Skip to main content

Advertisement

Log in

Matricellular Proteins and Organ Fibrosis

  • Activated Myofibroblasts and Fibrosis in Various Organs (T Kisseleva and Y Liu, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

This review intends to outline the novel findings on the effects of matricellular proteins in the development of organ fibrosis and present recent advances towards a potential usage of matricellular proteins as markers or targets of therapy for fibrotic diseases.

Recent Findings

Recent studies elucidated the sites of production of different matricellular proteins during fibrosis of several organs, their specific binding receptors, and their effects on different cell types. For some proteins, a differential function between chronic disease and acute injury and a connection to regulation of inflammatory cell subtypes with relevance to fibrosis was established.

Summary

Matricellular proteins have evolved as important mediators in the progression of fibrosis. Several studies have already depicted their potential as biomarkers of the disease stage and evolution in patients, while the evaluation of their utility as therapeutic targets has been limited in animal models of fibrosis. This knowledge should guide future research on the development of drugs to treat fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bornstein P (2009) Matricellular proteins: an overview. J Cell Commun Signal 3:163–165. doi:10.1007/s12079-009-0069-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Murphy-Ullrich JE, Sage EH (2014) Revisiting the matricellular concept. Matrix Biol 37:1–14. doi:10.1016/j.matbio.2014.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321. doi:10.1038/nature07039

    Article  CAS  PubMed  Google Scholar 

  4. Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963. doi:10.1038/nrd3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Díez J, González A, Ravassa S (2016) Understanding the role of CCN matricellular proteins in myocardial fibrosis. J Am Coll Cardiol 67:1569–1571. doi:10.1016/j.jacc.2016.01.029

    Article  PubMed  Google Scholar 

  6. • Riser BL, Barnes JL, Varani J (2015) Balanced regulation of the CCN family of matricellular proteins: a novel approach to the prevention and treatment of fibrosis and cancer. J Cell Commun Signal 9:327–339. doi:10.1007/s12079-015-0309-3 This review discusses a novel approach of how combination of protein targeting can assist in treatment of fibrosis

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mason RM (2013) Fell-Muir lecture: connective tissue growth factor (CCN2)—a pernicious and pleiotropic player in the development of kidney fibrosis. Int J Exp Pathol 94:1–16. doi:10.1111/j.1365-2613.2012.00845.x

    Article  CAS  PubMed  Google Scholar 

  8. Morales MG, Gutierrez J, Cabello-Verrugio C, Cabrera D, Lipson KE, Goldschmeding R et al (2013) Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Hum Mol Genet 22:4938–4951. doi:10.1093/hmg/ddt352

    Article  CAS  PubMed  Google Scholar 

  9. Morales MG, Cabrera D, Céspedes C, Vio CP, Vazquez Y, Brandan E et al (2013) Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2). Cell Tissue Res 353:173–187. doi:10.1007/s00441-013-1642-6

    Article  CAS  PubMed  Google Scholar 

  10. • Tank J, Lindner D, Wang X, Stroux A, Gilke L, Gast M et al (2014) Single-target RNA interference for the blockade of multiple interacting proinflammatory and profibrotic pathways in cardiac fibroblasts. J Mol Cell Cardiol 66:141–156. doi:10.1016/j.yjmcc.2013.11.004 This article demonstrates the importance of selecting the correct target in order to maximize the beneficial effects of treatment

    Article  CAS  PubMed  Google Scholar 

  11. Borkham-Kamphorst E, Steffen BT, Van de Leur E, Haas U, Tihaa L, Friedman SL et al (2016) CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis. Cell Signal 28:34–42. doi:10.1016/j.cellsig.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  12. Borkham-Kamphorst E, Schaffrath C, Van de Leur E, Haas U, Tihaa L, Meurer SK et al (1843) The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling. Biochim Biophys Acta 2014:902–914. doi:10.1016/j.bbamcr.2014.01.023

