

ORIGINAL PAPER

On existence of weak solutions for a p-Laplacian system at resonance

Bui Quoc Hung · Hoang Quoc Toan

Received: 10 September 2014 / Accepted: 23 January 2015 / Published online: 6 February 2015 © Springer-Verlag Italia 2015

Abstract This article shows the existence of weak solutions of a resonance problem for uniformly p-Laplacian system in a bounded domain in R^N . Our arguments are based on the Saddle Point Theorem (P.H.Rabinowitz) and rely on a generalization of the Landesman–Lazer type condition.

Keywords Semilinear elliptic equation · Saddle point theorem · Landesman–Lazer condition

Mathematics Subject Classification 35J20 · 35J60 · 58E05

1 Introduction and preliminaries

Let Ω be a bounded domain in R^N , $(N \ge 3)$, with smooth boundary ∂ Ω . In the present paper we consider the existence of weak solutions of the following Dirichlet problem at resonance for p-Laplacian system:

$$
\begin{cases}\n-\Delta_p u = \lambda_1 |u|^{\alpha-1} |v|^{\beta-1} v + f(x, u, v) - k_1(x) \\
-\Delta_p v = \lambda_1 |u|^{\alpha-1} |v|^{\beta-1} u + g(x, u, v) - k_2(x) \quad \text{in } \Omega,\n\end{cases}
$$
\n(1.1)

B. Q. Hung (\boxtimes)

H. Q. Toan

Research supported by the National Foundation for Science and Technology Development of Viet Nam (NAFOSTED under Grant Number 101.02-2014.03).

Faculty of Information Technology, Le Quy Don Technical University,

²³⁶ Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

e-mail: quochung2806@yahoo.com

Department of Mathematics, Hanoi University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam e-mail: hq_toan@yahoo.com

where

$$
p \ge 2, \alpha \ge 1, \beta \ge 1, \alpha + \beta = p \tag{1.2}
$$

and $f, g: \Omega \times R^2 \to R$ are Carathéodory functions which will be specified later.

$$
k_i(x) \in L^{p'}(\Omega), p' = \frac{p}{p-1}, k_i(x) > 0
$$
, for a.e $x \in \overline{\Omega}, i = 1, 2$.

 λ_1 denotes the first eigenvalue of the problem:

$$
\begin{cases}\n-\Delta_p u = \lambda |u|^{\alpha - 1} |v|^{\beta - 1} v \\
-\Delta_p v = \lambda |u|^{\alpha - 1} |v|^{\beta - 1} u,\n\end{cases}
$$
\n(1.3)

where $(u, v) \in E = W_0^{1, p}(\Omega) \times W_0^{1, p}(\Omega), p \ge 2, \alpha \ge 1, \beta \ge 1, \alpha + \beta = p.$

It's well-known that the principle eigenvalue $\lambda_1 = \lambda_1(p)$ of [\(1.3\)](#page-1-0) is obtained using the Ljusternick–Schnirelmann theory by minimizing the functional

$$
J(u, v) = \frac{\alpha}{p} \int_{\Omega} |\nabla u|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v|^p dx
$$

on the set:

$$
S = \left\{ (u, v) \in E = W_0^{1, p}(\Omega) \times W_0^{1, p}(\Omega) : A(u, v) = 1 \right\},\
$$

where

$$
A(u, v) = \int_{\Omega} |u|^{\alpha - 1} |v|^{\beta - 1} uv dx
$$

that is $\lambda_1 = \lambda_1(p)$ can be variational characterized as

$$
\lambda_1 = \lambda_1(p) = \inf_{A(u,v) > 0} \frac{J(u,v)}{A(u,v)}.
$$
\n(1.4)

Moreover the eigenpair (φ_1, φ_2) associated with λ_1 is componentwise positive and unique (up to multiplication by nonzero scalar) (see Theorem 2.2 in $[3]$ and Remark 5.4 in [\[5](#page-14-1)]). As usual $W_0^{1,p}(\Omega)$ denotes Sobolev space which can be defined as the completion of $C_0^{\infty}(\Omega)$ under the norm:

$$
||u||_{W_0^{1,p}} = \left(\int_{\Omega} |\nabla u|^p dx\right)^{\frac{1}{p}}
$$

and

for
$$
w = (u, v) \in E : ||w||_E = \left(||u||^p_{W_0^{1,p}} + ||v||^p_{W_0^{1,p}}\right)^{\frac{1}{p}}
$$
.

