1 Introduction

Consider a conductor in a domain \({\varOmega }\subset \mathbb {R}^{n}\) with conductivity γ(x). When a voltage potential \(f\in {H^{\frac {1}{2}}}(\partial {\varOmega } )\) is applied at the boundary Ω, the induced potential u in Ω is the unique weak solution in H1(Ω) of

$$ \begin{cases} \nabla \cdot (\gamma \nabla u) = 0 & \text{ in }{\varOmega},\\ u = f & \text{ on }\partial {\varOmega}. \end{cases}$$

The Dirichlet-to-Neumann map is given by \({\varLambda }_{\gamma }(f)= \gamma {\partial _{\nu } }u|_{\partial {\varOmega }}\in {H^{- \frac {1}{2}}}(\partial {\varOmega } )\). Here, ν denotes the exterior unit normal to Ω. The problem studied by Calderón in [8] is to determine the conductivity γ from Λγ.

For n ≥ 3 and γC2, that Λγ uniquely determines γ was proved by Sylvester and Uhlmann in [16]. Recently, based on the breakthrough work by Haberman and Tataru [13], Caro and Rogers [9] proved uniqueness for Lipschitz conductivities. There is also a related work by Haberman [12].

In two dimensions, and C2 conductivities, the uniqueness was proved by Nachman [15]. Later, Astala and Päivärinta [4] proved uniqueness for bounded measurable conductivities.

After the uniqueness has been established, it is natural to study the stability of the reconstruction, i.e., we would like to estimate γ1γ2 in certain norm by

$$||{\varLambda}_{1}-{\varLambda}_{2}||_{\star}=\sup\limits_{f\in H^{\frac{1}{2}}(\partial{\varOmega})\atop f\not=0}\frac{||({\varLambda}_{1}-{\varLambda}_{2})f||_{H^{-\frac{1}{2}}(\partial{\varOmega})}}{||f||_{H^{\frac{1}{2}}(\partial {\varOmega})}}.$$

In [1], Alessandrini proved that the following log-stability estimate holds:

$$||\gamma_{1}-\gamma_{2}||_{L^{\infty}({\varOmega})}\le C\big(\log(1+||{\varLambda}_{1}-{\varLambda}_{2}||_{\star}^{-1})\big)^{-\sigma},$$

where C,σ are positive constants and γjHs+ 2(Ω),s > n/2. Later, Mandache [14] showed that such estimate is optimal.

To improve the stability estimate, Alessandrini and Vessella [3] considered special classes of piecewise constant conductivities, for n ≥ 3. The Lipschitz stability obtained therein has been generalized to other classes of conductivities in [2, 7] and [11].

The analog of the result of [3] was proven for the two-dimensional case in [5]. Subsequent generalizations of this result were obtained in [6] and [10].

In this paper, we prove Lipschitz stability estimate for two special cases of domains with circular symmetry. In the first case, we consider \({\varOmega }=B(0,1)\subset \mathbb {R}^{2}\) with conductivities of the form

$$ {\gamma_{\alpha} (x)=}\begin{cases} \alpha_{1}+\alpha_{2}(a-r)& \text{ if } 0 \le r<a, \\ \alpha_{0} &\text{ if } a\le r <1, \end{cases}$$

where r = |x| and ε0α0,α1M, 0 ≤ α2N. We denote this set of conductivities by μ(a,ε0,M,N). In the second case, we consider \({\varOmega }=B(0,1)\times (0,+\infty )\subset \mathbb {R}^{3}\) with conductivities of the form

$$ {\gamma_{\alpha} (z)=}\begin{cases} 1+{\alpha_{1}} & \text{ if }h \le z < \infty,\\ 1+ {\alpha_{2}} &\text{ if } 0 \le z < h , \end{cases}$$

where \({\alpha _{j}} \in \left [ {0,M} \right ],j = 1,2,M > 0,h>0\). We denote this set of conductivities by μ(h,M). We give a formula for the Dirichlet-to-Neumann map in each case, together with a formula to recover the conductivity from the Dirichlet-to-Neumann map. As a consequence, we show that the map Λγγ is Lipschitz. More precisely, our main results are as follows.

Theorem 1.1

Let Ω = B(0,1) and a ∈ (0,1),ε0,M > 0,N ≥ 0. There exists a positive constant C = C(a,ε0,M,N) such that

$${\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_ \star } \ge C\left( {\left| {{\alpha_{0}} - {{\upbeta}_{0}}} \right| + \left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right| + \left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|} \right), \forall {\gamma_{\alpha} },{\gamma_{\upbeta} } \in \mu (a,{\varepsilon_{0}},M,N).$$

Theorem 1.2

Let \({\varOmega }=B(0, 1)\times (0, \infty )\) and \(h \in (0,\infty ), M>0\). There exists a positive constant C = C(h,M) such that

$$\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_{{H_{rad}^{\frac{1}{2}}(B)} \to {H_{rad}^{- \frac{1}{2}}(B)}} \ge C\left( {\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right| + \left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right|} \right),\forall \gamma_{\alpha} ,\gamma_{\upbeta}\in \mu(h,M).$$

2 Proof of Theorem 1.1

Consider the Dirichlet problem in the unit disc B = B(0,1) on the plane

$$ \begin{array}{@{}rcl@{}} \begin{cases} \nabla \cdot (\gamma_{\alpha} \nabla u) = 0 & \text{ in }B, \\ u = f &\text{ on }\partial B, \end{cases} \end{array} $$
(2.1)

where the conductivity γαμ(a,ε0,M,N). In the polar coordinate, if \(u(x)={\sum }_{n\in \mathbb {Z}} {u_{n}(r)e^{in\theta }} \in H^{1}(B)\), then the equation in (2.1) is

$$ \begin{cases} (\gamma_{\alpha} u^{\prime}_{n})^{\prime}+ \frac{\gamma_{\alpha} }{r}u^{\prime}_{n} - \frac{{{n^{2}}\gamma_{\alpha} }}{r^{2}}{u_{n}} = 0, \forall n\in\mathbb Z, \\ \lim\limits_{r \to {a^ - }} {u_{n}}(r) = \lim\limits_{r \to {a^ + }} {u_{n}}(r), \\ \lim\limits_{r \to {a^ - }} \left( {\gamma {u^{\prime}_{n}}} \right)(r) = \lim\limits_{r \to {a^ + }} \left( {\gamma {u^{\prime}_{n}}} \right)(r). \end{cases} $$

Solving these systems, we obtain

$$u_{0}(r)=c_{0}, \quad 0\le r<1,$$

and for n≠ 0,

$$ \begin{array}{@{}rcl@{}} {u_{n}(r)=}\begin{cases} {b_{n}}{r^{\left| n \right|}} + {c_{n}}{r^{- \left| n \right|}}& \text{ if }a\le r <1, \\ \sum\limits_{k\ge |n|} {{a_{k}}{r^{k}}} &\text{ if }0< r <a, \end{cases} \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} {a_{|n| + m}} &=& \frac{{{\alpha_{2}}}}{{{\alpha_{1}} + a{\alpha_{2}}}}\frac{{(2m - 1)\left| n \right| + m(m - 1)}}{{2m\left| n \right| + {m^{2}}}}{a_{\left| n \right| + m - 1}}\\ &=&{\left( {\frac{{{\alpha_{2}}}}{{{\alpha_{1}} + a{\alpha_{2}}}}} \right)^{m}}\prod\limits_{j = 1}^{m} {\frac{{(2j - 1)\left| n \right| + j(j - 1)}}{{2j\left| n \right| + {j^{2}}}}} {a_{\left| n \right|}}, m=1,2,\cdots. \end{array} $$

