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Abstract For α, γ ≥ 0 and β < 1, let Wβ(α, γ ) denote the class of all normalized
analytic functions f in the open unit disk E = {z : |z| < 1} such that

�eiφ
(

(1 − α + 2γ )
f (z)

z
+ (α − 2γ ) f ′(z) + γ z f ′′(z) − β

)
> 0, z ∈ E

for some φ ∈ R. For f ∈ Wβ(α, γ ), we consider the integral transform

Vλ( f )(z) :=
∫ 1

0
λ(t)

f (t z)

t
dt,

where λ is a non-negative real-valued integrable function satisfying the condition∫ 1
0 λ(t)dt = 1. In a very recent paper, Ali et al. (J Math Anal Appl 385:808–822,
2012) discussed the starlikeness of the integral transform Vλ( f )when f ∈ Wβ(α, γ ).
The aim of present paper is to find conditions on λ(t) such that Vλ( f ) is starlike of
order δ (0 ≤ δ ≤ 1/2) when f ∈ Wβ(α, γ ). As applications, we study various choices
of λ(t), related to classical integral transforms.

Keywords Starlike function · Hadamard product · Duality

Mathematics Subject Classification 30C45 · 30C80

Communicated by Rosihan Ali.

B Sarika Verma
sarika.16984@gmail.com

1 Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-015-0131-3&domain=pdf


650 S. Verma et al.

1 Introduction

Let A denotes the class of analytic functions f defined in the open unit disk
E = {z : |z| < 1} with the normalization f (0) = f ′(0) − 1 = 0 and A0 =
{g : g(z) = f (z)/z, f ∈ A}. Let S be the subclass of A consisting of functions uni-
valent in E . A function f in A is said to be starlike of order β if it satisfies

�
(
z f ′(z)
f (z)

)
> β, z ∈ E,

for some β (0 ≤ β < 1). We denote by S∗(β), the subclass of S consisting of
functions which are starlike of order β in E . Set S∗(0) = S∗. For any two functions
f (z) = z + a2z2 + a3z3 + · · · and g(z) = z + b2z2 + b3z3 + · · · inA, the Hadamard
product (or convolution) of f and g is the function f ∗ g defined by

( f ∗ g)(z) = z +
∞∑
n=2

anbnz
n .

For f ∈ A, Fournier and Ruscheweyh [4] introduced the operator

Vλ( f )(z) :=
∫ 1

0
λ(t)

f (t z)

t
dt, (1.1)

where λ is a non-negative real-valued integrable function satisfying the condition∫ 1
0 λ(t)dt = 1. This operator contains some of the well-known operators (such as
Alexander, Libera, Bernardi, and Komatu) as its special cases. This operator has been
studied by a number of authors for various choices of λ(t) [1,3,4,6,9,12]. Fournier
and Ruscheweyh [4] applied the Duality theory [10,11] to prove the starlikeness of
the linear integral transform Vλ( f ) over functions f in the class

P(β) :=
{
f ∈ A : ∃φ ∈ R|�eiφ

(
f ′(z) − β

)
> 0, z ∈ E

}
.

In 2001, Kim and Rønning [5] investigated starlikeness properties of the integral
transform (1.1) for functions f in the class

Pγ (β) :=
{
f ∈ A : ∃φ ∈ R|�eiφ

(
(1 − γ )

f (z)

z
+ γ f ′(z) − β

)
> 0, z ∈ E

}
.

Recently in 2008, Ponnusamy and Rønning [9] discussed the same problem for the
functions in the class

Rγ (β) :=
{
f ∈ A : ∃φ ∈ R|�eiφ

(
f ′(z) + γ z f ′′(z) − β

)
> 0, z ∈ E

}
.
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Duality and Integral Transform of a Class of Analytic Functions 651

It is evident that Rγ (β) is closely related to the class Pγ (β). Clearly, f ∈ Rγ (β) if
and only if z f ′ belongs to Pγ (β).

In a very recent paper, Ali et al. [1] discussed this problem for the functions f in
the class

Wβ(α, γ ) :=
{
f ∈ A : ∃φ ∈ R|�eiφ

(
(1−α+2γ )

f (z)

z
+(α−2γ ) f ′(z)+γ z f ′′(z)−β

)
>0, z∈E

}
.

(1.2)
Note that Wβ(1, 0) ≡ P(β), Wβ(α, 0) ≡ Pα(β) and Wβ(1 + 2γ, γ ) ≡ Rγ (β).

In Sect. 3 of the paper, we shall mainly tackle the problem: For given 0 ≤ δ ≤ 1/2,
to find conditions on β such that Vλ( f ) ∈ S∗(δ) whenever f ∈ Wβ(α, γ ). In Sect. 4,
we find easier criteria of starlikeness of the integral operator Vλ( f ). While in the last
section of the paper, we discussed applications of results obtained for various choices
of λ(t).

To prove our result, we shall need the duality theory for convolutions, so we include
here some basic concepts and results from this theory. For a subset B ⊂ A0 we define

B∗ = {g ∈ A0 : ( f ∗ g)(z) �= 0, z ∈ E, for all f ∈ B} .

The set B∗ is called the dual of B. Further, the second dual of B is defined as B∗∗ =
(B∗)∗. The basic reference to this theory is the book by Ruscheweyh [11] (see also
[10]). We shall need the following fundamental result.

Theorem 1.1 (Duality Principle) Let

B =
{
β + (1 − β)

(
1 + xz

1 + yz

)
: |x | = |y| = 1

}
, β ∈ R, β �= 1.

We have

(1) B∗∗ = {
g ∈ A0 : ∃φ ∈ R such that� (

eiφ(g(z) − β)
)

> 0, z ∈ E
}
.