    Google Scholar 

  13. Kim KH, Chen CC, Monzon RI, Lau LF (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol Cell Biol 33:2078–2090. doi:10.1128/MCB.00049-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grazioli S, Gil S, An D, Kajikawa O, Farnand AW, Hanson JF et al (2015) CYR61 (CCN1) overexpression induces lung injury in mice. Am J Physiol Lung Cell Mol Physiol 308:L759–L765. doi:10.1152/ajplung.00190.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borkham-Kamphorst E, van Roeyen CR, Van de Leur E, Floege J, Weiskirchen R (2012) CCN3/NOV small interfering RNA enhances fibrogenic gene expression in primary hepatic stellate cells and cirrhotic fat storing cell line CFSC. J Cell Commun Signal 6:11–25. doi:10.1007/s12079-011-0141-3

    Article  PubMed  Google Scholar 

  16. Marchal PO, Kavvadas P, Abed A, Kazazian C, Authier F, Koseki H et al (2015) Reduced NOV/CCN3 expression limits inflammation and interstitial renal fibrosis after obstructive nephropathy in mice. PLoS One 10:e0137876. doi:10.1371/journal.pone.0137876

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xu H, Liu C, Sun Z, Guo X, Zhang Y, Liu M et al (2015) CCN5 attenuates profibrotic phenotypes of fibroblasts through the Smad6-CCN2 pathway: potential role in epidural fibrosis. Int J Mol Med 36:123–129. doi:10.3892/ijmm.2015.2190

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang L, Li Y, Liang C, Yang W (2014) CCN5 overexpression inhibits profibrotic phenotypes via the PI3K/Akt signaling pathway in lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis and in an in vivo model of lung fibrosis. Int J Mol Med 33:478–486. doi:10.3892/ijmm.2013.1565

    CAS  PubMed  Google Scholar 

  19. • Kim DJ, Christofidou ED, Keene DR, Hassan Milde M, Adams JC (2015) Intermolecular interactions of thrombospondins drive their accumulation in extracellular matrix. Mol Biol Cell 26:2640–2654. doi:10.1091/mbc.E14-05-0996 This was the first study to describe a novel mechanism of how intermolecular interactions of a matricellular protein affect its deposition into the matrix

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zeisberg M, Tampe B, LeBleu V, Tampe D, Zeisberg EM, Kalluri R (2014) Thrombospondin-1 deficiency causes a shift from fibroproliferative to inflammatory kidney disease and delays onset of renal failure. Am J Pathol 184:2687–2698. doi:10.1016/j.ajpath.2014.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui W, Maimaitiyiming H, Qi X, Norman H, Wang S (2013) Thrombospondin 1 mediates renal dysfunction in a mouse model of high-fat diet-induced obesity. Am J Physiol Renal Physiol 305:F871–F880. doi:10.1152/ajprenal.00209.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bige N, Shweke N, Benhassine S, Jouanneau C, Vandermeersch S, Dussaule JC et al (2012) Thrombospondin-1 plays a profibrotic and pro-inflammatory role during ureteric obstruction. Kidney Int 81:1226–1238. doi:10.1038/ki.2012.21

    Article  CAS  PubMed  Google Scholar 

  23. Sun D, Ma Y, Han H, Yin Z, Liu C, Feng J et al (2012) Thrombospondin-1 short hairpin RNA suppresses tubulointerstitial fibrosis in the kidney of ureteral obstruction by ameliorating peritubular capillary injury. Kidney Blood Press Res 35:35–47. doi:10.1159/000330718

    Article  PubMed  Google Scholar 

  24. Inoue M, Jiang Y, Barnes RH 2nd, Tokunaga M, Martinez-Santibañez G, Geletka L et al (2013) Thrombospondin 1 mediates high-fat diet-induced muscle fibrosis and insulin resistance in male mice. Endocrinology 154:4548–4559. doi:10.1210/en.2013-1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez-Quesada C, Cavalera M, Biernacka A, Kong P, Lee DW, Saxena A et al (2013) Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ Res 113:1331–1344. doi:10.1161/CIRCRESAHA.113.302593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reinecke H, Robey TE, Mignone JL, Muskheli V, Bornstein P, Murry CE (2013) Lack of thrombospondin-2 reduces fibrosis and increases vascularity around cardiac cell grafts. Cardiovasc Pathol 22:91–95. doi:10.1016/j.carpath.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  27. Pohjolainen V, Mustonen E, Taskinen P, Näpänkangas J, Leskinen H, Ohukainen P et al (2012) Increased thrombospondin-2 in human fibrosclerotic and stenotic aortic valves. Atherosclerosis 220:66–71. doi:10.1016/j.atherosclerosis.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  28. Kajihara I, Jinnin M, Yamane K, Makino T, Honda N, Igata T et al (2012) Increased accumulation of extracellular thrombospondin-2 due to low degradation activity stimulates type I collagen expression in scleroderma fibroblasts. Am J Pathol 180:703–714. doi:10.1016/j.ajpath.2011.10.030