Note that α2 ≥ 0,α1𝜖0 > 0, the power series \({\sum }_{k\ge |n|}a_{k}r^{k}\) is uniformly convergent on [0,a]. From that, we get

$$ \frac{{{c_{n}}}}{{{b_{n}}}} = \frac{{{a^{2\left| n \right|}}\left[ {\left| n \right|{u_{n}}({a^ - }) - a\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{u^{\prime}_{n}}({a^ - })} \right]}}{{\left| n \right|{u_{n}}({a^ - }) + a\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{u^{\prime}_{n}}({a^ - })}}.$$

The Dirichlet-to-Neumann map \({\varLambda }_{\alpha }:{H^{\frac {1}{2}}}(\partial B) \to {H^{- \frac {1}{2}}}(\partial B)\) is determined by

$$ {\varLambda}_{\alpha} f(\theta) =\sum\limits_{n \in \mathbb{Z}} {\widehat {{{\varLambda}_{{\alpha }}}f}(n){e^{in\theta }}}, $$

where \(f(\theta )={\sum }_{n\in \mathbb Z}\hat {f}(n)e^{in\theta }\in H^{\frac {1}{2}}(\partial B)\) and

$$ \begin{array}{@{}rcl@{}} \widehat {{{\varLambda}_{{\alpha }}}f}(n) &=& \lim\limits_{r \to {1^ - }} {\gamma_{\alpha} }(r){u^{\prime}_{n}}(r) = \alpha_{0} \left| n \right|\widehat f(n)\frac{{{b_{n}} - {c_{n}}}}{{{b_{n}} + {c_{n}}}}\\ &=& {\alpha_{0}}\left| n \right|\widehat f(n)\frac{{1 - {a^{2\left| n \right|}} + (1 + {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)}}{{1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)}},\forall n \in \mathbb{Z},\\ B_{n}(b)&=& 1 + \frac{b}{{2\left| n \right| + 1}}\times \frac{{1 + \sum\limits_{m = 2}^{\infty} {m{b^{m - 1}}{h_{m,n}}} }}{{1 + \frac{{\left| n \right|}}{{2\left| n \right| + 1}}b\left( {1 + \sum\limits_{m = 2}^{\infty} {{b^{m - 1}}{h_{m,n}}} } \right)}},\\ {h_{m,n}} &=& \prod\limits_{j = 2}^{m} {\frac{{(2j - 1)\left| n \right| + j(j - 1)}}{{2j\left| n \right| + {j^{2}}}}},\quad b = \frac{{a{\alpha_{2}}}}{{{\alpha_{1}} + a{\alpha_{2}}}}. \end{array} $$

Note that \(0\le b\le b_{0}=\frac {{aN}}{{{\varepsilon _{0}} + aN}}<1\). To obtain some properties of Bn(b), we need the following technical lemma.

Lemma 2.1

(i) \( {\sum }_{m = 2}^{\infty } {m{b^{m - 1}}{\prod }_{j = 2}^{m} {\frac {{2j - 1}}{{2j}}} }={(1 - b)^{- \frac {3}{2}}} - 1\). (ii) \( {\sum }_{m = 2}^{\infty } {{b^{m - 1}}{\prod }_{j = 2}^{m} {\frac {{2j - 1}}{{2j}}} }=\frac {2}{{1 - b + \sqrt {1 - b} }} - 1\). (iii) \(\lim _{n \to \infty } h_{mn}= {\prod }_{j=2}^m \frac {2j-1}{2j}\).

We have the following proposition

Proposition 2.2

Bn’s satisfy the following properties. (i) 1 ≤ Bn(b) ≤ d0, where \(d_{0}=1 + \frac {{{b_{0}}}}{{{{(1 - {b_{0}})}^{\frac {3}{2}}}}}\). (ii) \(\lim _{n \to \infty } {B_{n}}(b) = 1\). (iii) \(\lim _{n \to \infty } (2\left | n \right | + 1)({B_{n}}(b) - 1) = \frac {b}{{1 - b}}\). (iv) \(\lim _{n \to \infty } \frac {{\frac {{{\alpha _{1}}}}{{{\alpha _{0}}}}{B_{n}}(b) - 1}}{{\frac {{{\alpha _{1}}}}{{{\alpha _{0}}}}{B_{n + 1}}(b) - 1}} = 1, b\not =0\). (v) \(\frac {{1 - {b_{0}}}}{{2\left | n \right | + 1}} \le {B^{\prime }_{n}}(b) \le \frac {A}{{2\left | n \right | + 1}}\), where A = A(a,ε0,N) is a constant.

Proof

We rewrite Bn(b) as follows

$$ {B_{n}}(b) = 1 + \frac{b}{{2\left| n \right| + 1}}\times \frac{{1 + \sum\limits_{m = 2}^{\infty} {m{b^{m - 1}}{h_{m,n}}} }}{{1 + \frac{{\left| n \right|}}{{2\left| n \right| + 1}}b\left( {1 + \sum\limits_{m = 2}^{\infty} {{b^{m - 1}}{h_{m,n}}} } \right)}}. $$
(2.2)

(i) From (2.2), it is easy to see that Bn(b) ≥ 1. We now show that Bn(b) ≤ d0. Indeed, using (i) in Lemma 2.2, we have

$$ B_{n}(b)=\frac{{1 + \frac{{\left| n \right| + 1}}{{2\left| n \right| + 1}}b + \sum\limits_{m = 2}^{\infty} {\frac{{\left| n \right| + m}}{{2\left| n \right| + 1}}{b^{m}}{h_{m,n}}} }}{{1 + \frac{{\left| n \right|}}{{2\left| n \right| + 1}}b + \sum\limits_{m = 2}^{\infty} {\frac{{\left| n \right|}}{{2\left| n \right| + 1}}{b^{m}}{h_{m,n}}} }}\le 1 + b_{0} + \sum\limits_{m = 2}^{\infty} {m{{b^{m}_{0}}}}\prod\limits_{j = 2}^{m} {\frac{{2j - 1}}{{2j}}} = d_{0}. $$

(ii) From (2.2), it is not difficult to get \(\lim _{n \to \infty } {B_{n}}(b) = 1\).

(iii) We have

$$ \left( {2\left| n \right| + 1} \right)\left( {{B_{n}}(b) - 1} \right) = \frac{{b\left( {1 + \sum\limits_{m = 2}^{\infty} {m{b^{m - 1}}{h_{m,n}}} } \right)}}{{1 + \frac{{\left| n \right|}}{{2\left| n \right| + 1}}b\left( {1 + \sum\limits_{m = 2}^{\infty} {{b^{m - 1}}{h_{m,n}}} } \right)}}. $$

Hence, from Lemma 2.1, we obtain

$$\lim\limits_{n \to \infty } \left( {2\left| n \right| + 1} \right)({B_{n}}(b) - 1) = \frac{{b{{(1 - b)}^{- \frac{3}{2}}}}}{{{{(1 - b)}^{- \frac{1}{2}}}}} = \frac{b}{{1 - b}}.$$

(iv) We consider two casesCase 1 α0α1. From (ii), we have

$$ \lim\limits_{n \to \infty } \frac{{\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b) - 1}}{{\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n + 1}}(b) - 1}} = \frac{{\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}} - 1}}{{\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}} - 1}}=1.$$

Case 2 α0 = α1. We need to prove \(\lim _{n \to \infty } \frac {{{B_{n}}(b) - 1}}{{{B_{n + 1}}\left (b \right ) - 1}} = 1\). From (iii), we get

$$ \lim\limits_{n \to \infty } \frac{{{B_{n}}(b) - 1}}{{{B_{n + 1}}(b) - 1}} =\lim\limits_{n \to \infty } \frac{{(2\left| n \right| + 1)\left( {{B_{n}}(b) - 1} \right)}}{{(2\left| n \right| + 3)\left( {{B_{n + 1}}(b) - 1} \right)}} = 1.$$

