1 Introduction and preliminaries

Let \(\Omega \) be a bounded domain in \(R^N, (N\ge 3)\), with smooth boundary \(\partial \Omega \). In the present paper we consider the existence of weak solutions of the following Dirichlet problem at resonance for p-Laplacian system:

$$\begin{aligned} \left\{ \begin{array}{lll} -\Delta _pu=&{}\lambda _1|u|^{\alpha -1}|v|^{\beta -1}v+f(x,u,v)-k_1(x) &{} \\ -\Delta _pv=&{}\lambda _1|u|^{\alpha -1}|v|^{\beta -1}u+g(x,u,v)-k_2(x) &{} \text { in } \Omega , \end{array} \right. \end{aligned}$$
(1.1)

where

$$\begin{aligned} p\ge 2, \alpha \ge 1, \beta \ge 1, \alpha +\beta =p \end{aligned}$$
(1.2)

and \(f,g:\Omega \times R^2 \rightarrow R\) are Carathéodory functions which will be specified later.

$$\begin{aligned} k_i(x)\in L^{p'}(\Omega ), p'=\frac{p}{p-1}, k_i(x)>0, \text { for a.e } x\in \bar{\Omega }, i=1,2. \end{aligned}$$

\(\lambda _1\) denotes the first eigenvalue of the problem:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _pu=&{}\lambda |u|^{\alpha -1}|v|^{\beta -1}v \\ -\Delta _pv=&{}\lambda |u|^{\alpha -1}|v|^{\beta -1}u, \end{array}\right. } \end{aligned}$$
(1.3)

where \((u,v)\in E=W_0^{1,p}(\Omega )\times W_0^{1,p}(\Omega )\), \(p\ge 2\), \(\alpha \ge 1\), \(\beta \ge 1\), \(\alpha +\beta =p\).

It’s well-known that the principle eigenvalue \(\lambda _1=\lambda _1(p)\) of (1.3) is obtained using the Ljusternick–Schnirelmann theory by minimizing the functional

$$\begin{aligned} J(u,v)=\frac{\alpha }{p}\int _{\Omega }|\nabla u|^p dx+\frac{\beta }{p}\int _{\Omega }|\nabla v|^p dx \end{aligned}$$

on the set:

$$\begin{aligned} S=\left\{ (u,v)\in E=W_0^{1,p}(\Omega )\times W_0^{1,p}(\Omega ): A(u,v)=1\right\} , \end{aligned}$$

where

$$\begin{aligned} A(u,v)=\int _{\Omega }|u|^{\alpha -1}|v|^{\beta -1}uvdx \end{aligned}$$

that is \(\lambda _1=\lambda _1(p)\) can be variational characterized as

$$\begin{aligned} \lambda _1=\lambda _1(p)=\underset{A(u,v)>0}{inf}\frac{J(u,v)}{A(u,v)}. \end{aligned}$$
(1.4)

Moreover the eigenpair \((\varphi _1, \varphi _2)\) associated with \(\lambda _1\) is componentwise positive and unique (up to multiplication by nonzero scalar) (see Theorem 2.2 in [3] and Remark 5.4 in [5]). As usual \(W_0^{1,p}(\Omega )\) denotes Sobolev space which can be defined as the completion of \(C_0^{\infty }(\Omega )\) under the norm:

$$\begin{aligned} ||u||_{W_0^{1,p}}=\left( \int _{\Omega }|\nabla u |^pdx\right) ^{\frac{1}{p}} \end{aligned}$$

and

$$\begin{aligned} \text {for }w=(u,v)\in E: ||w||_E=\left( ||u||^p_{W_0^{1,p}}+||v||^p_{W_0^{1,p}}\right) ^{\frac{1}{p}}. \end{aligned}$$

Observe that the existence of weak solutions of \((p,q)\)-Laplacian systems at resonance in bounded domains with Dirichlet boundary condition, was first considered by Zographopoulos in [9]. Later in [4] Kandilakis and Magiropoulos have studied a quasilinear elliptic system with resonance part and nonlinear boundary condition in an unbounded domain by assuming the nonlinearities \(f\) and \(g\) depending only one variable \(u\) or \(v\). In [8] Zeng-Qi Ou and Chen Lei Tang have considered the same system as in [4] with Dirichlet condition in a bounded domain. In these the existence of weak solutions is obtained by critical point theory (the Minimum Principle or the Saddle Point Theorem ) under a Landesman–Lazer type condition.

In this paper by introducing a generalization of Landesman–Lazer type condition we shall prove an existence result for a p-Laplacian system on resonance in bounded domain with the nonlinearities \(f\) and \(g\) to be functions depending on both variables \(u\) and \(v\).

Our arguments are based on the Saddle Point Theorem (P.H.Rabinowitz) and generalization of the Landesman–Lazer type condition.

We have the following definition.

Definition 1.1

Function \(w=(u,v)\in E\) is called a weak solution of the problem (1.1) if and only if, for all \(\bar{w}=(\bar{u},\bar{v})\in E\)

$$\begin{aligned}&\alpha \int _{\Omega }|\nabla u|^{p-2}\nabla u.\nabla \bar{u}dx+\beta \int _{\Omega }|\nabla v|^{p-2}\nabla v.\nabla \bar{v}dx\\&\quad -\lambda _1\int _{\Omega }(\alpha |u|^{\alpha -1}|v|^{\beta -1}v\bar{u}+\beta |u|^{\alpha -1}|v|^{\beta -1}u\bar{v})dx\\&\quad -\int _{\Omega }(\alpha f(x,u,v)\bar{u}+\beta g(x,u,v)\bar{v})dx+\int _{\Omega }(\alpha k_1(x)\bar{u}+\beta k_2(x)\bar{v})dx=0. \end{aligned}$$

We will use the following conditions

\((H_1)\)

  1. (i)

    For a.e \(x\in \Omega : f(x,.),g(x,.) \in C^1(R^2)\) and \(f(x,0,0)=0, g(x,0,0)=0\).

  2. (ii)

    There exists function \(\tau \in L^{p'}(\Omega ), p'=\frac{p}{p-1}\) such that:

    $$\begin{aligned} |f(x,s,t)|\le \tau (x), |g(x,s,t)|\le \tau (x), \text { for a.e } x\in \Omega , \forall (s,t)\in R^2. \end{aligned}$$
  3. (iii)

    For \((s,t)\in R^2\):

    $$\begin{aligned} \alpha \frac{\partial f(x,s,t)}{\partial t}=\beta \frac{\partial g(x,s,t)}{\partial s}\qquad \text { for a.e } x\in \Omega . \end{aligned}$$
    (1.5)

For \( (u,v)\in R^2\), a.e \(x\in \Omega \), define

$$\begin{aligned} H(x,u,v)=\frac{\alpha }{2}\int _0^u(f(x,s,v)+f(x,s,0))]ds+\frac{\beta }{2}\int _0^v(g(x,u,t)+g(x,0,t))dt. \end{aligned}$$
(1.6)

By hypotheses (1.5), from (1.6) with some simple computations we deduce that:

$$\begin{aligned} \frac{\partial H(x,s,t)}{\partial s}=\alpha f(x,s,t),\, \frac{\partial H(x,s,t)}{\partial t}=\beta g(x,s,t) \text {, for a.e } x\in \Omega , \forall (s,t)\in R^2. \end{aligned}$$
(1.7)