Observe that the existence of weak solutions of (p, q) -Laplacian systems at resonance in bounded domains with Dirichlet boundary condition, was first considered by Zographopoulos in [\[9](#page-14-2)]. Later in [\[4](#page-14-3)] Kandilakis and Magiropoulos have studied a quasilinear elliptic system with resonance part and nonlinear boundary condition in an unbounded domain by assuming the nonlinearities *f* and *g* depending only one variable *u* or v. In [\[8](#page-14-4)] Zeng-Qi Ou and Chen Lei Tang have considered the same system as in [\[4\]](#page-14-3) with Dirichlet condition in a bounded domain. In these the existence of weak solutions is obtained by critical point theory (the Minimum Principle or the Saddle Point Theorem) under a Landesman–Lazer type condition.

In this paper by introducing a generalization of Landesman–Lazer type condition we shall prove an existence result for a p-Laplacian system on resonance in bounded domain with the nonlinearities f and g to be functions depending on both variables u and v .

Our arguments are based on the Saddle Point Theorem (P.H.Rabinowitz) and generalization of the Landesman–Lazer type condition.

We have the following definition.

Definition 1.1 Function $w = (u, v) \in E$ is called a weak solution of the problem [\(1.1\)](#page-0-0) if and only if, for all $\bar{w} = (\bar{u}, \bar{v}) \in E$

$$
\alpha \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \bar{u} dx + \beta \int_{\Omega} |\nabla v|^{p-2} \nabla v \cdot \nabla \bar{v} dx \n- \lambda_1 \int_{\Omega} (\alpha |u|^{\alpha-1} |v|^{\beta-1} v \bar{u} + \beta |u|^{\alpha-1} |v|^{\beta-1} u \bar{v}) dx \n- \int_{\Omega} (\alpha f(x, u, v) \bar{u} + \beta g(x, u, v) \bar{v}) dx + \int_{\Omega} (\alpha k_1(x) \bar{u} + \beta k_2(x) \bar{v}) dx = 0.
$$

We will use the following conditions (H_1)

- (i) For a.e $x \in \Omega$: $f(x,.)$, $g(x,.) \in C^1(\mathbb{R}^2)$ and $f(x, 0, 0) = 0$, $g(x, 0, 0) = 0$.
- (ii) There exists function $\tau \in L^{p'}(\Omega)$, $p' = \frac{p}{p-1}$ such that:

$$
|f(x, s, t)| \le \tau(x), |g(x, s, t)| \le \tau(x), \text{ for a.e } x \in \Omega, \forall (s, t) \in R^2.
$$

(iii) For $(s, t) \in R^2$:

$$
\alpha \frac{\partial f(x, s, t)}{\partial t} = \beta \frac{\partial g(x, s, t)}{\partial s} \quad \text{for a.e } x \in \Omega.
$$
 (1.5)

For $(u, v) \in R^2$, a.e $x \in \Omega$, define

$$
H(x, u, v) = \frac{\alpha}{2} \int_0^u (f(x, s, v) + f(x, s, 0)) ds + \frac{\beta}{2} \int_0^v (g(x, u, t) + g(x, 0, t)) dt.
$$
\n(1.6)

By hypotheses (1.5) , from (1.6) with some simple computations we deduce that:

$$
\frac{\partial H(x, s, t)}{\partial s} = \alpha f(x, s, t), \quad \frac{\partial H(x, s, t)}{\partial t} = \beta g(x, s, t), \text{ for a.e } x \in \Omega, \forall (s, t) \in R^2. \tag{1.7}
$$

Now, for $i, j = 1, 2$ we define

$$
F_i(x) = \lim_{\tau \to +\infty} \frac{1}{\tau} \int_0^{\tau} \left\{ f\left(x, (-1)^{1+i} y \varphi_1, (-1)^{1+i} \tau \varphi_2\right) + f\left(x, (-1)^{1+i} y \varphi_1, 0\right) \right\} dy
$$

\n
$$
G_j(x) = \lim_{\tau \to +\infty} \frac{1}{\tau} \int_0^{\tau} \left\{ g\left(x, (-1)^{1+j} \tau \varphi_1, (-1)^{1+j} y \varphi_2\right) + g\left(x, 0, (-1)^{1+j} y \varphi_2\right) \right\} dy
$$
\n(1.8)

and

$$
\lim_{\substack{s \to +\infty \\ t \to +\infty}} f(x, s, t) = f^{+\infty}(x), \qquad \lim_{\substack{s \to +\infty \\ t \to +\infty}} g(x, s, t) = g^{+\infty}(x)
$$
\n
$$
\lim_{\substack{s \to +\infty \\ s \to -\infty}} f(x, s, t) = f^{-\infty}(x), \qquad \lim_{\substack{s \to -\infty \\ t \to -\infty}} g(x, s, t) = g^{-\infty}(x).
$$