    Article  CAS  PubMed  Google Scholar 

  29. van Almen GC, Swinnen M, Carai P, Verhesen W, Cleutjens JP, D’hooge J et al (2011) Absence of thrombospondin-2 increases cardiomyocyte damage and matrix disruption in doxorubicin-induced cardiomyopathy. J Mol Cell Cardiol 51:318–328. doi:10.1016/j.yjmcc.2011.05.010

    Article  PubMed  Google Scholar 

  30. Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H et al (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14:1239–1249. doi:10.1359/jbmr.1999.14.7.1239

    Article  CAS  PubMed  Google Scholar 

  31. Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA et al (2007) Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 101:313–321. doi:10.1161/CIRCRESAHA.107.149047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M et al (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205:295–303. doi:10.1084/jem.20071297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu H, Li GN, Xie J, Li R, Chen QH, Chen JZ et al (2016) Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc Disord 16:5. doi:10.1186/s12872-015-0169-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guan J, Liu WQ, Xing MQ, Shi Y, Tan XY, Jiang CQ et al (2015) Elevated expression of periostin in diabetic cardiomyopathy and the effect of valsartan. BMC Cardiovasc Disord 15:90. doi:10.1186/s12872-015-0084-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu H, Chen L, Xie J, Li R, Li GN, Chen QH et al (2016) Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension. Mol Med Rep 14:776–782. doi:10.3892/mmr.2016.5308

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaur H, Takefuji M, Ngai CY, Carvalho J, Bayer J, Wietelmann A et al (2016) Targeted ablation of periostin-expressing activated fibroblasts prevents adverse cardiac remodeling in mice. Circ Res 118:1906–1917. doi:10.1161/CIRCRESAHA.116.308643

    Article  CAS  PubMed  Google Scholar 

  37. • Taniyama Y, Katsuragi N, Sanada F, Azuma J, Iekushi K, Koibuchi N et al (2016) Selective blockade of periostin exon 17 preserves cardiac performance in acute myocardial infarction. Hypertension 67:356–361. doi:10.1161/HYPERTENSIONAHA.115.06265 Excellent demonstration of how a targeted intervention leads to an effective treatment

    CAS  PubMed  Google Scholar 

  38. Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L et al (2010) Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A 107:14170–14175. doi:10.1073/pnas.1009426107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Uchida M, Shiraishi H, Ohta S, Arima K, Taniguchi K, Suzuki S et al (2012) Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol 46:677–686. doi:10.1165/rcmb.2011-0115OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Naik PK, Bozyk PD, Bentley JK, Popova AP, Birch CM, Wilke CA et al (2012) Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 303:L1046–L1056. doi:10.1152/ajplung.00139.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. • Tajiri M, Okamoto M, Fujimoto K, Johkoh T, Ono J, Tominaga M et al (2015) Serum level of periostin can predict long-term outcome of idiopathic pulmonary fibrosis. Respir Investig 53:73–81. doi:10.1016/j.resinv.2014.12.003 Important demonstration of the utility of a matricellular protein for prediction of long-term outcomes in patients

    Article  PubMed  Google Scholar 

  42. • Izuhara K, Matsumoto H, Ohta S, Ono J, Arima K, Ogawa M (2015) Recent developments regarding periostin in bronchial asthma. Allergol Int 64 Suppl:S3–10. doi:10.1016/j.alit.2015.04.012 This study was the first to establish periostin as a read-out protein for the efficiency of a certain class of drugs in the treatment of asthma