(v) We denote by Mn(b) and Nn(b) the numerator and denominator of \(B^{\prime }_{n}(b)\), respectively. Direct computation gives

$$ {M_{n}}(b) = \frac{1}{{2\left| n \right| + 1}} + \sum\limits_{m = 2}^{\infty} {\frac{{\left| n \right|{{(m - 1)}^{2}}}}{{{{(2\left| n \right| + 1)}^{2}}}}} {b^{m}}{h_{m,n}} + \sum\limits_{m = 2}^{\infty} {\frac{{{m^{2}}}}{{2\left| n \right| + 1}}} {b^{m - 1}}{h_{m,n}}+ {I_{n}}(b), $$

where

$$ \begin{array}{@{}rcl@{}} I_{n}(b)&=& \left( {\sum\limits_{l = 2}^{\infty} {\frac{{{l^{2}}{b^{l - 1}}}}{{2\left| n \right| + 1}}{h_{l,n}}} } \right)\left( {\sum\limits_{k = 2}^{\infty} {\frac{{\left| n \right|{b^{k}}}}{{2\left| n \right| + 1}}{h_{k,n}}} } \right) - \left( {\sum\limits_{l = 2}^{\infty} {\frac{{l\left| n \right|{b^{l - 1}}}}{{2\left| n \right| + 1}}{h_{l,n}}} } \right)\\ &&\times\left( {\sum\limits_{k = 2}^{\infty} {\frac{{k{b^{k}}}}{{2\left| n \right| + 1}}{h_{k,n}}} } \right). \end{array} $$

The coefficient of bm in In(b) is

$$ \begin{array}{@{}rcl@{}} \sum\limits_{k + l -1= m} {\left( {\frac{{{l^{2}}\left| n \right|}}{{{{\left( {2\left| n \right| + 1} \right)}^{2}}}} - \frac{{l\left| n \right|k}}{{{{\left( {2\left| n \right| + 1} \right)}^{2}}}}} \right){h_{l,n}}{h_{k,n}}} & =& \sum\limits_{k + l-1 = m} {\frac{{l\left| n \right|(l - k)}}{{{{\left( {2\left| n \right| + 1} \right)}^{2}}}}{h_{l,n}}{h_{k,n}}}\\ &=&\frac{1}{2}\sum\limits_{k + l-1 = m} {\frac{{\left| n \right|{{(k - l)}^{2}}}}{{{{\left( {2\left| n \right| + 1} \right)}^{2}}}}{h_{l,n}}{h_{k,n}}}. \end{array} $$

From this, we obtain

$$ {M_{n}}(b) \ge \frac{1}{{2\left| n \right| + 1}}. $$
(2.3)

Moreover, we have

$$ \begin{array}{@{}rcl@{}} \sum\limits_{m = 2}^{\infty} {\frac{{\left| n \right|{{(m - 1)}^{2}}}}{{{{(2\left| n \right| + 1)}^{2}}}}} {b^{m}}{h_{m,n}} &\le& \frac{1}{{2(2\left| n \right| + 1)}}\sum\limits_{m = 0}^{\infty} {{m^{2}}{b^{m}}} \\ &=& \frac{1}{{2(2\left| n \right| + 1)}} \frac{{b(b + 1)}}{{{{(1 - b)}^{3}}}} \le \frac{1}{{2(2\left| n \right| + 1)}} \frac{{{b_{0}}({b_{0}} + 1)}}{{{{(1 - {b_{0}})}^{3}}}}. \end{array} $$
(2.4)

Next, we have

$$ \begin{array}{@{}rcl@{}} \sum\limits_{m = 2}^{\infty} {\frac{{{m^{2}}}}{{2\left| n \right| + 1}}} {b^{m - 1}}{h_{m,n}} \le \frac{1}{2({2\left| n \right| + 1})}\sum\limits_{m = 0}^{\infty} {{m^{2}}} {b^{m - 1}}\le \frac{1}{{2(2\left| n \right| + 1)}} \frac{{{b_{0}} + 1}}{{{{(1 - {b_{0}})}^{3}}}}. \end{array} $$
(2.5)

We see that

$$\frac{1}{2}\sum\limits_{k + l - 1 = m} {\frac{{\left| n \right|{{(k - l)}^{2}}}}{{{{\left( {2\left| n \right| + 1} \right)}^{2}}}}{h_{l,n}}{h_{k,n}}} \le \frac{1}{{4(2\left| n \right| + 1)}}{(m + 1)^{3}},m = 3,4, {\ldots} $$

It follows that

$$ \begin{array}{@{}rcl@{}} {I_{n}}(b) &\le& \frac{1}{{4(2\left| n \right| + 1)}}\sum\limits_{m = 3}^{\infty} {{{(m + 1)}^{3}}} {b^{m}} \le \frac{1}{{4(2\left| n \right| + 1)}}\sum\limits_{m = 0}^{\infty} {{{(m + 1)}^{3}}} {b^{m}}\\ & \le &\frac{{{b_{0}}}}{{4\left( {2\left| n \right| + 1} \right)}}\left( {\frac{{2{b_{0}} + 1}}{{{{(1 - {b_{0}})}^{3}}}} + \frac{{3{b_{0}}({b_{0}} + 1)}}{{{{(1\! -\! {b_{0}})}^{4}}}}} \right). \end{array} $$
(2.6)

From (2.3), (2.4), (2.5), and (2.6), we deduce that

$$ \frac{1}{{2\left| n \right| + 1}} \le {M_{n}}(b) \le \frac{A}{{2\left| n \right| + 1}},\quad A\text{ is a constant depending on }a, \varepsilon_{0}, N. $$
(2.7)

On the other hand, we have

$$ 1 \le {N_{n}}(b) = {\left( {1 + \frac{{\left| n \right|}}{{2\left| n \right| + 1}}b + \sum\limits_{m = 2}^{\infty} {\frac{{\left| n \right|}}{{2\left| n \right| + 1}}{b^{m}}{h_{m,n}}} } \right)^{2}} \le \frac{1}{{1 - b}} \le \frac{1}{{1 - {b_{0}}}}. $$
(2.8)

From (2.7) and (2.8), we have

$$ \frac{{1 - {b_{0}}}}{{2\left| n \right| + 1}} \le {B^{\prime}_{n}}(b) \le \frac{A}{{2\left| n \right| + 1}},$$

where A is a constant depending on a,ε0,N. □

We now give an explicit formula to reconstruct the parameters a and α from the Dirichlet-to-Neumann map. We define

$${C_{n}}{ = \frac{{\varLambda}_{\alpha} ({e^{in\theta }})}{{\left| n \right|{e^{in\theta }}}} = \alpha_{0}}\frac{{1 - {a^{2\left| n \right|}} + (1 + {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)}}{1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)}.$$

If there is a strictly increasing sequence of positive integers \(\{n_{k}\}_{k=1}^{\infty }\) such that \(C_{n_{k}}=\alpha _{0}\), it is easy to obtain α0 = α1,α2 = 0; i.e., the conductor is homogeneous. Otherwise, we have the following proposition.