(2) If �1 and �2 are two continuous linear functionals on B with 0 /∈ �2, then for
every g ∈ B∗∗ we can find v ∈ B such that

�1(g)

�2(g)
= �1(v)

�2(v)
.

2 Preliminaries

We use the notations introduced in [1]. Let μ ≥ 0 and ν ≥ 0 satisfy

μ + ν = α − γ and μν = γ. (2.1)

For γ = 0, μ is also taken to be 0, in which case, ν = α ≥ 0. Writing α = 1 + 2γ in
(2.1), we get μ + ν = 1 + γ = 1 + μν, or (μ − 1)(1 − ν) = 0.

(i) When γ > 0, then writing μ = 1 gives ν = γ .
(ii) If γ = 0, then μ = 0 and ν = α = 1.
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652 S. Verma et al.

In the particular case α = 1 + 2γ , the values of μ and ν for γ > 0 will be taken
as μ = 1 and ν = γ respectively, while in the case when γ = 0, we have μ = 0 and
ν = 1 = α.

Define

φμ,ν(z) = 1 +
∞∑
n=1

(nν + 1)(nμ + 1)

n + 1
zn, (2.2)

and

ψμ,ν(z) = φ−1
μ,ν(z) = 1 +

∞∑
n=1

n + 1

(nν + 1)(nμ + 1)
zn

=
∫ 1

0

∫ 1

0

dsdt

(1 − tνsμz)2
. (2.3)

Here φ−1
μ,ν denotes the convolution inverse of φμ,ν such that φμ,ν ∗φ−1

μ,ν = z/(1−z).
If we take γ = 0, then μ = 0, ν = α in (2.3), we have

ψ0,α(z) = 1 +
∞∑
n=1

n + 1

nα + 1
zn =

∫ 1

0

dt

(1 − tαz)2
.

If γ > 0, then ν > 0, μ > 0, and making the change of variables u = tν , v = sμ

results in

ψμ,ν(z) = 1

μν

∫ 1

0

∫ 1

0

u1/ν−1v1/μ−1

(1 − uvz)2
dudv.

Thus the function ψμ,ν can be written as

ψμ,ν(z) =
⎧⎨
⎩

1
μν

∫ 1
0

∫ 1
0

u1/ν−1v1/μ−1

(1−uvz)2
dudv, γ > 0;

∫ 1
0

dt
(1−tαz)2

, γ = 0, α > 0.
(2.4)

Further let g be the solution of the initial-value problem

d

dt
t1/ν(1 + g(t)) =

⎧⎨
⎩

2
μν

t1/ν−1
∫ 1
0

1−δ(1+st)
(1−δ)(1+st)2

s1/μ−1ds, γ > 0;
2
α

1−δ(1+t)
(1−δ)(1+t)2

t1/α−1, γ = 0, α > 0.
(2.5)

satisfying g(0) = 1, where δ ∈ [0, 1/2]. A simple calculation leads to the solution
given by

g(t) = 2

μν

∫ 1

0

∫ 1

0

1 − δ(1 + swt)

(1 − δ)(1 + swt)2
s1/μ−1w1/ν−1dsdw − 1. (2.6)
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Duality and Integral Transform of a Class of Analytic Functions 653

In particular

gα(t) = 2

α
t−1/α

∫ t

0
u1/α−1 1 − δ(1 + u)

(1 − δ)(1 + u)2
du − 1, γ = 0, α > 0. (2.7)

3 Main Results

Theorem 3.1 Let μ ≥ 0, ν ≥ 0 satisfy (2.1), and β < 1 satisfy

β

1 − β
= −

∫ 1

0
λ(t)g(t)dt, (3.1)

where g is the solution of the initial-value problem (2.5). Further let

�ν(t) =
∫ 1

t

λ(x)

x1/ν
dx, ν > 0, (3.2)

�μ,ν(t) =
{∫ 1

t �ν(x)x1/ν−1−1/μdx, γ > 0;
�α(t), γ = 0, (μ = 0, ν = α > 0).

(3.3)

and assume that t1/ν�ν(t) → 0, and t1/μ�μ,ν(t) → 0 as t → 0+. Then for
δ ∈ [0, 1/2], we have Vλ(Wβ(α, γ )) ⊂ S∗(δ) if and only if L�μ,ν (hδ) ≥ 0, where
L�μ,ν (hδ) and hδ are defined by following equations:

L�μ,ν (hδ) =

⎧⎪⎨
⎪⎩

� ∫ 1
0 �μ,ν(t)t1/μ−1

(
h(t z)
t z − 1−δ(1+t)

(1−δ)(1+t)2

)
dt, γ > 0;

� ∫ 1
0 �0,α(t)t1/α−1

(
h(t z)
t z − 1−δ(1+t)

(1−δ)(1+t)2

)
dt, γ = 0.

(3.4)

and

hδ(z) =
z
(
1 + ε+2δ−1

2−2δ z
)

(1 − z)2
, |ε| = 1, (3.5)

respectively. This conclusion does not hold for any smaller values of β.

Proof The case γ = 0(μ = 0, ν = α) corresponds to the Theorem 1.2 in [2], so we
will prove the result only when γ > 0.

Let

H(z) = (1 − α + 2γ )
f (z)

z
+ (α − 2γ ) f ′(z) + γ z f ′′(z).