    Article  PubMed  Google Scholar 

  43. Guerrot D, Dussaule JC, Mael-Ainin M, Xu-Dubois YC, Rondeau E, Chatziantoniou C et al (2012) Identification of periostin as a critical marker of progression/reversal of hypertensive nephropathy. PLoS One 7:e31974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mael-Ainin M, Abed A, Conway SJ, Dussaule JC, Chatziantoniou C (2014) Inhibition of periostin expression protects against the development of renal inflammation and fibrosis. J Am Soc Nephrol 25:1724–1736. doi:10.1681/ASN.2013060664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prakoura N, Kavvadas P, Kormann R, Dussaule JC, Chadjichristos C, Chatziantoniou C. NFκB-induced periostin activates integrin-β3 signaling to promote renal injury in GN. J Am Soc Nephrol. 2016

  46. Sen K, Lindenmeyer MT, Gaspert A, Eichinger F, Neusser MA, Kretzler M et al (2011) Periostin is induced in glomerular injury and expressed de novo in interstitial renal fibrosis. Am J Pathol 179:1756–1767. doi:10.1016/j.ajpath.2011.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Satirapoj B, Tassanasorn S, Charoenpitakchai M, Supasyndh O (2015) Periostin as a tissue and urinary biomarker of renal injury in type 2 diabetes mellitus. PLoS One 10:e0124055. doi:10.1371/journal.pone.0124055

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wantanasiri P, Satirapoj B, Charoenpitakchai M, Aramwit P (2015) Periostin: a novel tissue biomarker correlates with chronicity index and renal function in lupus nephritis patients. Lupus 24:835–845. doi:10.1177/0961203314566634

    Article  CAS  PubMed  Google Scholar 

  49. Wallace DP, White C, Savinkova L, Nivens E, Reif GA, Pinto CS et al (2014) Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney Int 85:845–854. doi:10.1038/ki.2013.488

    Article  CAS  PubMed  Google Scholar 

  50. Zhou HM, Wang J, Elliott C, Wen W, Hamilton DW, Conway SJ (2010) Spatiotemporal expression of periostin during skin development and incisional wound healing: lessons for human fibrotic scar formation. J Cell Commun Signal 4:99–107. doi:10.1007/s12079-010-0090-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang L, Serada S, Fujimoto M, Terao M, Kotobuki Y, Kitaba S et al (2012) Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS One 7:e41994. doi:10.1371/journal.pone.0041994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lorts A, Schwanekamp JA, Baudino TA, McNally EM, Molkentin JD (2012) Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-β pathway. Proc Natl Acad Sci U S A 109:10978–10983. doi:10.1073/pnas.1204708109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hong L, Shejiao D, Fenrong C, Gang Z, Lei D (2015) Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1. J Cell Mol Med 19:2462–2468. doi:10.1111/jcmm.12636

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sugiyama A, Kanno K, Nishimichi N, Ohta S, Ono J, Conway SJ et al (2016) Periostin promotes hepatic fibrosis in mice by modulating hepatic stellate cell activation via αv integrin interaction. J Gastroenterol. doi:10.1007/s00535-016-1206-0

    Google Scholar 

  55. • Ozdemir C, Akpulat U, Sharafi P, Yıldız Y, Onbaşılar I, Kocaefe C (2014) Periostin is temporally expressed as an extracellular matrix component in skeletal muscle regeneration and differentiation. Gene 553:130–139. doi:10.1016/j.gene.2014.10.014 Important demonstration that a matricellular protein can promote tissue regeneration in the context of matrix remodeling

    Article  CAS  PubMed  Google Scholar 

  56. • Nakama T, Yoshida S, Ishikawa K, Kobayashi Y, Zhou Y, Nakao S et al (2015) Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin. Gene Ther 22:127–137. doi:10.1038/gt.2014.112 Excellent highlight of how the evolution of drug manufacturing technology can promote therapeutic efficiency

    Article  CAS  PubMed  Google Scholar 

  57. Lancha A, Rodríguez A, Catalán V, Becerril S, Sáinz N, Ramírez B et al (2014) Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice. PLoS One 9:e98398. doi:10.1371/journal.pone.0098398

    Article  PubMed  PubMed Central  Google Scholar 

  58. Coombes JD, Swiderska-Syn M, Dollé L, Reid D, Eksteen B, Claridge L et al (2015) Osteopontin neutralisation abrogates the liver progenitor cell response and fibrogenesis in mice. Gut 64:1120–1131. doi:10.1136/gutjnl-2013-306484