Proposition 2.3

The following formulas hold: (i) \(\alpha _{0}=\lim _{n \to \infty } {C_{n}}\). (ii) \(a^{-2}=\lim _{n \to \infty } \frac {{{C_{n}} - {\alpha _{0}}}}{{{C_{n + 1}} - {\alpha _{0}}}}\). (iii) α1 = α0D, where

$$D = \frac{{\lim\limits_{n \to \infty } \frac{{{C_{n}} - {\alpha_{0}}}}{{2{a^{2\left| n \right|}}{\alpha_{0}}}} + 1}}{{1 - \lim\limits_{n \to \infty } \frac{{{C_{n}} - {\alpha_{0}}}}{{2{a^{2\left| n \right|}}{\alpha_{0}}}}}}.$$

(iv) aα2 = α1E, where

$$ E = \lim\limits_{n \to \infty } (2\left| n \right| + 1)\left[ {\frac{{{\alpha_{0}}\left( {2{\alpha_{0}}{a^{2\left| n \right|}} + ({C_{n}} - {\alpha_{0}})(1 + {a^{2\left| n \right|}})} \right)}}{{{\alpha_{1}}\left( {2{\alpha_{0}}{a^{2\left| n \right|}} - ({C_{n}} - {\alpha_{0}})(1 - {a^{2\left| n \right|}})} \right)}} - 1} \right]. $$

Proof

(i) From (ii) in Proposition 2.2

$$ \lim\limits_{n \to \infty } {C_{n}} = {\alpha_{0}}. $$

(ii) Next, we have

$$ \begin{array}{@{}rcl@{}} &&\lim\limits_{n \to \infty } \frac{{{C_{n}} - {\alpha_{0}}}}{{{C_{n + 1}} - {\alpha_{0}}}} \\ &=& \lim\limits_{n \to \infty }\frac{{2{a^{2\left| n \right|}}\left( {\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b) - 1} \right)}}{{2{a^{2\left| n \right| + 2}}\left( {\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n + 1}}(b) - 1} \right)}}\frac{{1 + {a^{2\left| n \right| + 2}} + (1 - {a^{2\left| n \right| + 2}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n + 1}}(b)}}{{1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)}}. \end{array} $$

Using (ii) and (iv) in Proposition 2.2, we obtain

$$ \lim\limits_{n \to \infty } \frac{{{C_{n}} - {\alpha_{0}}}}{{{C_{n + 1}} - {\alpha_{0}}}} = \frac{1}{{{a^{2}}}}.$$

(iii) Using (ii) in Proposition 2.2, we have

$$ \lim\limits_{n \to \infty } \frac{{{C_{n}} - {\alpha_{0}}}}{{2{a^{2\left| n \right|}}{\alpha_{0}}}} = \lim\limits_{n \to \infty }\frac{ {\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b) - 1} }{{1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)}}=\frac{{\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}} - 1}}{{\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}} + 1}}. $$

This leads to

$${\alpha_{1}} = \frac{{{\alpha_{0}}\left( {\lim\limits_{n \to \infty } \frac{{{C_{n}} - {\alpha_{0}}}}{{2{a^{2\left| n \right|}}{\alpha_{0}}}} + 1} \right)}}{{1 - \lim\limits_{n \to \infty } \frac{{{C_{n}} - {\alpha_{0}}}}{{2{a^{2\left| n \right|}}{\alpha_{0}}}}}}.$$

(iv) We now calculate α2. From

$${C_{n}} - {\alpha_{0}} = {\alpha_{0}}\frac{{2{a^{2\left| n \right|}}\left( {\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b) - 1} \right)}}{{1 + {a^{2}{\left| n \right|}} + (1 - {a^{2}{\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)}}$$

we calculate

$${B_{n}}(b) = \frac{{{\alpha_{0}}\left( {2{\alpha_{0}}{a^{2\left| n \right|}} + ({C_{n}} - {\alpha_{0}})(1 + {a^{2\left| n \right|}})} \right)}}{{{\alpha_{1}}\left( {2{\alpha_{0}}{a^{2\left| n \right|}} - ({C_{n}} - {\alpha_{0}})(1 - {a^{2\left| n \right|}})} \right)}}.$$

From that and (iii) in Proposition 2.2, we get

$$ \begin{array}{@{}rcl@{}} E &=& \lim\limits_{n \to \infty } (2\left| n \right| + 1)\left[ {\frac{{{\alpha_{0}}\left( {2{\alpha_{0}}{a^{2\left| n \right|}} + ({C_{n}} - {\alpha_{0}})(1 + {a^{2\left| n \right|}})} \right)}}{{{\alpha_{1}}\left( {2{\alpha_{0}}{a^{2\left| n \right|}} - ({C_{n}} - {\alpha_{0}})(1 - {a^{2\left| n \right|}})} \right)}} - 1} \right] \\ &=& \lim\limits_{n \to \infty } (2\left| n \right| + 1)({B_{n}}(b) - 1) = \frac{b}{{1 - b}}. \end{array} $$

From \(b={\frac {{a{\alpha _{2}}}}{{{\alpha _{1}} + a{\alpha _{2}}}}}\), we obtain aα2 = α1E. □

We now prove Theorem 1.1.

Proof Proof of Theorem 1.1

For \( \gamma _{\alpha }, \gamma _{\upbeta } \in \mu (a,\varepsilon _{0},M,N), f\in H^{\frac {1}{2}}(\partial B)\), we have

$$\left\| {\left( {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right)f} \right\|_{{H^{- \frac{1}{2}}}(\partial B)}^{2} = \sum\limits_{n \in \mathbb{Z}} {\frac{{{n^{2}}}}{{{{(1 + {n^{2}})}^{\frac{1}{2}}}}}{{({A_{n}} - {B_{n}})}^{2}}{{\left| {\widehat f(n)} \right|}^{2}}} ,$$

where b = aα2/(α1 + aα2),c = aβ2/(β1 + aβ2), and

$${A_{n}} = \alpha_{0}\frac{{1 - {a^{2\left| n \right|}} + (1 + {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)}}{{1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)}},{B_{n}} = {\upbeta}_{0}\frac{{1 - {a^{2\left| n \right|}} + (1 + {a^{2\left| n \right|}})\frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(c)}}{{1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(c)}}.$$

By direct computation, we obtain

$$ \begin{array}{@{}rcl@{}} &&{A_{n}} -{B_{n}} \\ &= &\frac{{({\alpha_{0}} + {{\upbeta}_{0}})\left( {\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b) - \frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(c)} \right)2{a^{2\left| n \right|}}}}{{\left( {1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)} \right)\left( {1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(c)} \right)}}\\ &&+\frac{{({\alpha_{0}} - {{\upbeta}_{0}})\left[ {(1 - {a^{4\left| n \right|}})\left( {1 + \frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}\frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(b){B_{n}}(c)} \right) + (1 + {a^{4\left| n \right|}})\left( {\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b) + \frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(c)} \right)} \right]}}{{\left( {1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b)} \right)\left( {1 + {a^{2\left| n \right|}} + (1 - {a^{2\left| n \right|}})\frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(c)} \right)}}. \end{array} $$

We denote by Kn and Hn the numerator and denominator of AnBn, respectively. We have \({H_{n}} \le {({2 + \frac {M}{{{\varepsilon _{0}}}}{d_{0}}} )^{2}}\) and

$$ \begin{array}{@{}rcl@{}} {\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_{\star}} &=& \sup\limits_{{f \in {H^{\frac{1}{2}}}(\partial B)}\atop f \ne 0} \frac{{{{\left\| {\left( {{{\varLambda}_{{\alpha }}} - {{\varLambda}_{{\upbeta }}}} \right)f} \right\|}_{{H^{- \frac{1}{2}}}(\partial B)}}}}{{{{\left\| f \right\|}_{{H^{\frac{1}{2}}}(\partial B)}}}} \ge \sup\limits_{n\not=0} \frac{{\left| {{K_{n}}} \right|}}{{\left| {{2H_{n}}} \right|}} \ge \sup\limits_{n\not=0} \frac{{\left| {{K_{n}}} \right|}}{{{2\left( {2 + \frac{M}{{{\varepsilon_{0}}}}{d_{0}}} \right)^{2}}}},\\ \left| {{K_{n}}} \right| &\ge& \frac{{2{\varepsilon_{0}}}}{M}\left| {{\alpha_{0}} - {{\upbeta}_{0}}} \right| - \frac{{8{M^{2}}{d_{0}}}}{{{\varepsilon_{0}}}}{a^{2\left| n \right|}}. \end{array} $$