Now, for \(i,j=1,2\) we define

$$\begin{aligned} F_{i}(x)&=\underset{\tau \rightarrow +\infty }{\text {lim}}\frac{1}{\tau }\int _0^\tau \left\{ f\left( x,(-1)^{1+i}y\varphi _1,(-1)^{1+i}\tau \varphi _2\right) +f\left( x,(-1)^{1+i}y\varphi _1,0\right) \right\} dy \nonumber \\ G_{j}(x)&=\underset{\tau \rightarrow +\infty }{\text {lim}}\frac{1}{\tau }\int _0^\tau \left\{ g\left( x,(-1)^{1+j}\tau \varphi _1,(-1)^{1+j}y\varphi _2\right) +g\left( x,0,(-1)^{1+j}y\varphi _2\right) \right\} dy \end{aligned}$$
(1.8)

and

$$\begin{aligned} \underset{{s \rightarrow +\infty }\above 0pt {t \rightarrow +\infty }}{\text {lim}}f(x,s,t)=f^{+\infty }(x),\qquad&\underset{{s \rightarrow +\infty }\above 0pt {t \rightarrow +\infty }}{\text {lim}}g(x,s,t)=g^{+\infty }(x) \\ \underset{{s \rightarrow -\infty }\above 0pt {t \rightarrow -\infty }}{\text {lim}}f(x,s,t)=f^{-\infty }(x),\qquad&\underset{{s \rightarrow -\infty }\above 0pt {t \rightarrow -\infty }}{\text {lim}}g(x,s,t)=g^{-\infty }(x). \end{aligned}$$

Assume that

\((H_2)\)

  1. (i)
    $$\begin{aligned} f^{+\infty }(x)<k_1(x)<f^{-\infty }(x)&\nonumber \\ g^{+\infty }(x)<k_2(x)<g^{-\infty }(x)&\qquad \text { for a.e } x\in \Omega \end{aligned}$$
    (1.9)
  2. (ii)
    $$\begin{aligned}&\int _{\Omega }\left\{ \frac{1}{2}(\alpha F_2(x)\varphi _1(x)+\beta G_2(x)\varphi _2(x))-\frac{\alpha }{p}f^{-\infty }(x)\varphi _1(x)-\frac{\beta }{p}g^{-\infty }(x)\varphi _2(x)\right\} dx\nonumber \\&\quad <\left( 1-\frac{1}{p}\right) \int _{\Omega }(\alpha k_1(x)\varphi _1(x)+\beta k_2(x)\varphi _2(x))]dx\nonumber \\&\quad <\int _{\Omega }\left\{ \frac{1}{2}(\alpha F_1(x)\varphi _1(x)\!+\!\beta G_1(x)\varphi _2(x))-\frac{\alpha }{p}f^{+\infty }(x)\varphi _1(x)\!-\!\frac{\beta }{p}g^{+\infty }(x)\varphi _2(x)\right\} dx.\nonumber \\ \end{aligned}$$
    (1.10)

The main result of this paper can be described in the following theorem:

Theorem 1.1

Assuming conditions \((H_1)\), \((H_2)\) are fulfilled. Then the problem (1.1) has at least a nontrivial weak solution in \(E\).

Proof of Theorem 1.1 is based on variational techniques and the Saddle Point Theorem (P.H.Rabinowitz).

Theorem 1.2

(Saddle Point Theorem, P.H.Rabinowitz in [6]) Let \(E=X\oplus Y\) be a Banach space with \(Y\) closed in \(E\) and \(dim X<\infty \). For \(\varrho >0\) define

$$\begin{aligned} M:=\{u\in X:||u||\le \varrho \}\qquad \qquad M_0:=\{u\in X:||u||= \varrho \} \end{aligned}$$

Let \(F\in C^1(E,R)\) be such that

$$\begin{aligned} b:=\underset{u\in Y}{\text {inf}}F(u)>a:=\underset{u\in M_0}{\text {max}}F(u) \end{aligned}$$

If \(F\) satisfies the \((PS)_c\) condition with

$$\begin{aligned} c:=\underset{\gamma \in \Gamma }{\text {inf}}\underset{u\in M}{\text {max}} F(\gamma (u))\qquad \text {where } \Gamma :=\{\gamma \in C(M,E):\gamma |_{M_0}=I\}, \end{aligned}$$

then \(c\) is a critical value of \(F\).

2 Proof of the main result

We define the Euler–Lagrange functional associated to the problem (1.1) by

$$\begin{aligned} I(w)&= \frac{\alpha }{p}\int _{\Omega }|\nabla u|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v|^pdx-\lambda _1\int _{\Omega }|u|^{\alpha -1}|v|^{\beta -1}u.vdx\nonumber \\&-\int _{\Omega }H(x,u,v)dx+\int _{\Omega }(\alpha k_1(x)u+\beta k_2(x)v)dx\nonumber \\&= J(w)+T(w), \quad \text { for } w=(u,v)\in E, \end{aligned}$$
(2.1)

where

$$\begin{aligned} J(w)&= \frac{\alpha }{p}\int _{\Omega }|\nabla u|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v|^pdx. \end{aligned}$$
(2.2)
$$\begin{aligned} T(w)&= -\lambda _1\int _{\Omega }|u|^{\alpha -1}|v|^{\beta -1}u.vdx-\int _{\Omega }H(x,u,v)dx+\int _{\Omega }(\alpha k_1(x)u+\beta k_2(x)v)dx.\nonumber \\ \end{aligned}$$
(2.3)

We deduce that \( I \in C^1(E).\)

Remark 2.1

By similar arguments as those in the proof of Lemma 2.3 in [10] and Lemma 5 in [4], we infer that the functional \(A :E\rightarrow R\) and the operator \(B: E\rightarrow E^*\) given by, for any \((u,v), (\bar{u},\bar{v})\in E\)

$$\begin{aligned} A(u,v)=\int _{\Omega }|u|^{\alpha -1}|v|^{\beta -1}u.vdx \end{aligned}$$

and

$$\begin{aligned} <B(u,v),(\bar{u},\bar{v})>=\int _{\Omega }|u|^{\alpha -1}|v|^{\beta -1}\bar{u}vdx+\int _{\Omega }|u|^{\alpha -1}|v|^{\beta -1}u\bar{v}dx, \end{aligned}$$

are compact.

Remark 2.2

Applying Theorem 1.6 in [6, p9] we deduce that the functional \(J: E\rightarrow R\) given by (2.2) is weakly lower semicontinuous on \(E\). Hence the functional \(I=T+J\) is also weakly lower semicontinuous on \(E\).

Proposition 2.1

Assuming the hypotheses \((H_1)\) and \((H_2)\) are fulfilled. The functional \(I:E\rightarrow R\) given by (2.1) satisfies the \((PS)\) condition on \(E\).

Proof

Let \(\{w_m=(u_m,v_m)\}\) be a Palais–Smale sequence in \(E\), i.e:

$$\begin{aligned} |I(w_m)|\le M, M \text { is positive constant} \end{aligned}$$
(2.4)
$$\begin{aligned} I'(w_m)\rightarrow 0 \text { in } E^* \text { as } m\rightarrow +\infty \end{aligned}$$
(2.5)

First, we shall prove that \(\{w_m \}\) is bounded in \(E\). We suppose by contradiction that \(\{w_m\}\) is not bounded in \(E\). Without loss of generality we assume that

$$\begin{aligned} ||w_m||_E\rightarrow +\infty \text { as } m\rightarrow +\infty . \end{aligned}$$

Let \(\widehat{w}_m=\frac{w_m}{||w_m||_E}=(\widehat{u}_m,\widehat{v}_m)\) that is \(\widehat{u}_m=\frac{u_m}{||w_m||_E}\) and \(\widehat{v}_m=\frac{v_m}{||w_m||_E}\).