    Article  CAS  PubMed  Google Scholar 

  59. Pritchett J, Harvey E, Athwal V, Berry A, Rowe C, Oakley F et al (2012) Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans. Hepatology 56:1108–1116. doi:10.1002/hep.25758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arriazu E, Ge X, Leung TM, Magdaleno F, Lopategi A, Lu Y et al (2016) Signalling via the osteopontin and high mobility group box-1 axis drives the fibrogenic response to liver injury. Gut. doi:10.1136/gutjnl-2015-310752

    PubMed  Google Scholar 

  61. Matsue Y, Tsutsumi M, Hayashi N, Saito T, Tsuchishima M, Toshikuni N et al (2015) Serum osteopontin predicts degree of hepatic fibrosis and serves as a biomarker in patients with hepatitis C virus infection. PLoS One 10:e0118744. doi:10.1371/journal.pone.0118744

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang G, Chen S, Zhao C, Li X, Zhang L, Zhao W et al (2016) Gene expression profiles predict the possible regulatory role of OPN-mediated signaling pathways in rat liver regeneration. Gene 576:782–790. doi:10.1016/j.gene.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  63. Lazaro R, Wu R, Lee S, Zhu NL, Chen CL, French SW et al (2015) Osteopontin deficiency does not prevent but promotes alcoholic neutrophilic hepatitis in mice. Hepatology 61:129–140. doi:10.1002/hep.27383

    Article  CAS  PubMed  Google Scholar 

  64. Passmore M, Nataatmadja M, Fung YL, Pearse B, Gabriel S, Tesar P et al (2015) Osteopontin alters endothelial and valvular interstitial cell behavior in calcific aortic valve stenosis through HMGB1 regulation. Eur J Cardiothorac Surg 48:e20–e29. doi:10.1093/ejcts/ezv244

    Article  PubMed  Google Scholar 

  65. Lorenzen JM, Schauerte C, Hübner A, Kölling M, Martino F, Scherf K et al (2015) Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur Heart J 36:2184–2196. doi:10.1093/eurheartj/ehv109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Uchinaka A, Hamada Y, Mori S, Miyagawa S, Saito A, Sawa Y et al (2015) SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis. Mol Cell Biochem 408:191–203. doi:10.1007/s11010-015-2495-y

    Article  CAS  PubMed  Google Scholar 

  67. Duerr GD, Mesenholl B, Heinemann JC, Zoerlein M, Huebener P, Schneider P et al (2014) Cardioprotective effects of osteopontin-1 during development of murine ischemic cardiomyopathy. Biomed Res Int 2014:124063. doi:10.1155/2014/124063

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yano R, Golbar HM, Izawa T, Sawamoto O, Kuwamura M, Yamate J (2015) Participation of bone morphogenetic protein (BMP)-6 and osteopontin in cisplatin (CDDP)-induced rat renal fibrosis. Exp Toxicol Pathol 67:99–107. doi:10.1016/j.etp.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  69. Kashiwagi E, Tonomura Y, Kondo C, Masuno K, Fujisawa K, Tsuchiya N et al (2014) Involvement of neutrophil gelatinase-associated lipocalin and osteopontin in renal tubular regeneration and interstitial fibrosis after cisplatin-induced renal failure. Exp Toxicol Pathol 66:301–311. doi:10.1016/j.etp.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  70. Tachibana H, Ogawa D, Matsushita Y, Bruemmer D, Wada J, Teshigawara S et al (2012) Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J Am Soc Nephrol 23:1835–1846. doi:10.1681/ASN.2012010022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tan TK, Zheng G, Hsu TT, Lee SR, Zhang J, Zhao Y et al (2013) Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Lab Investig 93:434–449. doi:10.1038/labinvest.2013.3

    Article  CAS  PubMed  Google Scholar 

  72. White ES, Xia M, Murray S, Dyal R, Flaherty CM, Flaherty KR et al (2016) Plasma surfactant protein-D, matrix metalloproteinase-7, and osteopontin index distinguishes idiopathic pulmonary fibrosis from other idiopathic interstitial pneumonias. Am J Respir Crit Care Med. doi:10.1164/rccm.201505-0862OC

    Google Scholar 

  73. Oh K, Seo MW, Kim YW, Lee DS (2015) Osteopontin potentiates pulmonary inflammation and fibrosis by modulating IL-17/IFN-γ-secreting T-cell ratios in bleomycin-treated mice. Immune Netw 15:142–149. doi:10.4110/in.2015.15.3.142