Assume that

 (H_2)

(i)

$$
f^{+\infty}(x) < k_1(x) < f^{-\infty}(x)
$$
\n
$$
g^{+\infty}(x) < k_2(x) < g^{-\infty}(x) \qquad \text{for a.e } x \in \Omega \tag{1.9}
$$

(ii)

$$
\int_{\Omega} \left\{ \frac{1}{2} (\alpha F_2(x)\varphi_1(x) + \beta G_2(x)\varphi_2(x)) - \frac{\alpha}{p} f^{-\infty}(x)\varphi_1(x) - \frac{\beta}{p} g^{-\infty}(x)\varphi_2(x) \right\} dx
$$
\n
$$
< \left(1 - \frac{1}{p} \right) \int_{\Omega} (\alpha k_1(x)\varphi_1(x) + \beta k_2(x)\varphi_2(x)) dx
$$
\n
$$
< \int_{\Omega} \left\{ \frac{1}{2} (\alpha F_1(x)\varphi_1(x) + \beta G_1(x)\varphi_2(x)) - \frac{\alpha}{p} f^{+\infty}(x)\varphi_1(x) - \frac{\beta}{p} g^{+\infty}(x)\varphi_2(x) \right\} dx.
$$
\n(1.10)

The main result of this paper can be described in the following theorem:

Theorem 1.1 Assuming conditions (H_1) , (H_2) are fulfilled. Then the problem (1.1) has at *least a nontrivial weak solution in E.*

Proof of Theorem [1.1](#page-3-0) is based on variational techniques and the Saddle Point Theorem (P.H.Rabinowitz).

Theorem 1.2 (Saddle Point Theorem, P.H.Rabinowitz in [\[6\]](#page-14-5)) Let $E = X \oplus Y$ be a Banach $space$ with Y closed in E and $dim X < \infty$. For $\varrho > 0$ define

$$
M := \{ u \in X : ||u|| \le \varrho \} \qquad M_0 := \{ u \in X : ||u|| = \varrho \}
$$

Let $F \in C^1(E, R)$ *be such that*

$$
b := \inf_{u \in Y} F(u) > a := \max_{u \in M_0} F(u)
$$

If F satisfies the (*P S*)*^c condition with*

$$
c := \inf_{\gamma \in \Gamma} \max F(\gamma(u)) \quad \text{where } \Gamma := \{ \gamma \in C(M, E) : \gamma |_{M_0} = I \},
$$

then c is a critical value of F.

2 Proof of the main result

We define the Euler–Lagrange functional associated to the problem (1.1) by

$$
I(w) = \frac{\alpha}{p} \int_{\Omega} |\nabla u|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v|^p dx - \lambda_1 \int_{\Omega} |u|^{\alpha - 1} |v|^{\beta - 1} u.v dx
$$

$$
- \int_{\Omega} H(x, u, v) dx + \int_{\Omega} (\alpha k_1(x)u + \beta k_2(x)v) dx
$$

$$
= J(w) + T(w), \quad \text{for } w = (u, v) \in E,
$$
 (2.1)

where

$$
J(w) = \frac{\alpha}{p} \int_{\Omega} |\nabla u|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v|^p dx.
$$
 (2.2)

$$
T(w) = -\lambda_1 \int_{\Omega} |u|^{\alpha-1} |v|^{\beta-1} u \cdot v dx - \int_{\Omega} H(x, u, v) dx + \int_{\Omega} (\alpha k_1(x)u + \beta k_2(x)v) dx.
$$
\n(2.3)

We deduce that $I \in C^1(E)$.

Remark 2.1 By similar arguments as those in the proof of Lemma 2.3 in [\[10\]](#page-14-6) and Lemma 5 in [\[4\]](#page-14-3), we infer that the functional $A: E \to R$ and the operator $B: E \to E^*$ given by, for any $(u, v), (\bar{u}, \bar{v}) \in E$

$$
A(u, v) = \int_{\Omega} |u|^{\alpha - 1} |v|^{\beta - 1} u.v dx
$$

and

$$
\langle B(u,v),(\bar{u},\bar{v})\rangle = \int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1}\bar{u}vdx + \int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1}u\bar{v}dx,
$$

are compact.

Remark 2.2 Applying Theorem 1.6 in [\[6](#page-14-5), p9] we deduce that the functional $J : E \rightarrow R$ given by [\(2.2\)](#page-4-0) is weakly lower semicontinuous on *E*. Hence the functional $I = T + J$ is also weakly lower semicontinuous on *E*.