Thus \(\widehat{w}_m\) is bounded in \(E\). Then there exists a subsequence \(\{\widehat{w}_{m_k}=(\widehat{u}_{m_k},\widehat{v}_{m_k})\}_k\) which converges weakly to \(\widehat{w}=(\widehat{u},\widehat{v})\) in \(E\). Since the embedding \(W_0^{1,p}(\Omega )\) into \(L^p(\Omega )\) is compact, the sequences \(\{\widehat{u}_{m_k}\}\) and \(\{\widehat{v}_{m_k}\}\) converge strongly to \(\widehat{u}\) and \(\widehat{v}\) in \(L^p(\Omega )\) respectively.

From (2.4) we have

$$\begin{aligned}&\underset{k\rightarrow +\infty }{\text {lim}}\text {sup}\left\{ \frac{\alpha }{p}\int _{\Omega }|\nabla \widehat{u}_{m_k}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla \widehat{v}_{m_k}|^pdx-\lambda _1\int _{\Omega }|\widehat{u}_{m_k}|^{\alpha -1}|\widehat{v}_{m_k}|^{\beta -1}\widehat{u}_{m_k}\widehat{v}_{m_k}dx\right. \nonumber \\&\quad \left. -\int _{\Omega }\frac{H(x,w_{m_k})}{||w_{m_k}||^p_E}dx+\int _{\Omega }\frac{\alpha k_1 \widehat{u}_{m_k}+\beta k_2 \widehat{v}_{m_k}}{||w_{m_k}||^{p-1}_E}dx\right\} \le 0. \end{aligned}$$
(2.6)

By hypotheses \((H_1)\), we deduce that

$$\begin{aligned} H(x,w_{mk})\!=\!\frac{\alpha }{2}\int _0^{u_{m_k}}(f(x,s,v_{mk})\!+\!f(x,s,0))ds\!+\!\frac{\beta }{2}\int _0^{v_{m_k}}(g(x,u_{mk},t)\!+\!g(x,0,t))dt. \end{aligned}$$

This implies that \( |H(x,w_{mk})|\le c.\tau (x)(|u_{mk}|+|v_{mk}|)\), \(c\) is positive constant.

Hence,

$$\begin{aligned} \left| \int _\Omega \frac{H(x,w_{mk})}{||w_{mk}||^p}\right| \le \frac{c}{||w_{mk}||^{p-1}_E}||\tau ||_{L^{p'}(\Omega )}\big (||\widehat{u}_{mk}||_{L^p(\Omega )}+||\widehat{v}_{mk}||_{L^p(\Omega )}\big ). \end{aligned}$$

Since \(\widehat{u}_{m_k}\), \(\widehat{v}_{m_k}\) converge strongly in \(L^p(\Omega )\) then bounded in \(L^p(\Omega )\), hence

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}\text {sup}\int _\Omega \frac{H(x,w_{mk})}{||w_{mk}||_E^p}=0 \end{aligned}$$
(2.7)

and

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}\int _{\Omega }\frac{\alpha k_1 \widehat{u}_{m_k}+\beta k_2 \widehat{v}_{m_k}}{||w_{m_k}||^{p-1}_E}dx=0. \end{aligned}$$

From the compactness of operator \(A\) it follows that

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}\lambda _1\int _{\Omega }|\widehat{u}_{m_k}|^{\alpha -1}|\widehat{v}_{m_k}|^{\beta -1}\widehat{u}_{m_k}\widehat{v}_{m_k}dx=\lambda _1\int _{\Omega }|\widehat{u}|^{\alpha -1}|\widehat{v}|^{\beta -1}\widehat{u}.\widehat{v}dx. \end{aligned}$$
(2.8)

Using the weak lower semicontinuity of the functional \(J\) and the variational characterization of \(\lambda _1\) from (2.6) we get

$$\begin{aligned}&\lambda _1\int _{\Omega }|\widehat{u}|^{\alpha -1}|\widehat{v}|^{\beta -1}\widehat{u}.\widehat{v}dx\le \frac{\alpha }{p}\int _{\Omega }|\nabla \widehat{u}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla \widehat{v}|^pdx \nonumber \\&\quad \le \underset{k\rightarrow +\infty }{\text {lim}} \text {inf} \left\{ \frac{\alpha }{p}\int _{\Omega }|\nabla \widehat{u}_{m_k}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla \widehat{v}_{m_k}|^pdx\right\} \nonumber \\&\quad \le \underset{k\rightarrow +\infty }{\text {lim}} \text {sup} \left\{ \frac{\alpha }{p}\int _{\Omega }|\nabla \widehat{u}_{m_k}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla \widehat{v}_{m_k}|^pdx\right\} \le \lambda _1\int _{\Omega }|\widehat{u}|^{\alpha -1}|\widehat{v}|^{\beta -1}\widehat{u}.\widehat{v}dx.\nonumber \\ \end{aligned}$$
(2.9)

Thus, theses inequalities are indeed equalities and we have

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}} \left\{ \frac{\alpha }{p}\int _{\Omega }|\nabla \widehat{u}_{m_k}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla \widehat{v}_{m_k}|^pdx\right\}&= \frac{\alpha }{p}\int _{\Omega }|\nabla \widehat{u}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla \widehat{v}|^pdx\nonumber \\&= \lambda _1\int _{\Omega }|\widehat{u}|^{\alpha -1}|\widehat{v}|^{\beta -1}\widehat{u}.\widehat{v}dx. \end{aligned}$$
(2.10)

We shall prove that \(\widehat{u}\not = 0\) and \(\widehat{v}\not =0\).

By contradiction suppose that \(\widehat{u}=0\), thus \(\widehat{u}_{m_k}\rightarrow 0\) in \(L^p(\Omega )\) as \(k\rightarrow +\infty \). We have

$$\begin{aligned} |A(\widehat{u}_{m_k},\widehat{v}_{m_k})|&= \left| \int _{\Omega }|\widehat{u}_{m_k}|^{\alpha -1}|\widehat{v}_{m_k}|^{\beta -1}\widehat{u}_{m_k}\widehat{v}_{m_k}dx\right| \\&\le ||\widehat{u}_{m_k}||^{\alpha }_{L^p(\Omega )}.||\widehat{v}_{m_k}||^{\beta }_{L^p(\Omega )}. \end{aligned}$$

Since \(||\widehat{u}_{m_k}||_{L^p(\Omega )}\rightarrow 0\), letting \(k\rightarrow +\infty \) shows that

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}A(\widehat{u}_{m_k},\widehat{v}_{m_k})=0. \end{aligned}$$
(2.11)

From (2.6) taking \(\underset{k\rightarrow +\infty }{\text {lim}}\text {sup}\) with (2.7) and (2.10) we arrive at

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}\text {sup}\left\{ \frac{\alpha }{p}\int _{\Omega }|\nabla \widehat{u}_{m_k}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla \widehat{v}_{m_k}|^pdx\right\} =0. \end{aligned}$$
(2.12)

On the other hand, since \(||\widehat{w}_{m_k}||_E=1\) and

$$\begin{aligned} \frac{\alpha }{p}\int _{\Omega }|\nabla \widehat{u}_{m_k}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla \widehat{v}_{m_k}|^pdx\ge \text {min}\left( \frac{\alpha }{p},\frac{\beta }{p}\right) .||\widehat{w}_{m_k}||_E=\text {min}\left( \frac{\alpha }{p},\frac{\beta }{p}\right) >0 \end{aligned}$$

which contradicts (2.11). Thus \(\widehat{u}\not =0\). Similary we have \(\widehat{v}\not =0\).