Since μ + ν = α − γ and μν = γ , then

H(z) = (1 + γ − (α − γ ))
f (z)

z
+ (α − γ − γ ) f ′(z) + γ z f ′′(z)

= (1 + μν − μ − ν)
f (z)

z
+ (μ + ν − μν) f ′(z) + μνz f ′′(z).
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Writing f (z) = z + ∑∞
n=2 anz

n , we obtain from (2.2)

H(z) = 1 +
∞∑
n=1

an+1(nν + 1)(nμ + 1)zn = f ′(z) ∗ φμ,ν(z), (3.6)

and (2.3) gives that
f ′(z) = H(z) ∗ ψμ,ν(z). (3.7)

Now, let f ∈ Wβ(α, γ ). Then, in the view of the Theorem 1.1, we may restrict our
attention to functions f ∈ Wβ(α, γ ) for which

H(z) = (1 − α + 2γ )
f (z)

z
+ (α − 2γ ) f ′(z) + γ z f ′′(z)

= β + (1 − β)

(
1 + xz

1 + yz

)
, |x | = |y| = 1.

Thus (3.7) gives

f ′(z) =
(

(1 − β)
1 + xz

1 + yz
+ β

)
∗ ψμ,ν(z), (3.8)

and therefore

f (z)

z
= 1

z

∫ z

0

(
(1 − β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z), (3.9)

here ψ := ψμ,ν . ��

Also, a well-known result from the theory of convolutions [11] (see also [10])
implies that

F ∈ S∗(δ) ⇔ 1

z
(F ∗ hδ)(z) �= 0, z ∈ E,

where

hδ(z) =
z
(
1 + ε+2δ−1

2−2δ z
)

(1 − z)2
, |ε| = 1.

Hence F ∈ S∗(δ) if and only if

0 �= 1

z
(Vλ( f )(z) ∗ hδ(z)) = 1

z

[∫ 1

0
λ(t)

f (t z)

t
dt ∗ hδ(z)

]

=
∫ 1

0

λ(t)

1 − t z
dt ∗ f (z)

z
∗ hδ(z)

z
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Using (3.9), we have

0 �=
∫ 1

0

λ(t)

1 − t z
dt ∗

[
1

z

∫ z

0

(
(1 − β)

1 + xw

1 + yw
+ β

)
dw ∗ ψ(z)

]
∗ hδ(z)

z

=
∫ 1

0

λ(t)

1 − t z
dt ∗ hδ(z)

z
∗

[
1

z

∫ z

0

(
(1 − β)

1 + xw

1 + yw
+ β

)
dw

]
∗ ψ(z)

=
∫ 1

0
λ(t)

hδ(t z)

t z
dt ∗ (1 − β)

[
1

z

∫ z

0

(
1 + xw

1 + yw
+ β

(1 − β)

)
dw

]
∗ ψ(z)

= (1 − β)

[∫ 1

0
λ(t)

hδ(t z)

t z
dt + β

(1 − β)

]
∗ 1

z

∫ z

0

1 + xw

1 + yw
dw ∗ ψ(z)

= (1 − β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0

hδ(tw)

tw
dw

)
dt + β

(1 − β)

]
∗ 1 + xz

1 + yz
∗ ψ(z).

This holds if and only if [10, p. 23]

�(1 − β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0

hδ(tw)

tw
dw

)
dt + β

(1 − β)

]
∗ ψ(z) ≥ 1

2
,

⇔ �(1−β)

[∫ 1

0
λ(t)

(
1

z

∫ z

0

hδ(tw)

tw
dw

)
dt + β

(1−β)
− 1

2(1−β)

]
∗ ψ(z) ≥ 0,

⇔ �
[∫ 1

0
λ(t)

(
1

z

∫ z

0

hδ(tw)

tw
dw

)
dt + β

(1 − β)
− 1

2(1 − β)

]
∗ ψ(z) ≥ 0,

⇔ �
[∫ 1

0
λ(t)

(
1

z

∫ z

0

hδ(tw)

tw
dw

)
dt − 1

2
+ β

2(1 − β)

]
∗ ψ(z) ≥ 0,

⇔ �
[∫ 1

0
λ(t)

(
1

z

∫ z

0

hδ(tw)

tw
dw − 1 + g(t)

2

)
dt

]
∗ ψ(z) ≥ 0, (Using (3.1))

⇔ �
[∫ 1

0
λ(t)

(
hδ(t z)

t z
− 1 + g(t)

2

)
dt

]
∗ 1

z

∫ z

0
ψ(w)dw ≥ 0,

⇔ �
[∫ 1

0
λ(t)

(
hδ(t z)

t z
− 1+g(t)

2

)
dt

]
∗

∞∑
n=0

zn

(nν+1)(nμ+1)
≥0, (Using (2.3))

⇔ �
∫ 1

0
λ(t)

( ∞∑
n=0

zn

(nν + 1)(nμ + 1)
∗ hδ(t z)

t z
− 1 + g(t)

2

)
dt ≥ 0,

⇔ �
∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

dηdζ

(1 − ηνζμz)
∗ hδ(t z)

t z
− 1 + g(t)

2

)
dt ≥ 0,

⇔ �
∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

hδ(t zηνζμ)

t zηνζμ
dηdζ − 1 + g(t)

2

)
dt ≥ 0,

which can also be written as

�
∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

1

μν

hδ(t zuv)

t zuv
u1/ν−1v1/μ−1dvdu − 1 + g(t)

2

)
dt ≥ 0.
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Writing w = tu, we get

�
∫ 1

0

λ(t)

t1/ν

[∫ t

0

∫ 1

0

hδ(wzv)

wzv
w1/ν−1v1/μ−1dvdw − μνt1/ν

1 + g(t)

2

]
dt ≥ 0.