When α0≠β0, for n big enough, we obtain

$$\frac{{8{M^{2}}{d_{0}}}}{{{\varepsilon_{0}}}}{a^{2\left| n \right|}} \le \frac{{{\varepsilon_{0}}}}{M}\left| {{\alpha_{0}} - {{\upbeta}_{0}}} \right|.$$

Hence,

$$ {\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_ \star } \ge \frac{{{\varepsilon_{0}}}}{2M}{\left( {2 + \frac{M}{{{\varepsilon_{0}}}}{d_{0}}} \right)^{- 2}}\left| {{\alpha_{0}} - {{\upbeta}_{0}}} \right|. $$
(2.9)

For α0 = β0, we also have (2.9).

Next, we have

$$\left| {{K_{n}}} \right| \ge 4{\varepsilon_{0}}{a^{2\left| n \right|}}\left| {\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b) - \frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(c)} \right| - \left| {{\alpha_{0}} - {{\upbeta}_{0}}} \right|\left| {1 + \frac{{{M^{2}}}}{{{\varepsilon_{0}^{2}}}}{d_{0}} + 4\frac{M}{{{\varepsilon_{0}}}}} \right|.$$

From (2.9), we have

$$ {\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_{\star}} \ge {C_{1}}4{\varepsilon_{0}}{a^{2\left| n \right|}}\left| {\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b) - \frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(c)} \right|, $$
(2.10)

where C1 = C1(a,ε0,M) is a constant. We now consider

$$ \begin{array}{@{}rcl@{}} &&\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}{B_{n}}(b) - \frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}{B_{n}}(c)\\ & =& \frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}\left( {{B_{n}}(b) - {B_{n}}(c)} \right) + \left( {\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}} - \frac{{{{\upbeta}_{1}}}}{{{{\upbeta}_{0}}}}} \right){B_{n}}(c)\\ &=&\frac{{{\alpha_{1}}}}{{{\alpha_{0}}}}(b - c){B^{\prime}_{n}}(\xi ) +\frac{{{{\upbeta}_{0}}({\alpha_{1}} - {{\upbeta}_{1}}) + {{\upbeta}_{1}}({{\upbeta}_{0}} - {\alpha_{0}})}}{{{\alpha_{0}}{{\upbeta}_{0}}}}{B_{n}}(c) \quad(\text{for } \xi \in (b,c)) \\ &=& - \frac{{{{\upbeta}_{1}}{B_{n}}(c)}}{{{\alpha_{0}}{{\upbeta}_{0}}}}({\alpha_{0}} - {{\upbeta}_{0}}) + \left[ {\frac{{{B_{n}}(c)}}{{{\alpha_{0}}}} - \frac{{{\alpha_{1}}{{\upbeta}_{2}}a{B^{\prime}_{n}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}}} \right]({\alpha_{1}} - {{\upbeta}_{1}})\\ &&+\frac{{{\alpha_{1}}{{\upbeta}_{1}}a{B^{\prime}_{n}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}}({\alpha_{2}} - {{\upbeta}_{2}}). \end{array} $$

So from (2.9) and (2.10), we have

$$ {\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_{\star}} \ge {C_{2}}{a^{2\left| n \right|}}{D_{n}}, $$
(2.11)

where C2 = C2(a,ε0,M) and

$$ \begin{array}{@{}rcl@{}} {D_{n}} &=& \frac{1}{\alpha_{0}}\left| \left[ B_{n}(c) - \frac{{{\alpha_{1}}{{\upbeta}_{2}}a{B^{\prime}_{n}}(\xi )}}{{({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}} \right]({\alpha_{1}} - {{\upbeta}_{1}}) \right.\\ &&\left.+ \frac{{{\alpha_{1}}{{\upbeta}_{1}}a{B^{\prime}_{n}}(\xi )}}{{({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}}({\alpha_{2}} - {{\upbeta}_{2}}) \right|. \end{array} $$

Using (i) and (v) in Proposition 2.2, we get

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{M}\left( {1 - \frac{A}{{2\left| n \right| + 1}}} \right) \le \frac{{{B_{n}}(c)}}{{{\alpha_{0}}}} - \frac{{{\alpha_{1}}{{\upbeta}_{2}}a{B^{\prime}_{n}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}} \le \frac{{{d_{0}}}}{{{\varepsilon_{0}}}},\\ && 0\le \frac{{{\varepsilon_{0}^{2}}a(1 - {b_{0}})}}{{M{{({\varepsilon_{0}} + Na)}^{2}}\left( {2\left| n \right| + 1} \right)}} \le \frac{{{\alpha_{1}}{{\upbeta}_{1}}a{B^{\prime}_{n}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}} \le \frac{A}{{{\varepsilon_{0}}\left( {2\left| n \right| + 1} \right)}}. \end{array} $$

There exists an n0 = n0(a,ε0,N) such that for every nn0 then

$$0\le \frac{1}{{2M}} \le \frac{1}{M}\left( {1 - \frac{A}{{2\left| n \right| + 1}}} \right).$$

We now show that

$$ {\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_ \star } \ge C(a,{\varepsilon_{0}},M,N){ }\left( {\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right| + \left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|} \right). $$
(2.12)

We consider three cases.Case 1 (α1 −β1)(α2 −β2) ≥ 0. We have

$$ \begin{array}{@{}rcl@{}} {D_{{n_{0}}}}& \ge& \frac{1}{{2M}}\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right| + \frac{{{\varepsilon_{0}^{2}}a(1 - {b_{0}})}}{{M{{({\varepsilon_{0}} + Na)}^{2}}\left( {2\left| {{n_{0}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|\\ &\ge& \min \left\{ {\frac{1}{{2M}},\frac{{{\varepsilon_{0}^{2}}a(1 - {b_{0}})}}{{M{{({\varepsilon_{0}} + Na)}^{2}}\left( {2\left| {{n_{0}}} \right| + 1} \right)}}} \right\}\left( {\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right| + \left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|} \right). \end{array} $$
(2.13)

From (2.11) and (2.13), we obtain (2.12).Case 2 \({\left ({{\alpha _{1}} - {\upbeta }_{1} } \right )}\left ({{\alpha _{2}} - {{\upbeta }_{2}}} \right ) < 0\) and

$$ \begin{array}{@{}rcl@{}} {D_{{n_{0}}}} &=& \left[ {\frac{{{B_{{n_{0}}}}(c)}}{{{\alpha_{0}}}} - \frac{{{\alpha_{1}}{{\upbeta}_{2}}a{B^{\prime}_{n}}_{_{0}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}}} \right]\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right| \\ &&- \frac{{{\alpha_{1}}{{\upbeta}_{1}}a{B^{\prime}_{n}}_{_{0}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|. \end{array} $$

From that, we have

$$ \frac{d_{0}}{\varepsilon_{0}}\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right| - \frac{{{\varepsilon_{0}^{2}}a(1 - {b_{0}})}}{{M{{({\varepsilon_{0}} + Na)}^{2}}\left( {2\left| {{n_{0}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right| \ge {D_{{n_{0}}}} \ge 0. $$