By again the definition of \(\lambda _1\) from (2.10) we deduce that

$$\begin{aligned} \widehat{w}=(\widehat{u},\widehat{v})=(\varphi _1,\varphi _2) \text { or } \widehat{w}=(\widehat{u},\widehat{v})=(-\varphi _1,-\varphi _2), \end{aligned}$$

where \(({\varphi _1},{\varphi _2})\) is eigenpair associated with \(\lambda _1\) of the problem (1.3).

Next, we shall consider following two cases:

Firstly, assume that \(\widehat{u}_{m_k}\rightarrow {\varphi _1},\widehat{v}_{m_k}\rightarrow {\varphi _2}\) in \(L^p(\Omega )\) as \(k\rightarrow +\infty \).

From (2.4) we have

$$\begin{aligned} -M&\le -\frac{\alpha }{p}\int _{\Omega }|\nabla u_{m_k}|^pdx-\frac{\beta }{p}\int _{\Omega }|\nabla v_{m_k}|^pdx+\lambda _1\int _{\Omega }|u_{m_k}|^{\alpha -1}|v_{m_k}|^{\beta -1}u_{m_k}v_{m_k}dx\nonumber \\&+\int _{\Omega }H(x,w_{m_k})dx-\int _{\Omega }(\alpha k_1u_{m_k}+\beta k_2v_{m_k})dx\le M. \end{aligned}$$
(2.13)

Moreover, from (2.5) there exists the sequence \(\epsilon _k\), \(\epsilon _k\rightarrow 0^+\), \(k\rightarrow +\infty \) such that

$$\begin{aligned} |<I'(w_{m_k}),\left( \frac{u_{m_k}}{p},\frac{v_{m_k}}{p}\right) >| \le \epsilon _k.\frac{1}{p}||w_m||_E. \end{aligned}$$

This implies

$$\begin{aligned}&-\epsilon _{k}.\frac{1}{p}||w_{m_k}||_E\le \alpha \int _{\Omega }|\nabla u_{m_k}|^{p-2}\nabla u_{m_k}\nabla \left( \frac{u_{m_k}}{p}\right) dx+\beta \int _{\Omega }|\nabla v_{m_k}|^{p-2}\nabla v_{m_k}\nabla \left( \frac{v_{m_k}}{p}\right) dx\nonumber \\&\qquad -\lambda _1\int _{\Omega }\left( \alpha |u_{m_k}|^{\alpha -1}|v_{m_k}|^{\beta -1}v_{m_k}\left( \frac{u_{m_k}}{p}\right) +\beta |u_{m_k}|^{\alpha -1}|v_{m_k}|^{\beta -1}u_{m_k}\left( \frac{v_{m_k}}{p}\right) \right) dx\nonumber \\&\qquad -\int _{\Omega }\left( \alpha f\big (x,w_{m_k}\big )\frac{u_{m_k}}{p}+\beta g\big (x,w_{m_k}\big )\frac{v_{m_k}}{p}\right) dx+\int _{\Omega }\left( \alpha k_1\frac{u_{m_k}}{p}+\beta k_2\frac{v_{m_k}}{p}\right) dx \nonumber \\&\quad \le \epsilon _{k}.\frac{1}{p}||w_{m_k}||_E. \end{aligned}$$

Remark that \(\alpha +\beta =p\), we get

$$\begin{aligned}&-\epsilon _{k}.\frac{1}{p}||w_{m_k}||_E\le \frac{\alpha }{p} \int _{\Omega }|\nabla u_{m_k}|^pdx+\frac{\beta }{p} \int _{\Omega }|\nabla v_{m_k}|^pdx\nonumber \\&\quad -\lambda _1\int _{\Omega }\big (\alpha |u_{m_k}|^{\alpha -1}|v_{m_k}|^{\beta -1}u_{m_k}v_{m_k}\big )dx\!-\!\int _{\Omega }\left( \alpha f\big (x,w_{m_k}\big )\frac{u_{m_k}}{p}+\beta g\big (x,w_{m_k}\big )\frac{v_{m_k}}{p}\right) dx\nonumber \\&\quad +\int _{\Omega }\left( \frac{\alpha }{p} k_1 u_{m_k}+\frac{\beta }{p} k_2v_{m_k}\right) dx\le \epsilon _{k}.\frac{1}{p}||w_{m_k}||_E. \end{aligned}$$
(2.14)

Hence, summing (2.13), (2.14) we obtain

$$\begin{aligned}&-M-\frac{\epsilon _k}{p}||w_{m_k}||_E\le \int _{\Omega } \left( H\big (x,w_{m_k}\big )-\left( \frac{\alpha }{p}f\big (x,w_{m_k}\big )u_{m_k}+\frac{\beta }{p}g\big (x,w_{m_k}\big )v_{m_k}\right) \right) dx \nonumber \\&\quad -\int _{\Omega }\left( \alpha \left( 1-\frac{1}{p}\right) k_1 u_{m_k}+\beta \left( 1-\frac{1}{p}\right) k_2 v_{m_k}\right) dx\le M+\frac{\epsilon _k}{p}||w_{m_k}||_E. \end{aligned}$$
(2.15)

After dividing (2.15) by \(||w_{m_k}||_E\), letting \(\underset{k\rightarrow +\infty }{\text {lim}}\text {sup}\) we deduce that

$$\begin{aligned}&\underset{k\rightarrow +\infty }{\text {lim}}\text {sup}\int _{\Omega }\left\{ \frac{H(x,w_{m_k})}{||w_{m_k}||_E}-\frac{\alpha }{p}f(x,w_{m_k})\widehat{u}_{m_k}-\frac{\beta }{p}g(x,w_{m_k})\widehat{v}_{m_k}\right\} dx\nonumber \\&\quad =\left( 1-\frac{1}{p}\right) \int _{\Omega }(\alpha k_1 \varphi _1+\beta k_2\varphi _2)dx. \end{aligned}$$
(2.16)

We remark that, from (1.6) by some standard computations we get

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}\text {sup}\int _{\Omega }\frac{H(x,w_{m_k})}{||w_{m_k}||_E}dx=\frac{1}{2}\int _{\Omega }(\alpha F_1\varphi _1+\beta G_1\varphi _2)dx, \end{aligned}$$

where \(F_1(x), G_1(x) \) are given by (1.8).

Letting \(\underset{k\rightarrow +\infty }{\text {lim}}\text {sup}\) (2.16) we obtain

$$\begin{aligned}&\int _{\Omega }\left\{ \frac{1}{2}(\alpha F_1\varphi _1+\beta G_1\varphi _2)-\frac{\alpha }{p}f^{+\infty }\varphi _1-\frac{\beta }{p}g^{+\infty }\varphi _2\right\} dx\\&\quad =\left( 1-\frac{1}{p}\right) \int _{\Omega }(\alpha k_1 \varphi _1+\beta k_2\varphi _2)dx, \end{aligned}$$

which contradicts \((H_2(ii))\).

Similarly, in the case when \(\widehat{u}_{m_k}\rightarrow {-\varphi _1}, \widehat{v}_{m_k}\rightarrow {-\varphi _2}\), in \(L^p(\Omega )\) as \(k\rightarrow +\infty \), by similar computations, we also have

$$\begin{aligned}&\int _{\Omega }\left\{ \frac{1}{2}(\alpha F_2\varphi _1+\beta G_2\varphi _2)-\frac{\alpha }{p}f^{-\infty }\varphi _1-\frac{\beta }{p}g^{-\infty }\varphi _2\right\} dx\\&\quad =\left( 1-\frac{1}{p}\right) \int _{\Omega }(\alpha k_1 \varphi _1+\beta k_2\varphi _2)dx, \end{aligned}$$

where \(F_2(x), G_2(x) \) are given by (1.8), which contradicts \((H_2(ii))\).

