let \(-1<a\), \(\alpha >0\), \(p\ge 1\), \({\nu }\ge {\mu }/(\mu +1)\) and \(\beta <1\) satisfy

$$\begin{aligned} \frac{\beta }{1-\beta }=-\frac{(1+a)^{p}}{\Gamma (p)}\int _{0}^{1}t^{a}\left( \log ({1}/{t})\right) ^{p-1}g(t)\mathrm{d}t, \end{aligned}$$

where \(g\) is given by (2.6). If \(f\in {\mathcal {W}}_{\beta }(\alpha , \gamma )\), then the function

$$\begin{aligned} {\Phi }_{p}(a;z)*f(z)=\frac{(1+a)^{p}}{\Gamma (p)}\int _{0}^{1}\left( \log \left( \frac{1}{t}\right) \right) ^{p-1}t^{a-1}f(tz)\mathrm{d}t \end{aligned}$$

belongs to \(S^{*}(\delta )\) with \(\delta \in (0,1/2]\) if

$$\begin{aligned} a\le \left\{ \begin{array}{ll} 1+\frac{1}{\mu }, &{} \quad \mu \ge 1 (\gamma >0); \\ 3-\frac{1}{\alpha }, &{} \quad \gamma =0, \alpha \in (1/4,1/3]. \\ \end{array}\right. \end{aligned}$$
(5.5)

The value of \(\beta \) is sharp.

Proof

Since

$$\begin{aligned} \frac{t{\lambda }'(t)}{\lambda (t)}=a-\frac{p-1}{\log (1/t)}, \end{aligned}$$

therefore, using the fact that \(\log (1/t)>0\) for \(t\in (0,1)\), and \(p\ge 1\), condition (4.10) is satisfied whenever \(a\) satisfies (5.5).

Remark 5.3

Setting \(\alpha =1+2\gamma \), \(\gamma >0\) and \(\mu =1\) in Theorem 5.4, we get Theorem 4.2 in [3].