Proposition 2.1 *Assuming the hypotheses* (*H*1) *and* (*H*2) *are fulfilled. The functional I* : $E \rightarrow R$ given by [\(2.1\)](#page-3-1) *satisfies the* (*PS*) *condition on E*.

Proof Let $\{w_m = (u_m, v_m)\}\$ be a Palais–Smale sequence in *E*, i.e:

$$
|I(w_m)| \le M, M \text{ is positive constant} \tag{2.4}
$$

$$
I'(w_m) \to 0 \text{ in } E^* \text{ as } m \to +\infty \tag{2.5}
$$

First, we shall prove that $\{w_m\}$ is bounded in *E*. We suppose by contradiction that $\{w_m\}$ is not bounded in *E*. Without loss of generality we assume that

 $||w_m||_E \rightarrow +\infty$ as $m \rightarrow +\infty$.

Let $\widehat{w}_m = \frac{w_m}{||w_m||_E} = (\widehat{u}_m, \widehat{v}_m)$ that is $\widehat{u}_m = \frac{u_m}{||w_m||_E}$ and $\widehat{v}_m = \frac{v_m}{||w_m||_E}$.
Thus \widehat{w}_m is bounded in E. Then there exists a subsequence \widehat{v}_m .

Thus \widehat{w}_m is bounded in *E*. Then there exists a subsequence $\{\widehat{w}_{m_k} = (\widehat{u}_{m_k}, \widehat{v}_{m_k})\}_k$ which converges weakly to $\hat{w} = (\hat{u}, \hat{v})$ in *E*. Since the embedding $W_0^{1,p}(\Omega)$ into $L^p(\Omega)$ is compact, the sequences $\{\hat{u} \text{ and } \hat{v}\}$, converge strongly to \hat{u} and \hat{v} in $L^p(\Omega)$ respectively the sequences $\{\widehat{u}_{m_k}\}$ and $\{\widehat{v}_{m_k}\}$ converge strongly to \widehat{u} and \widehat{v} in $L^p(\Omega)$ respectively.
From (2.4) we have

From (2.4) we have

$$
\lim_{k \to +\infty} \sup \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \widehat{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla \widehat{v}_{m_k}|^p dx - \lambda_1 \int_{\Omega} |\widehat{u}_{m_k}|^{\alpha-1} |\widehat{v}_{m_k}|^{\beta-1} \widehat{u}_{m_k} \widehat{v}_{m_k} dx - \int_{\Omega} \frac{H(x, w_{m_k})}{||w_{m_k}||_E^p} dx + \int_{\Omega} \frac{\alpha k_1 \widehat{u}_{m_k} + \beta k_2 \widehat{v}_{m_k}}{||w_{m_k}||_E^{\beta-1}} dx \right\} \le 0.
$$
\n(2.6)

By hypotheses (H_1) , we deduce that

$$
H(x, w_{mk}) = \frac{\alpha}{2} \int_0^{u_{m_k}} (f(x, s, v_{mk}) + f(x, s, 0)) ds + \frac{\beta}{2} \int_0^{v_{m_k}} (g(x, u_{mk}, t) + g(x, 0, t)) dt.
$$

This implies that $|H(x, w_{mk})| \leq c \cdot \tau(x) (|u_{mk}| + |v_{mk}|)$, *c* is positive constant. Hence,

$$
\left|\int_{\Omega}\frac{H(x, w_{mk})}{||w_{mk}||^p}\right| \leq \frac{c}{||w_{mk}||_E^{p-1}}||\tau||_{L^{p'}(\Omega)}\big(||\widehat{u}_{mk}||_{L^p(\Omega)}+||\widehat{v}_{mk}||_{L^p(\Omega)}\big).
$$

Since \widehat{u}_{m_k} , \widehat{v}_{m_k} converge strongly in $L^p(\Omega)$ then bounded in $L^p(\Omega)$, hence

$$
\lim_{k \to +\infty} \sup \int_{\Omega} \frac{H(x, w_{mk})}{||w_{mk}||_E^p} = 0
$$
\n(2.7)

and

$$
\lim_{k \to +\infty} \int_{\Omega} \frac{\alpha k_1 \widehat{u}_{m_k} + \beta k_2 \widehat{v}_{m_k}}{||w_{m_k}||_E^{p-1}} dx = 0.
$$