This implies that the \((PS)\) sequence \(\{w_m\}\) is bounded in \(E\). Then there exists a subsequence \(w_{m_k}\) which converges weakly to \(w_0=(u_0,v_0)\in E.\)

We shall prove that \(w_{m_k}\) converges strongly to \(w_0=(u_0,v_0)\in E.\)

Indeed, since \(w_{m_k}\rightharpoonup w_0=(u_0,v_0)\) in \(E\) and the embedding \(W^{1,p}_0\times W^{1,p}_0\hookrightarrow L^p(\Omega )\times L^p(\Omega )\) is compact, the subsequences \(u_{m_k}\), \(v_{m_k}\) converge strongly to \(u_0,v_0\) in \(L^p\) respectively. We have

$$\begin{aligned}&|T'(w_{m_k},(w_{m_k}-w_0))|\le \lambda _1\left\{ \int _{\Omega }\alpha |u_{m_k}|^{\alpha -1}|v_{m_k}|^\beta |u_{m_k}-u_0|dx\right. \nonumber \\&\qquad +\left. \int _{\Omega }\beta |u_{m_k}|^{\alpha }|v_{m_k}|^{\beta -1}|v_{m_k}-v_0|dx\right\} +\int _{\Omega }\left\{ \alpha |f(x,w_{m_k})||u_{m_k}-u_0|\right. \nonumber \\&\qquad +\left. \beta |g(x,w_{m_k})||v_{m_k}-v_0|\right\} dx+\int _{\Omega }\left\{ \alpha k_1(x)|u_{m_k}-u_0|+\beta k_2(x)|v_{m_k}-v_0|\right\} dx \nonumber \\&\quad \le \lambda _1\left\{ \alpha ||u_{m_k}||^{\alpha -1}_{L^p}||v_{m_k}||^{\beta }_{L^p}||u_{m_k}-u_0||_{L^p}+\beta ||u_{m_k}||^{\alpha }_{L^p}||v_{m_k}||^{\beta -1}_{L^p}||v_{m_k}-v_0||_{L^p}\right\} \nonumber \\&\qquad +\,||\tau ||_{L^{p'}}(\alpha ||u_{m_k}-u_0||_{L^p}+\beta ||v_{m_k}-v_0||_{L^p})\nonumber \\&\qquad +\,\alpha ||k_1||_{L^{p'}}||u_{m_k}-u_0||_{L^p} +\beta ||k_2||_{L^{p'}}||u_{m_k}-u_0||_{L^p}. \end{aligned}$$
(2.17)

Letting \(k\rightarrow +\infty \) and remark that \(||u_{m_k}-u_0||_{L^p}\rightarrow 0 \), \(||v_{m_k}-v_0||_{L^p}\rightarrow 0 \). We obtain

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}<T'(w_{m_k}),(w_{m_k}-w_0)>\,=\,0. \end{aligned}$$

Moreover,

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}(J'(w_{m_k}),(w_{m_k}-w_0)) =\underset{k\rightarrow +\infty }{\text {lim}}\left\{ (I'(w_{m_k}),(w_{m_k}-w_0))-(T'(w_{m_k}),(w_{m_k}-w_0))\right\} . \end{aligned}$$

We have

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}(J'(w_{m_k}),(w_{m_k}-w_0))=0 \end{aligned}$$

i.e

$$\begin{aligned} (J'(w_{m_k}),(w_{m_k}-w_0))&= \alpha \int _{\Omega }|\nabla u_{m_k}|^{p-2}|\nabla u_{m_k}|\nabla (u_{m_k}-u_0)dx\nonumber \\&+\,\beta \int _{\Omega }|\nabla v_{m_k}|^{p-2}|\nabla v_{m_k}|\nabla (v_{m_k}-v_0)dx\rightarrow 0 \qquad \text { as } k\rightarrow +\infty .\nonumber \\ \end{aligned}$$
(2.18)

Since \(w_{m_k}\rightharpoonup w_0\) in \(E\) and \(J'(w_0)\in E^*\),\( (J'(w_0),(w_{m}-w_0))\rightarrow 0\) as \(k\rightarrow +\infty \).

That is

$$\begin{aligned} (J'(w_{0}),(w_{m_k}-w_0))&= \alpha \int _{\Omega }|\nabla u_{0}|^{p-2}|\nabla u_{0}|\nabla (u_{m_k}-u_0)dx\nonumber \\&+\,\beta \int _{\Omega }|\nabla v_{0}|^{p-2}|\nabla v_{0}|\nabla (v_{m_k}-v_0)dx \rightarrow 0, \qquad \text { as } k\rightarrow +\infty .\nonumber \\ \end{aligned}$$
(2.19)

Using the well-know inequality:

$$\begin{aligned} (|s|^{r-2}s-|\bar{s}|^{r-2})(s-\bar{s})\ge c_r |s-\bar{s}|^{r}, \end{aligned}$$

for \(s,\bar{s} \in R^N\), \(r\ge 2\), we deduce that

$$\begin{aligned}&<J'(w_{m_k})-J'(w_0),(w_{m_k}-w_0)>\\&\quad =\alpha \int _{\Omega }(|\nabla u_{m_k}|^{p-2}\nabla u_{m_k}-|\nabla u_{0}|^{p-2}\nabla u_{0})\nabla (u_{m_k}-u_0)dx\\&\qquad +\,\beta \int _{\Omega }(|\nabla v_{m_k}|^{p-2}\nabla v_{m_k}-|\nabla v_{0}|^{p-2}\nabla v_{0})\nabla (v_{m_k}-v_0)dx \\&\quad \ge c_1||u_{m_k}-u_0||_{W^{1,p}_0}+c_2||v_{m_k}-v_0||_{W^{1,p}_0}. \end{aligned}$$

From (2.18), (2.19) it follows that the left-hand side of this inequality converges to zero as \(k\rightarrow +\infty \). Then we arrive at \(u_{m_k}\rightarrow u_0\), \(v_{m_k}\rightarrow v_0\) as \(k\rightarrow +\infty \) in \(W_0^{1,p}(\Omega )\).

Hence, we deduce that \(\{w_{m_k}\}\) converges strongly to \(w_0\) in \(E\).

Therefore, the functional \(I\) satisfies the Palais\(-\)Smale condition in \(E\).

The proof of the Proposition 2.1 is complete.

Splitting \(E\) as the direct sum of \(X,Y\): \(E=X\oplus Y\) where

$$\begin{aligned} X&= L(\varphi )=\{t\varphi =t(\varphi _1,\varphi _2),\quad t\in R\}\\ Y&= \left\{ w=(u,v)\in E:\int _{\Omega }(u\varphi _1^{\alpha -1}\varphi _2^{\beta }+v\varphi _1^{\alpha }\varphi _2^{\beta -1})dx=0\right\} , \end{aligned}$$

where \(\varphi =(\varphi _1,\varphi _2)\) is a nomarlized eigenpair associated with the eigenvalue \(\lambda _1\) of the problem (1.3)

$$\begin{aligned} ||(\varphi _1,\varphi _2)||=\left( \int _{\Omega }|\nabla \varphi _1|^pdx+\int _{\Omega }|\nabla \varphi _2|^pdx\right) ^{\frac{1}{p}}=1. \end{aligned}$$

Since \(w=(u,v)\in E \), \( w=t(\varphi _1,\varphi _2)+w_0\), \(w_0=(u_0,v_0)\in Y\).

$$\begin{aligned} u&= t\varphi _1+u_0 \end{aligned}$$
(2.20)
$$\begin{aligned} v&= t\varphi _2+v_0 \end{aligned}$$
(2.21)