Then there exists an n1 = n1(a,ε0,M,N) > n0 such that

$$ \frac{{\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right|}}{{4M}} \ge \frac{{d_{0}AM{{({\varepsilon_{0}} + Na)}^{2}}}}{{{\varepsilon_{0}^{2}}a(1 - {b_{0}})}}\frac{{\left( {2\left| {{n_{0}}} \right| + 1} \right)}}{{\left( {2\left| {{n_{1}}} \right| + 1} \right)}}\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right| \ge \frac{A}{{{\varepsilon_{0}}\left( {2\left| {{n_{1}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|.$$

We get

$$ {D_{{n_{1}}}} \ge \frac{{\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right|}}{{2M}} - \frac{A}{{{\varepsilon_{0}}\left( {2\left| {{n_{1}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right| \ge \frac{{\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right|}}{{4M}}>\frac{A}{{{\varepsilon_{0}}\left( {2\left| {{n_{1}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|. $$
(2.14)

From (2.11) and (2.14), we have (2.12)Case 3 \({\left ({{\alpha _{1}} - {\upbeta }_{1} } \right )}\left ({{\alpha _{2}} - {{\upbeta }_{2}}} \right ) < 0\) and

$$ \begin{array}{@{}rcl@{}} {D_{{n_{0}}}} = \frac{{{\alpha_{1}}{{\upbeta}_{1}}a{B^{\prime}_{{n_{0}}}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right| - \left[ {\frac{{{B_{{n_{0}}}}(c)}}{{{\alpha_{0}}}} - \frac{{{\alpha_{1}}{{\upbeta}_{2}}a{B^{\prime}_{{n_{0}}}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}}} \right]\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right|. \end{array} $$

There exists an n2 = n2(a,ε0,M,N) > n0 such that

$$ \frac{{{\varepsilon_{0}^{2}}a(1 - {b_{0}})}}{{2M{{({\varepsilon_{0}} + Na)}^{2}}\left( {2\left| {{n_{0}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right| \ge \frac{{2d_{0}MA}}{{{\varepsilon_{0}^{2}}(2\left| {{n_{2}}} \right| + 1)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|. $$
(2.15)

If

$$ \begin{array}{@{}rcl@{}} {D_{{n_{2}}}} = \left[ {\frac{{{B_{{n_{2}}}}(c)}}{{{\alpha_{0}}}} - \frac{{{\alpha_{1}}{{\upbeta}_{2}}aB^{\prime}_{n_{2}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}}} \right]\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right| - \frac{{{\alpha_{1}}{{\upbeta}_{1}}B^{\prime}_{n_{2}}(\xi )}}{{{\alpha_{0}}({\alpha_{1}} + {\alpha_{2}}a)({{\upbeta}_{1}} + {{\upbeta}_{2}}a)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|,\end{array} $$

we return to Case 2. Otherwise,

$$ \frac{A}{{{\varepsilon_{0}}\left( {2\left| {{n_{2}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right| - \frac{1}{{2M}}\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right| \ge {D_{{n_{2}}}} \ge 0. $$
(2.16)

From (2.15) and (2.16), we obtain

$$\frac{{{\varepsilon_{0}^{2}}a(1 - {b_{0}})}}{{2M{{({\varepsilon_{0}} + Na)}^{2}}\left( {2\left| {{n_{0}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right| \ge \frac{d_{0}}{{{\varepsilon_{0}}}}\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right|.$$

Moreover, we have

$$ \begin{array}{@{}rcl@{}} {D_{{n_{0}}}}& \ge& \frac{{{\varepsilon_{0}^{2}}a(1 - {b_{0}})}}{{M{{({\varepsilon_{0}} + Na)}^{2}}\left( {2\left| {{n_{0}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right| - \frac{d_{0}}{{{\varepsilon_{0}}}}\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right|\\ & \ge& \frac{{{\varepsilon_{0}^{2}}a(1 - {b_{0}})}}{{2M{{({\varepsilon_{0}} + Na)}^{2}}\left( {2\left| {{n_{0}}} \right| + 1} \right)}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|\ge \frac{d_{0}}{{{\varepsilon_{0}}}}\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right|. \end{array} $$
(2.17)

From (2.11) and (2.17), we have (2.12). From (2.9) and (2.12), the conclusion follows. □

3 Proof of Theorem 1.2

Consider the Dirichlet problem

$$ \begin{array}{@{}rcl@{}} \begin{cases} \nabla \cdot (\gamma_{\alpha} \nabla u) = 0 & \text{ in }B\times (0,+\infty), \\ u = 0 &\text{ on }\partial B \times (0,+\infty),\\ u = f &\text{ on } B\times \{0\}, \end{cases} \end{array} $$
(3.1)

where the conductivity γαμ(h,M).

Definition 3.1

(i) We denote

$$ \begin{array}{@{}rcl@{}} &&L_{rad}^{2}(B) = \left\{ u \in {L^{2}}(B),u(x, y)=f\left( \sqrt{x^{2}+y^{2}}\right) \right\}.\\ &&L_{rad}^{2}(B\times (0,+\infty)) = \left\{ {u \in {L^{2}}(B\times (0,+\infty))}, u(x, y, z)=f\left( \sqrt{x^{2}+y^{2}}, z\right) \right\}. \end{array} $$

(ii) Let

$$H_{rad}^{\frac{1}{2}}(B) = \left\{ {f \in L_{rad}^{2}(B),\sum\limits_{n = 1}^{\infty} {{{(1 + {{\left| {{\lambda_{n}}} \right|}^{2}})}^{\frac{1}{2}}}{{\left| {\widehat f(n)} \right|}^{2}}{J_{1}^{2}}(} {\lambda_{n}}) < \infty } \right\}, $$

where

$$\widehat f(n) = \frac{{2{{\int}_{0}^{1}} {f(} r){J_{0}}({\lambda_{n}}r)rdr}}{{{{({J_{1}}({\lambda_{n}}))}^{2}}}},$$

J0(λnr) is Bessel function of order zero, λn is positive zero of function J0

$${\lambda_{1}} < {\lambda_{2}} < {\ldots} {\lambda_{n}} {\ldots} ,{\lambda_{n}} \sim \left( {n - \frac{1}{4}} \right)\pi , \text{ when }n\to \infty.$$

J1(λn) is Bessel function of order 1 and

$${J_{1}}({\lambda_{n}} ) = \sum\limits_{m = 0}^{\infty} {\frac{{{{(- 1)}^{m}}{\lambda_{n}^{2m + 1}}}}{{{2^{2m + 1}}(m + 1)!m!}}},\quad {J_{1}}({\lambda_{n}})=-J_{0}^{\prime}({\lambda_{n}})$$

with \({J_{1}}({\lambda _{n}}) \sim \sqrt {\frac {2}{{\pi {\lambda _{n}}}}} {\cos \limits } ({{\lambda _{n}} - \frac {{3\pi }}{4}} ) + \mathrm {O}({\frac {1}{{\lambda _{n}^{3/2}}}} )\) when \(n\to \infty \). The norm of \(f \in H_{rad}^{\frac {1}{2}}(B)\) is given by

$${\left\| f \right\|_{H_{rad}^{\frac{1}{2}}(B)}} = {\left( {\sum\limits_{n = 1}^{\infty} {{{(1 + {{\left| {{\lambda_{n}}} \right|}^{2}})}^{\frac{1}{2}}}{{\left| {\widehat f(n)} \right|}^{2}}{J_{1}^{2}}(} {\lambda_{n}})} \right)^{\frac{1}{2}}}.$$