    Article  PubMed  PubMed Central  Google Scholar 

  74. • Capote J, Kramerova I, Martinez L, Vetrone S, Barton ER, Sweeney HL et al (2016) Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. J Cell Biol 213:275–288. doi:10.1083/jcb.201510086 Together with the paper of Bradshaw, this study interestingly demonstrates that matricellular proteins can affect fibrosis through direct effects on immune cell phenotypes

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kasprzycka M, Hammarström C, Haraldsen G (2015) Tenascins in fibrotic disorders-from bench to bedside. Cell Adhes Migr 9:83–89. doi:10.4161/19336918.2014.994901

    Article  CAS  Google Scholar 

  76. Imanaka-Yoshida K (2012) Tenascin-C in cardiovascular tissue remodeling: from development to inflammation and repair. Circ J 76:2513–2520

    Article  CAS  PubMed  Google Scholar 

  77. Franz M, Matusiak-Brückner M, Richter P, Grün K, Ziffels B, Neri D et al (2014) De novo expression of fetal ED-A(+) fibronectin and B (+) tenascin-C splicing variants in human cardiac allografts: potential impact for targeted therapy of rejection. J Mol Histol 45:519–532. doi:10.1007/s10735-014-9573-4

    Article  CAS  PubMed  Google Scholar 

  78. Franz M, Berndt A, Neri D, Galler K, Grün K, Porrmann C et al (2013) Matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, B+ tenascin-C and ED-A+ fibronectin in dilated cardiomyopathy: potential impact on disease progression and patients’ prognosis. Int J Cardiol 168:5344–5351. doi:10.1016/j.ijcard.2013.08.005

    Article  PubMed  Google Scholar 

  79. Nishioka T, Onishi K, Shimojo N, Nagano Y, Matsusaka H, Ikeuchi M et al (2010) Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 298:H1072–H1078. doi:10.1152/ajpheart.00255.2009

    Article  CAS  PubMed  Google Scholar 

  80. Shimojo N, Hashizume R, Kanayama K, Hara M, Suzuki Y, Nishioka T et al (2015) Tenascin-C may accelerate cardiac fibrosis by activating macrophages via the integrin αVβ3/nuclear factor-κB/interleukin-6 axis. Hypertension 66:757–766. doi:10.1161/HYPERTENSIONAHA.115.06004

    Article  CAS  PubMed  Google Scholar 

  81. Inoue K, Jinnin M, Hara Y, Makino K, Kajihara I, Makino T et al (2013) Serum levels of tenascin-C in collagen diseases. J Dermatol 40:715–719. doi:10.1111/1346-8138.12218

    Article  CAS  PubMed  Google Scholar 

  82. Bhattacharyya S, Wang W, Morales-Nebreda L, Feng G, Wu M, Zhou X et al (2016) Tenascin-C drives persistence of organ fibrosis. Nat Commun 7:11703. doi:10.1038/ncomms11703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma JC, Huang X, Shen YW, Zheng C, Su QH, Xu JK et al (2016) Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen. Biosci Biotechnol Biochem 80:1470–1477. doi:10.1080/09168451.2016.1165600

    Article  CAS  PubMed  Google Scholar 

  84. Estany S, Vicens-Zygmunt V, Llatjós R, Montes A, Penín R, Escobar I et al (2014) Lung fibrotic tenascin-C upregulation is associated with other extracellular matrix proteins and induced by TGFβ1. BMC Pulm Med 14:120. doi:10.1186/1471-2466-14-120

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fitch PM, Howie SE, Wallace WA (2011) Oxidative damage and TGF-β differentially induce lung epithelial cell sonic hedgehog and tenascin-C expression: implications for the regulation of lung remodelling in idiopathic interstitial lung disease. Int J Exp Pathol 92:8–17. doi:10.1111/j.1365-2613.2010.00743.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Carey WA, Taylor GD, Dean WB, Bristow JD (2010) Tenascin-C deficiency attenuates TGF-ß-mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol 299:L785–L793. doi:10.1152/ajplung.00385.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Brellier F, Hostettler K, Hotz HR, Ozcakir C, Çöloğlu SA, Togbe D et al (2011) Tenascin-C triggers fibrin accumulation by downregulation of tissue plasminogen activator. FEBS Lett 585:913–920. doi:10.1016/j.febslet.2011.02.023