An integration by parts with respect to t and (2.5) gives

�
∫ 1

0
�ν(t)

[∫ 1

0

hδ(t zv)

t zv
t1/ν−1v1/μ−1dv−t1/ν−1

∫ 1

0

1 − δ(1 + st)

(1−δ)(1+st)2
s1/μ−1ds

]
dt

≥ 0.

Again writing w = vt and η = st reduces the above inequality to

�
∫ 1

0
�ν(t)t

1/ν−1/μ−1
[∫ t

0

hδ(wz)

wz
w1/μ−1dw −

∫ t

0

1 − δ(1+η)

(1−δ)(1 + η)2
η1/μ−1dη

]
dt

≥ 0,

which after integration by parts with respect to t yields

�
∫ 1

0
�μ,ν(t)t

1/μ−1
(
h(t z)

t z
− 1 − δ(1 + t)

(1 − δ)(1 + t)2

)
dt

≥ 0.

Thus F ∈ S∗(δ) if and only if L�μ,ν (hδ) ≥ 0.

Finally, to prove the sharpness, let f ∈ Wβ(α, γ ) be of the form for which

(1 − α + 2γ )
f (z)

z
+ (α − 2γ ) f ′(z) + γ z f ′′(z) = β + (1 − β)

1 + z

1 − z
.

Using a series expansion we obtain that

f (z) = z + 2(1 − β)

∞∑
n=1

1

(nν + 1)(nμ + 1)
zn+1.

Thus

F(z) = Vλ( f )(z) =
∫ 1

0
λ(t)

f (t z)

t
dt = z + 2(1 − β)

∞∑
n=1

τn

(nν + 1)(nμ + 1)
zn+1,

where τn = ∫ 1
0 λ(t)tndt . From (2.6), it is a simple exercise to write g(t) in a series

expansion as

g(t) = 1 + 2

1 − δ

∞∑
n=1

(−1)n(n + 1 − δ)

(nν + 1)(nμ + 1)
tn . (3.10)
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Now, by (3.1) and (3.10), we have

β

1 − β
= −

∫ 1

0
λ(t)g(t)dt

= −
∫ 1

0
λ(t)

[
1 + 2

1 − δ

∞∑
n=1

(−1)n(n + 1 − δ)

(nν + 1)(nμ + 1)
tn

]
dt

= −1 − 2

1 − δ

∞∑
n=1

(−1)n(n + 1 − δ)

(nν + 1)(nμ + 1)

∫ 1

0
λ(t)tndt.

Therefore
1

1 − β
= − 2

1 − δ

∞∑
n=1

(−1)n(n + 1 − δ)τn

(nν + 1)(nμ + 1)
. (3.11)

Finally, we see that

F ′(z) = 1 + 2(1 − β)

∞∑
n=1

(n + 1)τn
(nν + 1)(nμ + 1)

zn .

For z = −1, we have

F ′(−1) = 1 + 2(1 − β)

∞∑
n=1

(−1)n(n + 1)τn
(nν + 1)(nμ + 1)

= 1 + 2(1 − β)

∞∑
n=1

(−1)n(n + 1 − δ)τn

(nν + 1)(nμ + 1)
+ 2(1 − β)

∞∑
n=1

(−1)nδτn
(nν + 1)(nμ + 1)

= 1 − (1 − δ) + δ2(1 − β)

∞∑
n=1

(−1)nτn
(nν + 1)(nμ + 1)

= −δ

(
−1 + 2(1 − β)

∞∑
n=1

(−1)n+1τn

(nν + 1)(nμ + 1)

)

= −δF(−1).

Thus zF ′(z)/F(z) at z = −1 equals δ. This implies that the result is sharp for the
order of starlikeness.

4 Consequences of Theorem 3.1

Theorem 4.1 Let 0 ≤ δ ≤ 1/2. Assume that both �μ,ν(t) and �ν(t), as given
in Theorem 3.1, are integrable on [0,1] and positive on (0,1). Further assume that
μ ≥ 1, and

�μ,ν(t)

(1 + t)(1 − t)1+2δ is decreasing on (0, 1). (4.1)
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658 S. Verma et al.

If β satisfies (3.1), then we have Vλ(Wβ(α, γ )) ⊂ S∗(δ), where Vλ( f ) is defined by
(1.1).

Proof For μ ≥ 1, the function t1/μ−1 is decreasing on (0,1). Thus the condition (4.1)
along with [8, Theorem 2.3] gives

�
∫ 1

0
�μ,ν(t)t

1/μ−1
(
h(t z)

t z
− 1 − δ(1 + t)

(1 − δ)(1 + t)2

)
dt ≥ 0.

The result now, follows from Theorem 3.1. ��
Below, we obtain the conditions to ensure starlikeness of Vλ( f ). As defined in

Theorem 3.1, for γ > 0,

�μ,ν(t) =
∫ 1

t
�ν(x)x

1/ν−1−1/μdx, and �ν(t) =
∫ 1

t

λ(x)

x1/ν
dx .

In order to apply Theorem 4.1, we have to prove that the function

p(t) = �μ,ν(t)

(1 + t)(1 − t)1+2δ

is decreasing in (0,1). Since p(t) > 0 and

p′(t)
p(t)

= − �ν(t)

t1−1/μ−1/ν�μ,ν(t)
+ 2(t + δ(1 + t))

1 − t2
,

or equivalently,

p′(t)
p(t)

= 2(t + δ(1 + t))

(1 − t2)�μ,ν(t)

{
�μ,ν(t) − (1 − t2)�ν(t)t1/ν−1−1/μ

2(t + δ(1 + t))

}
,

so it remains to show that q(t) is increasing over (0,1), where

q(t) := �μ,ν(t) − (1 − t2)�ν(t)t1/ν−1−1/μ

2(t + δ(1 + t))
.