Multiplying the equations in (2.20), (2.21) by \(\varphi _1^{\alpha -1}\varphi _2^{\beta }\lambda _1\) and \(\varphi _1^{\alpha }\varphi _2^{\beta -1}\lambda _1\) respectively, we have

$$\begin{aligned} \lambda _1 u\varphi _1^{\alpha -1}\varphi _2^{\beta }&= \lambda _1 t\varphi _1^{\alpha }\varphi _2^{\beta }+\lambda _1 u_0\varphi _1^{\alpha -1}\varphi _2^{\beta }. \end{aligned}$$
(2.22)
$$\begin{aligned} \lambda _1 v\varphi _1^{\alpha }\varphi _2^{\beta -1}&= \lambda _1 t\varphi _1^{\alpha }\varphi _2^{\beta }+\lambda _1 v_0\varphi _1^{\alpha }\varphi _2^{\beta -1}. \end{aligned}$$
(2.23)

We remark that

$$\begin{aligned} -\Delta _p\varphi _1=-\text {div} (|\nabla \varphi _1|^{p-2}\nabla \varphi _1)=\lambda _1\varphi _1^{\alpha -1}\varphi _2^{\beta }. \end{aligned}$$

From (2.22) we have \(\lambda _1 u \varphi _1^{\alpha -1}\varphi _2^{\beta }=t(-\text {div} (|\nabla \varphi _1|^{p-2}\nabla \varphi _1))\varphi _1+\lambda _1 u_0\varphi _1^{\alpha -1}\varphi _2^{\beta }\).

By integrating both sides of (2.22), we obtain that

$$\begin{aligned} \lambda _1\int _{\Omega } u \varphi _1^{\alpha -1}\varphi _2^{\beta }dx&= t\int _{\Omega }\left( -\text {div} (|\nabla \varphi _1|^{p-2}\nabla \varphi _1)\right) \varphi _1dx+\lambda _1\int _{\Omega } u_0\varphi _1^{\alpha -1}\varphi _2^{\beta }dx \nonumber \\&= t\int _{\Omega }|\nabla \varphi _1|^pdx+\lambda _1\int _{\Omega }u_0\varphi _1^{\alpha -1}\varphi _2^{\beta }dx. \end{aligned}$$
(2.24)

Similary, from (2.23) we also have

$$\begin{aligned} \lambda _1\int _{\Omega } v\varphi _1^{\alpha }\varphi _2^{\beta -1}dx=t\int _{\Omega }|\nabla \varphi _2|^pdx+\lambda _1\int _{\Omega }v_0\varphi _1^{\alpha }\varphi _2^{\beta -1}dx. \end{aligned}$$
(2.25)

Hence combining (2.24) and (2.25) we obtain

$$\begin{aligned} \lambda _1\int _{\Omega }\left( u \varphi _1^{\alpha -1}\varphi _2^{\beta }+v\varphi _1^{\alpha }\varphi _2^{\beta -1}\right) dx&= t\int _{\Omega }|\nabla \varphi _1|^pdx+\lambda _1\int _{\Omega }u_0\varphi _1^{\alpha -1}\varphi _2^{\beta }dx\\&+\, t\int _{\Omega }|\nabla \varphi _2|^pdx+\lambda _1\int _{\Omega }v_0\varphi _1^{\alpha }\varphi _2^{\beta -1}dx. \end{aligned}$$

Since \((u_0,v_0)\in Y\), we have

$$\begin{aligned} \int _{\Omega }\left( u_0 \varphi _1^{\alpha -1}\varphi _2^{\beta }+v_0\varphi _1^{\alpha }\varphi _2^{\beta -1}\right) dx =0. \end{aligned}$$

Thus, for any \(w\in E\) such that \(w=t\varphi +w_0\), \(w_0\in Y\) we get

$$\begin{aligned} t=\frac{\lambda _1\int _{\Omega }\left( u \varphi _1^{\alpha -1}\varphi _2^{\beta }+v\varphi _1^{\alpha }\varphi _2^{\beta -1}\right) dx}{\int _{\Omega }|\nabla \varphi _1|^pdx+\int _{\Omega }|\nabla \varphi _2|^pdx}=\lambda _1\int _{\Omega }\left( u \varphi _1^{\alpha -1}\varphi _2^{\beta }+v\varphi _1^{\alpha }\varphi _2^{\beta -1}\right) dx. \end{aligned}$$
(2.26)

Moreover, if \(w=t\varphi +\tilde{w}\) where \(t\) is defined in (2.26) then \(\tilde{w}\in Y.\)

Therefore, \(E=X\oplus Y.\)

Lemma 2.1

Exists \(\bar{\lambda }>\lambda _1\) such that

$$\begin{aligned} \frac{\alpha }{p}\int _{\Omega }|\nabla u|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v|^pdx\ge \bar{\lambda }\int _{\Omega }|u|^{\alpha -1}|v|^{\beta -1}uvdx\text {, }\forall w=(u,v)\in Y. \end{aligned}$$

Proof

Let \(\lambda =\text {inf}\{ \frac{\alpha }{p}\int _{\Omega }|\nabla u|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v|^pdx: (u,v)\in Y, \int _{\Omega }|u|^{\alpha -1}|v|^{\beta -1}uvdx=1 \}\).

We shall prove that this value is attained in \(Y\).

Let \(w_m=(u_m,v_m)\in Y\) be a minimizing sequence i.e

$$\begin{aligned} \int _{\Omega }|u_m|^{\alpha -1}|v_m|^{\beta -1}u_mv_mdx=1, \quad \text {for } m=1,2,... \end{aligned}$$

and

$$\begin{aligned} \underset{m\rightarrow +\infty }{\text {lim}}\frac{\alpha }{p}\int _{\Omega }|\nabla u_m|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v_m|^pdx=\lambda . \end{aligned}$$

This implies that \(\{w_m\}\) is bounded in \(E\). Hence there exists a subsequence \(\{w_{m_k}\}\) of \(\{w_m\}\) which weakly converges to \(w_0=(u_0,v_0)\in E\) and the compactness of the embedding \(W_0^{1,p}(\Omega )\) into \(L^p(\Omega )\) implies that the subsequences \(\{u_{m_k}\}\) and \(\{v_{m_k}\}\) converge strongly to \(u_0\) and \(v_0\) respectively in \(L^p(\Omega )\).

Observe further that with \(\alpha +\beta =p\)

$$\begin{aligned}&\int _{\Omega }\left( (u_{m_k}-u_0)\varphi _1^{\alpha -1}\varphi _2^{\beta }+(v_{m_k}-v_0)\varphi _1^{\alpha }\varphi _2^{\beta -1}\right) dx \\&\quad \le ||u_{m_k}-u_0||_{L^p}||\varphi _1||^{\alpha -1}_{L^p}|\varphi _2||^{\beta }_{L^p}+||v_{m_k}-v_0||_{L^p}||\varphi _1||^{\alpha }_{L^p}|\varphi _2||^{\beta -1}_{L^p}. \end{aligned}$$

Since \(||u_{m_k}-u_0||_{L^p(\Omega )}\rightarrow 0\), \(||v_{m_k}-v_0||_{L^p(\Omega )}\rightarrow 0\) as \(k\rightarrow +\infty \), we deduce that

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}\int _{\Omega }\left( u_{m_k}\varphi _1^{\alpha -1}\varphi _2^{\beta }+v_{m_k}\varphi _1^{\alpha }\varphi _2^{\beta -1}\right) dx= \int _{\Omega }\left( u_{0}\varphi _1^{\alpha -1}\varphi _2^{\beta }+v_{0}\varphi _1^{\alpha }\varphi _2^{\beta -1}\right) dx. \end{aligned}$$

From this it follows that

$$\begin{aligned} \int _{\Omega }\left( u_{0}\varphi _1^{\alpha -1}\varphi _2^{\beta }+v_{0}\varphi _1^{\alpha }\varphi _2^{\beta -1}\right) dx =0, \end{aligned}$$

hence \((u_0,v_0)\in Y\).