    Article  CAS  PubMed  Google Scholar 

  88. • Fu H, Tian Y, Zhou L, Zhou D, Tan RJ, Stolz DB, et al. Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis. J Am Soc Nephrol. 2016. Interesting demonstration of a novel function of tenascin-C as an important component of the fibrogenic niche promoting fibroblast proliferation and expansion of fibrosis

  89. Trombetta-Esilva J, Bradshaw AD (2012) The function of SPARC as a mediator of fibrosis. Open Rheumatol J 6:146–155. doi:10.2174/1874312901206010146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. • Bradshaw AD (2016) The role of secreted protein acidic and rich in cysteine (SPARC) in cardiac repair and fibrosis: does expression of SPARC by macrophages influence outcomes? J Mol Cell Cardiol 93:156–161. doi:10.1016/j.yjmcc.2015.11.014 Together with the study of Capote et al., this paper interestingly demonstrates that matricellular proteins can affect fibrosis through direct effects on immune cell phenotypes

    Article  CAS  PubMed  Google Scholar 

  91. Toba H, de Castro Brás LE, Baicu CF, Zile MR, Lindsey ML, Bradshaw AD (2016) Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium. Am J Physiol Endocrinol Metab 310:E1027–E1035. doi:10.1152/ajpendo.00040.2016

    Article  PubMed  Google Scholar 

  92. Sangaletti S, Tripodo C, Cappetti B, Casalini P, Chiodoni C, Piconese S et al (2011) SPARC oppositely regulates inflammation and fibrosis in bleomycin-induced lung damage. Am J Pathol 179:3000–3010. doi:10.1016/j.ajpath.2011.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shibata S, Ishiyama J (2013) Secreted protein acidic and rich in cysteine (SPARC) is upregulated by transforming growth factor (TGF)-β and is required for TGF-β-induced hydrogen peroxide production in fibroblasts. Fibrogenesis Tissue Repair 6:6. doi:10.1186/1755-1536-6-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Atorrasagasti C, Aquino JB, Hofman L, Alaniz L, Malvicini M, Garcia M et al (2011) SPARC downregulation attenuates the profibrogenic response of hepatic stellate cells induced by TGF-β1 and PDGF. Am J Physiol Gastrointest Liver Physiol 300:G739–G748. doi:10.1152/ajpgi.00316.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aseer KR, Kim SW, Choi MS, Yun JW (2015) Opposite expression of SPARC between the liver and pancreas in streptozotocin-induced diabetic rats. PLoS One 10:e0131189. doi:10.1371/journal.pone.0131189

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tripodo C, Sangaletti S, Guarnotta C, Piccaluga PP, Cacciatore M, Giuliano M et al (2012) Stromal SPARC contributes to the detrimental fibrotic changes associated with myeloproliferation whereas its deficiency favors myeloid cell expansion. Blood 120:3541–3554. doi:10.1182/blood-2011-12-398537

    Article  CAS  PubMed  Google Scholar 

  97. Tan YF, Mundargi RC, Chen MH, Lessig J, Neu B, Venkatraman SS et al (2014) Layer-by-layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing. Small 10:1790–1798. doi:10.1002/smll.201303201

    Article  CAS  PubMed  Google Scholar 

  98. Muñoz-Pacheco P, Ortega-Hernández A, Caro-Vadillo A, Casanueva-Eliceiry S, Aragoncillo P, Egido J, Fernández-Cruz A et al (2013) Eplerenone enhances cardioprotective effects of standard heart failure therapy through matricellular proteins in hypertensive heart failure. J Hypertens 31:2309–2318. doi:10.1097/HJH.0b013e328364abd6

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Chatziantoniou.

Ethics declarations

Conflict of Interest

Niki Prakoura and Christos Chatziantoniou declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Activated Myofibroblasts and Fibrosis in Various Organs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakoura, N., Chatziantoniou, C. Matricellular Proteins and Organ Fibrosis. Curr Pathobiol Rep 5, 111–121 (2017). https://doi.org/10.1007/s40139-017-0138-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0138-6

Keywords

Navigation