(iii) The dual space of \(H_{rad}^{\frac {1}{2}}(B) \) is defined by

$$H_{rad}^{- \frac{1}{2}}(B)={\left( {H_{rad}^{\frac{1}{2}}(B)} \right)^{*}} = \left\{ {f:H_{rad}^{\frac{1}{2}}(B) \to \mathbb{C}} \text{ bounded linear functional}\right\}$$

with the norm

$${\left\| f \right\|_{H_{rad}^{- \frac{1}{2}}(B)}} = {\left( {\sum\limits_{n = 1}^{\infty} {{{(1 + {{\left| {{\lambda_{n}}} \right|}^{2}})}^{- \frac{1}{2}}}{{\left| {\widehat f(n)} \right|}^{2}}{J_{1}^{2}}(} {\lambda_{n}})} \right)^{\frac{1}{2}}}.$$

(iv) We denote

$$H_{rad}^{1}(B \times (0, + \infty )) = \left\{ {u \in L_{rad}^{2}(B \times (0, + \infty )):|\nabla u| \in L_{rad}^{2}(B \times (0, \infty ))} \right\}.$$

In the cylindrical coordinates, if \(u(r, z)={\sum }_{n=1}^{\infty } u_{n}(z)J_{0}(\lambda _{n} r)\) we have

$${\left\| u \right\|_{{H^{1}_{rad}}(B \times (0, + \infty ))}} = \pi \sum\limits_{n = 1}^{\infty} {{J_{1}^{2}}({\lambda_{n}})} {\int}_{0}^{\infty} [(1 + {\lambda_{n}^{2}}){{\left| {{u_{n}}(z)} \right|}^{2}} + {{\left| {{u^{\prime}_{n}}(z)} \right|}^{2}} ]dz.$$

For \(f \in {H_{rad}^{\frac {1}{2}}(B)}\), the Dirichlet problem (3.1) in cylindrical coordinates is

$$ \begin{array}{@{}rcl@{}} \begin{cases} \gamma_{\alpha}u_{rr} + \frac{\gamma_{\alpha} }{r }{u_{r} } + \partial_z(\gamma_{\alpha}u_z) = 0,&B \times (0,\infty ), \\ u(1,z) = 0,& 0<z<\infty,\\ u(r,0)=f,& 0\le r<1, \end{cases} \end{array} $$

and have a unique solution \(u \in H^{1}_{rad} \left ({B \times (0,\infty )} \right )\).

We expand \(u = {\sum }_{n = 1}^{\infty } {{u_{n}}(z){J_{0}}({\lambda _{n}}r )}\). By direct computation, we have

$$ \begin{array}{@{}rcl@{}} {u_{n}(z)=}\begin{cases} {a_{n}}{e^{- {\lambda_{n}}z}}& \text{ if }h \le z < \infty,\\ {b_{n}}{e^{- {\lambda_{n}}z}} + {c_{n}}{e^{{\lambda_{n}}z}}&\text{ if }0 \le z < h. \end{cases} \end{array} $$

At z = h, we have

$$ \begin{array}{@{}rcl@{}} \begin{cases} \lim\limits_{z \to {h^ + }} {u_{n}}(z) = \lim\limits_{z \to {h^ - }} {u_{n}}(z),\\ \lim\limits_{z \to {h^ + }} \left( \gamma_{\alpha} {u^{\prime}_{n}} \right)(z) = \lim\limits_{z \to {h^ - }} \left( \gamma_{\alpha}u^{\prime}_{n} \right)(z). \end{cases} \end{array} $$

It follows that

$$ \begin{array}{@{}rcl@{}} \frac{c_{n}}{b_{n}}=\frac{\alpha_{2}-\alpha_{1}}{(2+\alpha_{1}+\alpha_{2})e^{2\lambda_{n}h}}. \end{array} $$

The Dirichlet-to-Neumann map \({\varLambda }_{\alpha }:{H_{rad}^{\frac {1}{2}}(B)} \to {H_{rad}^{- \frac {1}{2}}(B)}\) is determined by

$$ {\varLambda}_{\alpha} f(r) = - \sum\limits_{n = 1}^{\infty} {(1 + {\alpha_{2}})\frac{{({\alpha_{2}} - {\alpha_{1}}){e^{- 2{\lambda_{n}}h}} - \left( {2 + {\alpha_{1}} + {\alpha_{2}}} \right)}}{{({\alpha_{2}} - {\alpha_{1}}){e^{- 2{\lambda_{n}}h}} + 2 + {\alpha_{1}} + {\alpha_{2}}}}} {\lambda_{n}}\hat f(n){J_{0}}({\lambda_{n}}r ). $$

We now give an explicit formula to reconstruct the parameters h, α from the Dirichlet-to-Nemann map. Define

$$ {A_{n}} = -\frac{{{{\varLambda}_{\alpha} }({J_{0}}({\lambda_{n}}r))}}{{{\lambda_{n}}{J_{0}}({\lambda_{n}}r)}} = (1 + {\alpha_{2}})\frac{{2 + {\alpha_{1}} + {\alpha_{2}} - ({\alpha_{2}} - {\alpha_{1}}){e^{- 2{\lambda_{n}}h}}}}{{2 + {\alpha_{1}} + {\alpha_{2}} + ({\alpha_{2}} - {\alpha_{1}}){e^{- 2{\lambda_{n}}h}}}}. $$
(3.2)

If A1 = 1 + α2 then α1 = α2; i.e., the conductor is homogeneous. Otherwise, \(A_{n}\not =1+\alpha _{2}, \forall n\in \mathbb N\) and we have the following proposition.

Proposition 3.2

We reconstruct h,αj as follows: (i) \({\alpha _{2}} = \lim _{n \to \infty } {A_{n}} - 1.\) (ii) \(h = \frac {1}{2\pi }\ln (\lim _{n \to \infty } \frac {{{A_{n}} - 1-\alpha _{2}}}{{{A_{n + 1}} - 1-\alpha _{2}}})\). (iii) \({\alpha _{1}} = \frac {{2A + (A + 2){\alpha _{2}}}}{{2 - A}},\) where

$$A=\lim\limits_{n \to \infty } \frac{{\left( {{A_{n}} - 1-\alpha_{2}} \right){e^{2{\lambda_{n}}h}}}}{{1 + {\alpha_{2}}}}.$$

Proof

(i) It is easy to show that \({\alpha _{2}} = \lim _{n \to \infty } {A_{n}} - 1\).

(ii) We have

$$\frac{{{A_{n}} - 1-\alpha_{2}}}{{{A_{n + 1}} - 1-\alpha_{2}}} = \frac{{{e^{- 2{\lambda_{n}}h}}}}{{{e^{- 2{\lambda_{n + 1}}h}}}}\frac{{2 + {\alpha_{1}} + {\alpha_{2}} + ({\alpha_{2}} - {\alpha_{1}}){e^{- 2{\lambda_{n + 1}}h}}}}{{2 + {\alpha_{1}} + {\alpha_{2}} + ({\alpha_{2}} - {\alpha_{1}}){e^{- 2{\lambda_{n}}h}}}}.$$

Note that \({\lambda _{n}} \sim \left ({n - \frac {1}{4}} \right )\pi , \text { when }n\to \infty \). We obtain

$$\lim\limits_{n \to \infty } \frac{{{A_{n}} - 1-\alpha_{2}}}{{{A_{n + 1}} - 1-\alpha_{2}}} = {e^{2\pi h}}.$$