On the other hand, by the continuity of the operator \(A\)

$$\begin{aligned} \underset{k\rightarrow +\infty }{\text {lim}}\int _{\Omega }|u_{m_k}|^{\alpha -1}|v_{m_k}|^{\beta -1}u_{m_k}v_{m_k}dx=\int _{\Omega }|u_{0}|^{\alpha -1}|v_{0}|^{\beta -1}u_{0}v_{0}dx. \end{aligned}$$

This implies

$$\begin{aligned} \int _{\Omega }|u_{0}|^{\alpha -1}|v_{0}|^{\beta -1}u_{0}v_{0}dx =1. \end{aligned}$$

So \(u_0 \not = 0\) and \(v_0 \not = 0\).

Moreover, since the functional \(J\) given by (2.2) is lower weakly semicontinuous, we obtain

$$\begin{aligned} \lambda \le J(u_0,v_0)&= \frac{\alpha }{p}\int _{\Omega }|\nabla u_{m_k}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v_{m_k}|^pdx\\&\le \underset{m\rightarrow +\infty }{\text {lim}} inf \left\{ \frac{\alpha }{p}\int _{\Omega }|\nabla u_{m_k}|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v_{m_k}|^pdx\right\} =\lambda , \end{aligned}$$

hence

$$\begin{aligned} \lambda =J(u_0,v_0)=\frac{\alpha }{p}\int _{\Omega }|\nabla u_0|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v_0|^pdx. \end{aligned}$$

It means that \(\lambda \) is attained at \(w_0\).

Our goal is to show that \(\lambda >\lambda _1\).

By the variational characterization of \(\lambda _1\), it is clear that: \(\lambda \ge \lambda _1\).

If \(\lambda =\lambda _1\), by simplicity of \(\lambda _1\) there exists \(t\in R\) such that \(w_0=(u_0,v_0)=t(\varphi _1,\varphi _2)\). Since \(w_0=(u_0,v_0)\in Y\)

$$\begin{aligned} 0=\int _{\Omega }\left( t\varphi _1 \varphi _1^{\alpha -1}\varphi _2^{\beta }+t\varphi _2 \varphi _1^{\alpha }\varphi _2^{\beta -1}\right) dx=t\int _{\Omega }\varphi _1^{\alpha }\varphi _2^{\beta }dx. \end{aligned}$$

This contradicts the fact that

$$\begin{aligned} 1= \int _{\Omega }|u_{0}|^{\alpha -1}|v_{0}|^{\beta -1}u_{0}v_{0}dx =t\int _{\Omega }\varphi _1^{\alpha }\varphi _2^{\beta }dx. \end{aligned}$$

Thus, there exists \( \bar{\lambda }\) such that: \( \bar{\lambda }>\lambda _1\) and the proof of proposition is complete. \(\square \)

Proposition 2.2

The functional \(I\) given by (2.1) is coercive on \(Y\) provided hypotheses \((H_1)\) and \((H_2)\) hold.

Proof

Observe that by Holder inequality, Lemma 2.1, hypotheses \((H_1)\), \((H_2)\), we have

$$\begin{aligned}&|I(w)|=|\frac{\alpha }{p}\int _{\Omega }|\nabla u|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v|^pdx-\lambda _1\int _{\Omega }|u|^{\alpha -1}|v|^{\beta -1}uvdx\\&\qquad - \int _{\Omega }H(x,u,v)dx+\int _{\Omega }(\alpha k_1 u+\beta k_2 v)dx|\\&\quad \ge | \text {min}\left( \frac{\alpha }{p};\frac{\beta }{p}\right) ||w||_E^p -\frac{\lambda _1}{\bar{\lambda }}\left( \frac{\alpha }{p}\int _{\Omega }|\nabla u|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla v|^pdx\right) \\&\qquad -\int _{\Omega }\tau (x)(|u|+|v|)dx-\alpha ||k_1||_{L^{p'}}||u||_{L^p}-\beta ||k_2||_{L^{p'}}||v||_{L^p}|\\&\quad \ge |\left( 1-\frac{\lambda _1}{\bar{\lambda }}\right) \text {min}\left( \frac{\alpha }{p};\frac{\beta }{p}\right) ||w||_E^p-(||\tau ||_{L^{p'}}\\&\qquad +\,\alpha ||k_1||_{L^{p'}})||u||_{L^p}-(||\tau ||_{L^{p'}}+\beta ||k_2||_{L^{p'}})||v||_{L^p}|\\&\quad \ge |\left( 1\!-\!\frac{\lambda _1}{\bar{\lambda }}\right) \text {min}\left( \frac{\alpha }{p};\frac{\beta }{p}\right) ||w||_E^p\!-\!\text {max}\left\{ (||\tau ||_{L^{p'}}\!+\!\alpha ||k_1||_{L^{p'}}),(||\tau ||_{L^{p'}}\!+\!\beta ||k_2||_{L^{p'}})\!\right\} \!.\\&\qquad .c(||u||_{W_0^{1,p}}+||v||_{W_0^{1,p}})|. \end{aligned}$$

Since \(||w_E||\rightarrow +\infty \) and \(\left( 1-\frac{\lambda _1}{\bar{\lambda }}\right) >0\), \(p\ge 2\), we obtain \(I(w)\rightarrow +\infty \).

Thus the functional \(I\) given by (2.1) is coercive on \(Y\) and Proposition 2.2 is proved. \(\square \)

From Proposition 2.1 the functional \(I\) is coercive on \(Y\), so that

$$\begin{aligned} B_Y=\underset{w\in Y}{\text {min}}I(w)>-\infty . \end{aligned}$$

On the other hand, for every \( t\in R\) we have

$$\begin{aligned} \frac{\alpha }{p}\int _{\Omega }|\nabla (t\varphi _1)|^pdx+\frac{\beta }{p}\int _{\Omega }|\nabla (t\varphi _2)|^pdx-\lambda _1\int _{\Omega }|t\varphi _1|^{\alpha -1}|t\varphi _2|^{\beta -1}(t\varphi _1)(t\varphi _2)dx=0 \end{aligned}$$

as follows from the definition of \(\lambda _1\) and \(\varphi \). Thus,

$$\begin{aligned} I(t\varphi )&= t\int _{\Omega }(\alpha k_1\varphi _1+\beta k_2 \varphi _2)dx-\int _{\Omega }H(x,t\varphi )dx\\&= t\int _{\Omega }\Big ((\alpha k_1\varphi _1+\beta k_2 \varphi _2)-\frac{H(x,t\varphi )}{t}\Big )dx. \end{aligned}$$

Remark that

$$\begin{aligned} \frac{H(x,t\varphi )}{t}&= \frac{1}{t}\left\{ \frac{\alpha }{2}\int _0^{t\varphi _1}(f(x,s,t\varphi _2)+f(x,s,0))ds\right. \\&\qquad +\left. \frac{\beta }{2}\int _0^{t\varphi _2}(g(x,t\varphi _1,\tau )+g(x,0,\tau ))d\tau \right\} \\&= \frac{1}{t}\left\{ \frac{\alpha }{2}\int _0^{t}((f(x,y\varphi _1,t\varphi _2)+f(x,y\varphi _1,0))dy)\varphi _1\right. \\&\qquad +\left. \frac{\beta }{2}\int _0^{t}((g(x,t\varphi _1,y\varphi _2)+g(x,0,y\varphi _2))dy)\varphi _2\right\} . \end{aligned}$$