Since q(1) = 0, this will imply that q(t) ≤ 0, and thus p(t) is decreasing on (0,1).
Now

q ′(t) = − t1/ν−1−1/μ(1 + t)

2(t + δ(1 + t))2

{
− λ(t)t−1/ν(1 − t)(t + δ(1 + t))

+�ν(t)

(
(1−t)

t
(1/ν−1−1/μ)(t+δ(1+t))−(1−t−δ(1 + t))(1 + 2δ)

)}
.

(4.2)
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So, q ′(t) ≥ 0 for t ∈ (0, 1) is equivalent to the inequality r(t) ≤ 0, where r(t) is
equal to

−λ(t)t−1/ν(1 − t)(t + δ(1 + t))

+�ν(t)

(
(1 − t)

t
(1/ν − 1 − 1/μ)(t + δ(1 + t)) − (1 − t − δ(1 + t))(1 + 2δ)

)
.

By using the idea similar to the one used to prove Theorem 3.1 in [3], we can write

r(t) = −A(t)X (t) + Y (t)

t

∫ 1

t
A(s)ds,

where,

A(t) = λ(t)t−1/ν,

X (t) = (1 − t)(t + δ(1 + t)),

Y (t) = X (t)(1/ν − 1 − 1/μ) + Z(t),

Z(t) = −t (1 − t − δ(1 + t))(1 + 2δ). (4.3)

Clearly, A(t) > 0 and X (t) > 0 for all t ∈ (0, 1).

Case (i). If Y (t) ≤ 0 on (0,1), then r(t) ≤ 0 on (0,1) and thus the result follows.

Case (ii).When Y (t) > 0. We may write

r(t) = Y (t)

t
B(t), where B(t) = −A(t)

t X (t)

Y (t)
+

∫ 1

t
A(s)ds, and B(1) = 0.

Thus, to prove that r(t) ≤ 0, it is enough to prove that B(t) is an increasing function
of t . Now

B ′(t) = −A(t)

[
A′(t)
A(t)

t X (t)

Y (t)
+

(
t X

Y

)′
(t) + 1

]

= −t−1/νλ(t)

[(
tλ′(t)
λ(t)

− 1

ν

)
X (t)

Y (t)
+

(
t X

Y

)′
(t) + 1

]
.

For Y (t) > 0, B ′(t) ≥ 0 is equivalent to

tλ′(t)
λ(t)

≤ 1

ν
−

[
1 +

(
t X

Y

)′
(t)

]
Y (t)

X (t)
. (4.4)

Now, following three possibilities arise:

(a). If Y (t) > 0 throughout the interval (0,1), then (4.4) implies that B ′(t) ≥ 0 on
(0,1). Thus, B(t) is increasing in (0,1) which implies that, B(t) ≤ B(1) = 0.
Therefore, r(t) ≤ 0 on (0,1).
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(b). If Y (t) > 0 on some interval (0, t0) and Y (t) ≤ 0 on [t0, 1) for some t0 ∈ (0, 1),
then (4.4) implies that B ′(t) ≥ 0 on (0, t0). Thus, B(t) is increasing in (0, t0)
which implies that, B(t) ≤ B(t0) for any t in (0, t0). Since B(t0) → −∞, this
implies that B(t) is negative. Therefore, r(t) ≤ 0 on (0, t0). In view of Case (i),
r(t) ≤ 0 whenever Y (t) ≤ 0. Thus, r(t) ≤ 0 on (0,1).

(c). If Y (t) ≤ 0 on some interval (0, t0] and Y (t) > 0 on (t0, 1) for some t0 ∈ (0, 1),
then (4.4) implies that B ′(t) ≥ 0 on (t0, 1). Thus, B(t) is increasing in (t0, 1)
which implies that, B(t) ≤ B(1) = 0 for any t in (t0, 1). Therefore, r(t) ≤ 0
on (t0, 1). In view of Case (i), r(t) ≤ 0 whenever Y (t) ≤ 0 which implies that,
r(t) ≤ 0 on (0,1).

Subcase (i). For δ = 0, X (t) and Y (t) reduces to the simple form

X (t) = t (1 − t) and Y (t) = t (1 − t)

(
1

ν
− 2 − 1

μ

)
.

Clearly Y (t) ≤ 0 on (0,1) if
1

ν
−2− 1

μ
≤ 0 or simply ν ≥ μ/(2μ + 1) and so r(t) ≤ 0

in this case. On the other hand, if 0 < ν < μ/(2μ + 1) on (0,1), then Y (t) > 0 on
(0,1) and thus (4.4) gives that

tλ′(t)
λ(t)

≤ 1 + 1

μ

on (0,1) and hence r(t) ≤ 0 throughout the interval (0,1).
In the case when γ = 0, we have μ = 0, ν = α > 0. Let

k(t) := �α(t)t1/α−1, where �α(t) =
∫ 1

t

λ(x)

x1/α
dx .

To apply Theorem 2.3 in [9] along with Theorem 3.1, the function P(t) =
k(t)

(1+t)(1−t)1+2δ must be shown decreasing on the interval (0,1). Since, P(t) > 0 on

(0,1) and

P ′(t)
P(t)

= 2(t + δ(1 + t))

(1 − t2)k(t)

{
(1 − t2)k′(t)

2(t + δ(1 + t))
+ k(t)

}
,

thus, P(t) is decreasing in (0,1) provided

Q(t) := k(t) + (1 − t2)k′(t)
2(t + δ(1 + t))

≤ 0.

Since, Q(1) = 0, thus Q(t) ≤ 0 will certainly hold if Q is increasing on (0, 1).