Hence,

$$h = \frac{1}{2\pi }\ln \left( {\lim\limits_{n \to \infty } \frac{{{A_{n}} - 1-\alpha_{2}}}{{{A_{n + 1}} - 1-\alpha_{2}}}} \right).$$

(iii) Since

$$A={\lim\limits_{n \to \infty } \frac{{\left( {{A_{n}} - 1-\alpha_{2}} \right){e^{2{\lambda_{n}}h}}}}{{1 + {\alpha_{2}}}} = \frac{{2({\alpha_{1}} - {\alpha_{2}})}}{{2 + {\alpha_{1}} + {\alpha_{2}}}}},$$

so α1 = (2A + (A + 2)α2)/(2 − A). □

Remark 3.3

We can reconstruct h,α1 from α2,A1,A2 as follows

$$ \begin{array}{@{}rcl@{}} h& =& \frac{1}{2(\lambda_{1}-\lambda_{2})}\ln\left( \frac{(A_{1}+1+\alpha_{2})(A_{2}-1-\alpha_{2})}{(A_{1}-1-\alpha_{1})(A_{2}+1+\alpha_{2})}\right)\\ \alpha_{1}&=& \frac{A_{1}(2+\alpha_{2}(1+e^{-2\lambda_{1}h}))-(1+\alpha_{2})(2+\alpha_{2}(1-e^{-2\lambda_{2}h}))}{(1+\alpha_{2})(1+e^{-2\lambda_{1}h})-A_{1}(1-e^{-2\lambda_{1}h})}. \end{array} $$

We now prove Theorem 1.2.

Proof Proof of Theorem 1.2

Firstly, for each \(\gamma _{\alpha }, \gamma _{\upbeta }\in \mu (h,M), f\in H^{\frac {1}{2}}_{rad}(B)\), we have

$$\left\| {\left( {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right)f} \right\|_{H_{rad}^{- \frac{1}{2}}(B)}^{2}=\sum\limits_{n = 1}^{\infty} {\frac{{{\lambda_{n}^{2}}}}{{{{(1 + {\lambda_{n}^{2}})}^{\frac{1}{2}}}}}{\left( A_{n} - B_{n} \right)^{2}}{{|\hat f(n)|}^{2}}{{\left( {{J_{1}}({\lambda_{n}})} \right)}^{2}}},$$

where

$$ \begin{array}{@{}rcl@{}} &&{A_{n}} = -(1 + {\alpha_{2}}) \frac{{({\alpha_{2}} - {\alpha_{1}}){e^{- 2{\lambda_{n}}h}} - \left( {2 + {\alpha_{1}} + {\alpha_{2}}} \right)}}{{({\alpha_{2}} - {\alpha_{1}}){e^{^{- 2{\lambda_{n}}h}}} + 2 + {\alpha_{1}} + {\alpha_{2}}}},\\ &&{B_{n}} = - (1 + {{\upbeta}_{2}})\frac{{({{\upbeta}_{2}} - {{\upbeta}_{1}}){e^{- 2{\lambda_{n}}h}} - \left( {2 + {{\upbeta}_{1}} + {{\upbeta}_{2}}} \right)}}{{({{\upbeta}_{2}} - {{\upbeta}_{1}}){e^{^{- 2{\lambda_{n}}h}}} + 2 + {{\upbeta}_{1}} + {{\upbeta}_{2}}}}. \end{array} $$

By direct computation we obtain

$$ {A_{n}} - {B_{n}} = \frac{{(A - B{e^{- 2{\lambda_{n}}h}} - C{e^{- 4{\lambda_{n}}h}})({\alpha_{2}} - {{\upbeta}_{2}}) + D{e^{- 2{\lambda_{n}}h}}({\alpha_{1}} - {{\upbeta}_{1}})}}{{(2 + {\alpha_{1}} + {\alpha_{2}} + ({\alpha_{2}} - {\alpha_{1}}){e^{- 2{\lambda_{n}}h}})(2 + {{\upbeta}_{1}} + {{\upbeta}_{2}} + ({{\upbeta}_{2}} - {{\upbeta}_{1}}){e^{- 2{\lambda_{n}}h}})}}, $$

where

$$ \begin{array}{@{}rcl@{}} A &=& (2 + {\alpha_{1}} + {\alpha_{2}})(2 + {{\upbeta}_{1}} + {{\upbeta}_{2}}) \in [4,4{(M + 1)^{2}}],\\ B &=& (2 + {\alpha_{2}} + {{\upbeta}_{2}})(2 + {{\upbeta}_{1}})\in [4,4{(M + 1)^{2}}],\\ C &=& ({\alpha_{2}} - {\alpha_{1}})({{\upbeta}_{2}} - {{\upbeta}_{1}})\in [ - {M^{2}},{M^{2}}],\\ D &=& (2 + {\alpha_{2}} + {{\upbeta}_{2}})(2 + {{\upbeta}_{2}})\in [4,4{(M + 1)^{2}}]. \end{array} $$

We denote by Kn and Hn the numerator and denominator of (AnBn), respectively. We have Hn ≤ (2 + 3M)2 and

$$ \begin{array}{@{}rcl@{}} {\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_{H_{rad}^{\frac{1}{2}}(B) \to H_{rad}^{- \frac{1}{2}}(B)}}& = \sup\limits_{f\in H_{rad}^{\frac{1}{2}}(B)\atop f \ne 0} \frac{{{{\left\| {\left( {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right)f} \right\|}_{H_{rad}^{- \frac{1}{2}}(B)}}}}{{{{\left\| f \right\|}_{H_{rad}^{\frac{1}{2}}(B)}}}}\\ &\ge \sup\limits_{n\not=0} \frac{{\left| {{K_{n}}} \right|}}{{\left| {{2H_{n}}} \right|}} \ge \sup\limits_{n\not=0} \frac{{\left| {{K_{n}}} \right|}}{{{2\left( {2 + 3M} \right)^{2}}}}. \end{array} $$
(3.3)

Hence,

$$ \sup\limits_{n} \left| {{K_{n}}} \right| \ge (A + Be^{- 2\lambda_{n} h} + |C|e^{- 4\lambda_{n} h})\left|\alpha_{2} - {\upbeta}_{2} \right| - D e^{- 2\lambda_{n} h}\left|\alpha_{1} - {\upbeta}_{1} \right|.$$

For α2≠β2, we choose n big enough so that

$$ \sup\limits_{n} \left| K_{n} \right| \ge 2\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|. $$
(3.4)

From (3.4), (3.3) becomes

$$ {\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_{H_{rad}^{\frac{1}{2}}(B) \to H_{rad}^{- \frac{1}{2}}(B)}} \ge \frac{1}{{{{(2 + 3M)}^{2}}}}\left| {{\alpha_{2}} - {{\upbeta}_{2}}} \right|. $$
(3.5)

For α2 = β2, we also have (3.5). It is easy to get

$$ |K_{1}|\ge 4e^{-2\lambda_{1}h}|\alpha_{1}-{\upbeta}_{1}|-4(M+1)^{2}(1+e^{-2\lambda_{1}h})^{2}|\alpha_{2}-{\upbeta}_{2}|. $$

Therefore, from (3.3) and (3.5), we have

$$ {\left\| {\varLambda}_{\alpha} - {\varLambda}_{\upbeta} \right\|_{H_{rad}^{\frac{1}{2}}(B) \to H_{rad}^{- \frac{1}{2}}(B)}} \ge \frac{e^{-2\lambda_{1}h}}{{{{2(2 + 3M)}^{2}}(M+1)^{2}(1+e^{-2\lambda_{1}h})^{2}}}\left| {{\alpha_{1}} - {{\upbeta}_{1}}} \right|. $$
(3.6)

From (3.5) and (3.6), we are done. □