Hence,

$$\begin{aligned} \underset{t\rightarrow +\infty }{\text {lim}}\frac{H(x,t\varphi )}{t}=\frac{1}{2}(\alpha F_1(x)\varphi _1+\beta G_1(x)\varphi _2). \end{aligned}$$

Therefore,

$$\begin{aligned}&\underset{t\rightarrow +\infty }{\text {lim}}t\int _{\Omega }\Big ((\alpha k_1\varphi _1+\beta k_2 \varphi _2)-\frac{H(x,t\varphi )}{t}\Big )dx\\&\quad =\underset{t\rightarrow +\infty }{\text {lim}}t\int _{\Omega }\left\{ (\alpha k_1\varphi _1+\beta k_2 \varphi _2)-\frac{1}{2}(\alpha F_1(x)\varphi _1+\beta G_1(x)\varphi _2)\right\} dx. \end{aligned}$$

On the other hand, from \((H_{2}(i))\) we obtain

$$\begin{aligned} \frac{1}{p}\int _{\Omega }(\alpha f^{+\infty }\varphi _1+\beta g^{+\infty }\varphi _2)dx<\frac{1}{p}\int _{\Omega }\left( \alpha k_1\varphi _1+\beta k_2 \varphi _2\right) dx. \end{aligned}$$

It follows from \(H_{2}(ii)\) that

$$\begin{aligned}&\int _{\Omega }\left\{ \frac{1}{2}(\alpha F_1(x)\varphi _1+\beta G_1(x)\varphi _2)-\frac{\alpha }{p} f^{+\infty }(x)\varphi _1-\frac{\beta }{p} g^{+\infty }(x)\varphi _2\right\} dx\\&\quad >\left( 1-\frac{1}{p}\right) \int _{\Omega }(\alpha k_1\varphi _1+\beta k_2 \varphi _2)dx. \end{aligned}$$

Thus,

$$\begin{aligned} \int _{\Omega }\left\{ \frac{1}{2}(\alpha F_1(x)\varphi _1+\beta G_1(x)\varphi _2)-(\alpha k_1\varphi _1+\beta k_2 \varphi _2)\right\} dx>0. \end{aligned}$$

This shows that

$$\begin{aligned} \underset{t\rightarrow +\infty }{\text {lim}}I(t\varphi )=-\infty . \end{aligned}$$

Next, with \(t<0\) we also have

$$\begin{aligned} \frac{H{(x,t\varphi )}}{t}&= \frac{1}{t}\left\{ \frac{\alpha }{2}\int _0^{t\varphi _1}(f(x,s,t\varphi _2)+f(x,s,0))ds\right. \\&\left. +\frac{\beta }{2}\int _0^{t\varphi _2}(g(x,t\varphi _1,\tau )+g(x,0,\tau ))d\tau \right\} \\&= -\frac{1}{|t|}\left\{ \frac{\alpha }{2}\int _0^{-|t|\varphi _1}(f(x,s,-|t|\varphi _2)+f(x,s,0))ds\right. \\&\left. +\frac{\beta }{2}\int _0^{-|t|\varphi _2}(g(x,-|t|\varphi _1,\tau )+g(x,0,\tau ))d\tau \right\} . \end{aligned}$$

Set \(s=-y\varphi _1 \rightarrow ds=-\varphi _1 dy\) and \(s=-|t|\varphi _1=-y\varphi _1\Rightarrow y=|t|\)

$$\begin{aligned} \frac{H{(x,t\varphi )}}{t}&= -\frac{1}{|t|}\left\{ \frac{\alpha }{2}\int _0^{-|t|}((f(x,-y\varphi _1,-|t|\varphi _2)+f(x,-y\varphi _1,0))dy)(-\varphi _1)\right. \\&\left. +\frac{\beta }{2}\int _0^{-|t|}((g(x,-|t|\varphi _1,-y\varphi _2)+g(x,0,-y\varphi _2))dy)(-\varphi _2)\right\} . \end{aligned}$$

Now, letting \(t\rightarrow -\infty \), we get

$$\begin{aligned} \underset{t\rightarrow -\infty }{\text {lim}} \frac{H{(x,t\varphi )}}{t}=\frac{1}{2}\int _{\Omega }(\alpha F_2(x)\varphi _1+\beta G_2(x)\varphi _2)dx. \end{aligned}$$

We deduce that

$$\begin{aligned} \underset{t\rightarrow -\infty }{\text {lim}} I(t\varphi )=\underset{t\rightarrow -\infty }{\text {lim}}t\int _{\Omega }\left\{ (\alpha k_1 \varphi _1+\beta k_2 \varphi _2)-\frac{1}{2}(\alpha F_2(x)\varphi _1+\beta G_2(x)\varphi _2)\right\} dx. \end{aligned}$$

Similarly above from \((H_2(ii))\) we obtain

$$\begin{aligned} \frac{1}{2}\int _{\Omega }(\alpha F_2(x)\varphi _1+\beta G_2(x)\varphi _2)dx<\int _{\Omega }(\alpha k_1 \varphi _1+\beta k_2 \varphi _2)dx. \end{aligned}$$

This implies that

$$\begin{aligned} \underset{t\rightarrow -\infty }{\text {lim}} I(t\varphi )=-\infty . \end{aligned}$$

Thus, there exists \(t_0 \) such that \(|t_0|\) large enough, we have \(I(t_0\varphi )<0\).

Set \(w_0(x)=(t_0\varphi _1,t_0\varphi _2)\) we get

$$\begin{aligned} I(w_0)= I(t_0\varphi )<B_Y\le I(t\varphi ). \end{aligned}$$

Proof of theorem 1.1

By Propositions 2.1 and 2.2, applying the Saddle Point Theorem (P.H.Rabinowitz) (see Theorem 2.1), we deduce that the functional \(I\) attains its proper infimum at some \(w_0=(u_0,v_0)\in E\), so that the problem (1.1) has at least a weak solution \(w_0\in E\). Moreover \(w_0\) is nontrivial weak solution of the Problem (1.1). The Theorem 1.1 is completely proved. \(\square \)

Remark 2.3

We will get the same result as above if the hypotheses \((H_2)\) is replaced by reverse inequalities as follows.

We assume that

\((H_2)^*\)

$$\begin{aligned}&\int _{\Omega }\left\{ \frac{1}{2}(\alpha F_2(x)\varphi _1(x)+\beta G_2(x)\varphi _2(x))-\frac{\alpha }{p}f^{-\infty }(x)\varphi _1(x)-\frac{\beta }{p}g^{-\infty }(x)\varphi _2(x)\right\} dx\nonumber \\&\quad >\left( 1-\frac{1}{p}\right) \int _{\Omega }(\alpha k_1(x)\varphi _1(x)+\beta k_2(x)\varphi _2(x))dx>\nonumber \\&\quad >\int _{\Omega }\left\{ \frac{1}{2}(\alpha F_1(x)\varphi _1(x)+\beta G_1(x)\varphi _2(x))-\frac{\alpha }{p}f^{+\infty }(x)\varphi _1(x)-\frac{\beta }{p}g^{+\infty }(x)\varphi _2(x)\right\} dx.\nonumber \\ \end{aligned}$$
(2.27)

This means that, if the conditions \((H_1)\), \((H_2)^*\) holds, then the problem (1.1) has at least a nontrivial weak solution in \(E\). This assertion is proved by using variational techniques, the Minimum Principle and generalization of the Landesman–Lazer type condition.