Now Q′(t) = (1 + t)

2(t + δ(1 + t))2
{
(1 − t)(t + δ(1 + t))k′′(t) + [2δ(t + δ(1 + t))

−(1 − t)(1 + δ)]k′(t)
}
,
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where (1− t)(t + δ(1+ t))k′′(t)+[2δ(t + δ(1+ t))− (1− t)(1+ δ)]k′(t) is equal to

t1/α−2
{
t (1 − t)(t + δ(1 + t))�α

′′(t) +
[
2

(
1

α
− 1

)
(1 − t)(t + δ(1 + t))

+ 2tδ(t + δ(1 + t)) − t (1 − t)(1 + δ)

]

�α
′(t) +

[(
1

α
− 2

)
(1 − t)

t
(t + δ(1 + t)) + 2δ(t + δ(1 + t))

−(1 − t)(1 + δ)

] (
1

α
− 1

)
�α(t)

}
.

Thus, Q′(t) ≥ 0, for t ∈ (0, 1), is equivalent to the inequality

{
t (1 − t)(t + δ(1 + t))�α

′′(t) +
[
2

(
1

α
− 1

)
(1 − t)(t + δ(1 + t))

+ 2tδ(t + δ(1 + t)) − t (1 − t)(1 + δ)

]
�α

′(t)

+
[(

1

α
− 2

)
(1 − t)

t
(t + δ(1 + t)) + 2δ(t + δ(1 + t))

−(1 − t)(1 + δ)

] (
1

α
− 1

)
�α(t)

}
≥ 0.

The latter condition is equivalent to �(t) ≥ 0, where

�(t) ≡
{
−tλ′(t)(1 − t)(t + δ(1 + t)) + λ(t)

[(
2 − 1

α

)
(1 − t)(t + δ(1 + t))

−2tδ(t + δ(1 + t)) + t (1 − t)(1 + δ)

]

+
[(

1

α
− 2

)
(1 − t)(t + δ(1 + t)) + 2tδ(t + δ(1 + t))

−t (1 − t)(1 + δ)

] (
1

α
− 1

)
t1/α−1�α(t)

}
.

A simple computation along with (4.3) shows that � can be rewritten as

−t X (t)λ′(t) +
[(

3 − 1

α

)
X (t) − (X (t) + Z(t))

]
λ(t)

+
[(

1

α
− 3

)
X (t) + (X (t) + Z(t))

](
1

α
− 1

)
t1/α−1�α(t). (4.5)
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Since �α(t) ≥ 0 and setting

[(
1

α
− 3

)
X (t) + (X (t) + Z(t))

](
1

α
− 1

)
≥ 0,

� ≥ 0 follows from

−t X (t)λ′(t) +
[(

3 − 1

α

)
X (t) − (X (t) + Z(t))

]
λ(t) ≥ 0.

Since X (t) is non-negative on (0,1), thus the inequality � ≥ 0 follows from

tλ′(t)
λ(t)

≤
(
3 − 1

α

)
− X (t) + Z(t)

X (t)
and

[(
1

α
− 3

)
X (t)+(X (t)+Z(t))

] (
1

α
−1

)

≥ 0. (4.6)

For δ = 0, (4.6) reduces to

tλ′(t)
λ(t)

≤3 − 1

α
for

(
1

α
−1

) (
1

α
−3

)
≥ 0 or equivalently for α∈(0, 1/3] ∪ [1,∞).

These observations for δ = 0 lead to the following result by, Ali et al. [1, Theorem 4.2].

Corollary 4.1 Assume that both �μ,ν(t) and �ν(t), as defined in Theorem 3.1 are
integrable on [0,1], and positive on (0,1). Let λ(t) be a normalized non-negative
real-valued integrable function on [0,1]. Under the same conditions as stated in The-
orem 3.1, if λ satisfies

tλ′(t)
λ(t)

≤
{
1 + 1

μ
, μ ≥ 1(γ > 0);

3 − 1
α
, γ = 0, α ∈ (0, 1/3] ∪ [1,∞),

(4.7)

then F(z) = Vλ( f )(z) ∈ S∗. The conclusion does not hold for smaller values of β.

Subcase (ii). If 0 < δ ≤ 1/2 with γ > 0, then (4.4) can be rewritten as

(
1

ν
− tλ′(t)

λ(t)

)
X (t)Y (t) ≥ Y 2(t) + Y (t)(t X ′(t) + X (t)) − Y ′(t)t X (t).

Since Y (t) = X (t)(1/ν − 1 − 1/μ) + Z(t), so the above inequality is equivalent to

(
1

ν
− 1 − 1

μ

)
[X (t) + Z(t)]X (t) −

(
1 + 1

μ
− tλ′(t)

λ(t)

)
[(

1

ν
− 1 − 1

μ

)
X (t) + Z(t)

]

≤ Z ′(t)(t X (t)) − Z(t)(t X (t))′ − Z2(t). (4.8)
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Define D(t) = t (1 + δ) − (1 − δ). Rewriting the expressions for X (t) and Z(t) in
terms of D(t), we get

X (t) = (1 − t)(D(t) + 1) and Z(t) = (1 + 2δ)t D(t)

and so a simple computation gives that

Z ′(t)(t X (t)) − Z(t)(t X)′(t) − Z2(t) = 2δ(1 + 2δ)t2(1 − D2(t)). (4.9)

Since D2(t) ≤ 1 for t ∈ [0, 1] thus (4.9) is non-negative in (0,1). Since X (t)+Z(t) and
X (t) are non-negative on (0,1), so if (1/ν − 1 − 1/μ) ≤ 0 or simply ν ≥ μ/(μ + 1),
then the inequality (4.8) holds on the interval where Y (t) > 0 and hence, r(t) ≤ 0 on
(0,1).
While on the other hand, for 0 < δ ≤ 1/2 with γ = 0, from (4.6) we have

tλ′(t)
λ(t)

≤
(
3− 1

α

)
− X (t)+Z(t)

X (t)
and

[(
1

α
−3

)
X (t) + (X (t) + Z(t))

](
1

α
− 1

)

≥ 0.

Since X (t) and X (t) + Z(t) are non-negative on (0,1), thus equivalently,

tλ′(t)
λ(t)

≤ 3 − 1

α
, for α ∈ (0, 1/3].

Hence, for 0 < δ ≤ 1/2 with γ = 0, we have � ≥ 0 throughout the interval (0,1).
Thus, we see that above Corollary continues to hold for δ ∈ (0, 1/2] but with some

restrictions. More precisely, we have

Theorem 4.2 Let λ(t) be a non-negative real-valued integrable function on [0,1].
Assume that both �μ,ν(t) and �ν(t) are integrable on [0,1], and positive on (0,1).
Let λ satisfying the condition

tλ′(t)
λ(t)

≤
{
1 + 1

μ
, μ ≥ 1(γ > 0);

3 − 1
α
, γ = 0, α ∈ (0, 1/3]. (4.10)

Let f ∈ Wβ(α, γ ) with ν ≥ μ/(μ + 1), and β < 1 with

β

1 − β
= −

∫ 1

0
λ(t)g(t)dt, (4.11)

where g(t) is defined by (2.6) with δ ∈ (0, 1/2].Then F(z) = Vλ( f )(z) ∈ S∗(δ). The
conclusion does not hold for smaller values of β.

Remark 4.1

1. For α = 1 + 2γ with γ > 0 and μ = 1, Theorem 4.2 yields Theorem 3.1 in [3]
with 0 < δ ≤ 1/2.

2. With δ = 0, our Corollary 4.1 coincides with the Theorem 4.2 in [1].
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5 Applications

In this section, we present a number of applications of Theorem 4.2 for various well-
known integral operators. Let (a)n denote the Pochhammer symbol, defined in terms
of the Gamma function, by

(a)n := �(a + n)

�(a)
=

{
1, n = 0,
a(a + 1)...(a + n − 1), n ∈ N.

Define the Gaussian hypergeometric function by

2F1(a, b; c; z) = F(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

zn, |z| < 1,

where a, b and c are complex numbers with c �= 0,−1,−2, . . .. Note that the series
2F1 converges absolutely for z ∈ E . Now let � be defined by �(1 − t) = 1 +∑∞

n=1 bn(1 − t)n , bn ≥ 0 for n ≥ 1, and

λ(t) = Ktb−1(1 − t)c−a−b�(1 − t), (5.1)

where K is a constant chosen such that
∫ 1
0 λ(t)dt = 1. The following result holds in

this instance.

Theorem 5.1 Let a, b, c, α > 0, ν ≥ μ/(μ + 1) and β < 1 satisfy

β

1 − β
= −K

∫ 1

0
tb−1(1 − t)c−a−b�(1 − t)g(t)dt,

where K is a constant such that K
∫ 1

0
tb−1(1 − t)c−a−b�(1 − t)dt = 1 and g is

given by (2.6). Then for δ ∈ [0, 1/2], we have Vλ(Wβ(α, γ )) ⊂ S∗(δ) provided the
following condition hold

c ≥ a + b and b ≤
{
2 + 1

μ
, γ > 0(μ ≥ 1);

4 − 1
α
, γ > 0, α ∈ (1/4, 1/3], (5.2)

where

Vλ( f )(z) = K
∫ 1

0
tb−1(1 − t)c−a−b�(1 − t)

f (t z)

t
dt.

The value of β is sharp.

Proof Using (5.1), we have

tλ′(t)
λ(t)

= (b − 1) − (c − a − b)t

1 − t
− t�′(1 − t)

�(1 − t)
.
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The condition (4.10) is satisfied when

(b − 1) − (c − a − b)t

1 − t
− t�′(1 − t)

�(1 − t)
≤

{
1 + 1

μ
, μ ≥ 1(γ > 0);

3 − 1
α
, γ = 0, α ∈ (0, 1/3].

Since �(1− t) = 1+ ∑∞
n=1 bn(1− t)n , bn ≥ 0 for n ≥ 1, so the functions �(1− t)

and �′(1− t) are non-negative in (0,1). Therefore, a simple computation of (b− 1)−
(c−a−b)t

1−t with c− a − b ≥ 0, implies that the condition (4.10) is satisfied whenever b
satisfies (5.2). Hence the result follows by applying Theorem 4.2. ��

Writing γ = 0, α > 0 in Theorem 5.1 leads to the following corollary:

Corollary 5.1 Let a, b, c, α > 0, and β < 1 satisfy

β

1 − β
= −K

∫ 1

0
tb−1(1 − t)c−a−b�(1 − t)gα(t)dt,

where K is a constant such that K
∫ 1

0
tb−1(1 − t)c−a−b�(1 − t)dt = 1 and gα is

given by (2.7). If f ∈ Wβ(α, 0) ≡ Pα(β), then the function

Vλ( f )(z) = K
∫ 1

0
tb−1(1 − t)c−a−b�(1 − t)

f (t z)

t
dt

belongs to S∗(δ) with δ ∈ (0, 1/2] whenever a, b, c are related by c ≥ a + b and
b ≤ 4 − 1

α
, α ∈ (1/4, 1/3], for all t ∈ (0, 1). The value of β is sharp.

Writingα = 1+2γ , γ > 0 andμ = 1 in Theorem5.1 gives the following corollary,
which is an improvement of the Theorem 4.3 in [3]:

Corollary 5.2 Let a, b, c > 0, γ ≥ 1/2 and β < 1 satisfy

β

1 − β
= −K

∫ 1

0
tb−1(1 − t)c−a−b�(1 − t)gγ (t)dt,

where K is constant such that K
∫ 1

0
tb−1(1− t)c−a−b�(1− t)dt = 1 and gγ is given

by (2.7). If f ∈ Wβ(1 + 2γ, γ ), then the function

Vλ( f )(z) = K
∫ 1

0
tb−1(1 − t)c−a−b�(1 − t)

f (t z)

t
dt

belongs to S∗(δ) with δ ∈ (0, 1/2] whenever a, b, c are related by c ≥ a + b and
0 < b ≤ 3, for all t ∈ (0, 1) and γ > 1/2. The value of β is sharp.

The following special case of Theorem 5.1 corresponds to Bernardi operator, which
we state as a theorem.
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Theorem 5.2 Let c > −1, ν ≥ μ/(μ + 1) and β < 1 satisfy

β

1 − β
= −(c + 1)

∫ 1

0
tcg(t)dt,

where g in given by (2.6). If f ∈ Wβ(α, γ ), then the Bernardi Transform

Vλ( f )(z) = (1 + c)
∫ 1

0
tc−1 f (t z)dt

belongs to S∗(δ) with δ ∈ (0, 1/2] if

c ≤
{
1 + 1

μ
, μ ≥ 1(γ > 0);

3 − 1
α
, γ = 0, α ∈ (1/4, 1/3].

The value of β is sharp.

Taking γ = 0, α > 0 Theorem 5.2 reduces to the following corollary:

Corollary 5.3 Let −1 < c ≤ 3 − 1/α, α ∈ (1/4, 1/3] and β < 1 satisfy

β

1 − β
= −(c + 1)

∫ 1

0
tcgα(t)dt,

where gα is given by (2.7). If f ∈ Wβ(α, 0) ≡ Pα(β), then the function

Vλ( f )(z) = (1 + c)
∫ 1

0
tc−1 f (t z)dt

belongs to S∗(δ) with δ ∈ (0, 1/2]. The value of β is sharp.

Remark 5.1 For α = 1 + 2γ , γ > 0 and μ = 1 in Theorem 5.2 yields Corollary 4.1
in [3].

To prove the next theorem, we define

λ(t) =
{

(a + 1)(b + 1) t
a(1−tb−a)

b−a , b �= a;
(a + 1)2ta log(1/t), b = a,

(5.3)

where b > −1 and a > −1.

Theorem 5.3 Let b > −1, a > −1, ν ≥ μ/(μ + 1) and α > 0. Let β < 1 satisfy

β

1 − β
= −

∫ 1

0
λ(t)g(t)dt,
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where g is given by (2.6) and λ(t) is defined by (5.3). If f ∈ Wβ(α, γ ), then the
convolution operator

G f (a, b; z) =
{

(a+1)(b+1)
b−a

∫ 1
0 ta−1(1 − tb−a) f (t z)dt, b �= a;

(a + 1)2
∫ 1
0 ta−1 log(1/t) f (t z)dt, b = a.

belongs to S∗(δ) with δ ∈ (0, 1/2] if

a ≤
{
1 + 1

μ
, μ ≥ 1(γ > 0);

3 − 1
α
, γ = 0, α ∈ (1/4, 1/3]. (5.4)

The value of β is sharp.

Proof Weomitted the proof as it follows on the same lines as discussed in Theorem 5.3
[1].

Remark 5.2

1. For α = 1 + 2γ , γ > 0 and μ = 1 in Theorem 5.3 yields Theorem 4.1 in [3].
2. For γ = 0, Theorem 5.3 gives a result similar to Theorem 2.1 [2].

Now, we define

λ(t) = (1 + a)p

�(p)
ta (log(1/t))p−1 , a > −1, p ≥ 0.

In this case, Vλ reduces to the Komatu operator

Vλ( f )(z) = (1 + a)p

�(p)

∫ 1

0

(
log

(
1

t

))p−1

ta−1 f (t z)dt, a > −1, p ≥ 0.

For p = 1 Komatu operator gives the Bernardi integral operator. For this λ, the
following result holds.

Theorem 5.4 Let −1 < a, α > 0, p ≥ 1, ν ≥ μ/(μ + 1) and β < 1 satisfy

β

1 − β
= − (1 + a)p

�(p)

∫ 1

0
ta (log(1/t))p−1 g(t)dt,

where g is given by (2.6). If f ∈ Wβ(α, γ ), then the function

�p(a; z) ∗ f (z) = (1 + a)p

�(p)

∫ 1

0

(
log

(
1

t

))p−1

ta−1 f (t z)dt

belongs to S∗(δ) with δ ∈ (0, 1/2] if

a ≤
{
1 + 1

μ
, μ ≥ 1(γ > 0);

3 − 1
α
, γ = 0, α ∈ (1/4, 1/3]. (5.5)
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The value of β is sharp.

Proof Since

tλ′(t)
λ(t)

= a − p − 1

log(1/t)
,

therefore, using the fact that log(1/t) > 0 for t ∈ (0, 1), and p ≥ 1, condition (4.10)
is satisfied whenever a satisfies (5.5).

Remark 5.3 Settingα = 1+2γ ,γ > 0 andμ = 1 inTheorem5.4,weget Theorem4.2
in [3].
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