From the compactness of operator *A* it follows that

$$
\lim_{k \to +\infty} \lambda_1 \int_{\Omega} |\widehat{u}_{m_k}|^{\alpha-1} |\widehat{v}_{m_k}|^{\beta-1} \widehat{u}_{m_k} \widehat{v}_{m_k} dx = \lambda_1 \int_{\Omega} |\widehat{u}|^{\alpha-1} |\widehat{v}|^{\beta-1} \widehat{u}.\widehat{v} dx.
$$
 (2.8)

Using the weak lower semicontinuity of the functional *J* and the variational characterization of λ_1 from [\(2.6\)](#page-4-2) we get

$$
\lambda_1 \int_{\Omega} |\widehat{u}|^{\alpha-1} |\widehat{v}|^{\beta-1} \widehat{u} \cdot \widehat{v} dx \leq \frac{\alpha}{p} \int_{\Omega} |\nabla \widehat{u}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla \widehat{v}|^p dx
$$

\n
$$
\leq \lim_{k \to +\infty} \inf \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \widehat{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla \widehat{v}_{m_k}|^p dx \right\}
$$

\n
$$
\leq \lim_{k \to +\infty} \sup \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \widehat{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla \widehat{v}_{m_k}|^p dx \right\} \leq \lambda_1 \int_{\Omega} |\widehat{u}|^{\alpha-1} |\widehat{v}|^{\beta-1} \widehat{u} \cdot \widehat{v} dx.
$$
\n(2.9)

Thus, theses inequalities are indeed equalities and we have

$$
\lim_{k \to +\infty} \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \widehat{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla \widehat{v}_{m_k}|^p dx \right\} = \frac{\alpha}{p} \int_{\Omega} |\nabla \widehat{u}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla \widehat{v}|^p dx
$$

$$
= \lambda_1 \int_{\Omega} |\widehat{u}|^{\alpha-1} |\widehat{v}|^{\beta-1} \widehat{u} \widehat{v} dx. \tag{2.10}
$$

We shall prove that $\hat{u} \neq 0$ and $\hat{v} \neq 0$.

By contradiction suppose that $\widehat{u} = 0$, thus $\widehat{u}_{m_k} \to 0$ in $L^p(\Omega)$ as $k \to +\infty$. We have

$$
|A(\widehat{u}_{m_k}, \widehat{v}_{m_k})| = \left| \int_{\Omega} |\widehat{u}_{m_k}|^{\alpha-1} |\widehat{v}_{m_k}|^{\beta-1} \widehat{u}_{m_k} \widehat{v}_{m_k} dx \right|
$$

$$
\leq ||\widehat{u}_{m_k}||_{L^p(\Omega)}^{\alpha} \cdot ||\widehat{v}_{m_k}||_{L^p(\Omega)}^{\beta}.
$$

Since $||\widehat{u}_{m_k}||_{L^p(\Omega)} \to 0$, letting $k \to +\infty$ shows that

$$
\lim_{k \to +\infty} A(\widehat{u}_{m_k}, \widehat{v}_{m_k}) = 0.
$$
\n(2.11)

 $\overline{}$ $\overline{}$ $\overline{}$ $\frac{1}{2}$ From [\(2.6\)](#page-4-2) taking $\lim_{k \to +\infty}$ sup with [\(2.7\)](#page-5-0) and [\(2.10\)](#page-5-1) we arrive at

$$
\lim_{k \to +\infty} \sup \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla \widehat{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla \widehat{v}_{m_k}|^p dx \right\} = 0.
$$
 (2.12)

On the other hand, since $||\widehat{w}_{m_k}||_E = 1$ and

$$
\frac{\alpha}{p} \int_{\Omega} |\nabla \widehat{u}_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla \widehat{v}_{m_k}|^p dx \ge \min\left(\frac{\alpha}{p}, \frac{\beta}{p}\right) . ||\widehat{w}_{m_k}||_E = \min\left(\frac{\alpha}{p}, \frac{\beta}{p}\right) > 0
$$

which contradicts [\(2.11\)](#page-5-2). Thus $\hat{u} \neq 0$. Similary we have $\hat{v} \neq 0$.

By again the definition of λ_1 from [\(2.10\)](#page-5-1) we deduce that

$$
\widehat{w} = (\widehat{u}, \widehat{v}) = (\varphi_1, \varphi_2) \text{ or } \widehat{w} = (\widehat{u}, \widehat{v}) = (-\varphi_1, -\varphi_2),
$$

where (φ_1, φ_2) is eigenpair associated with λ_1 of the problem [\(1.3\)](#page-1-0).

Next, we shall consider following two cases:

Firstly, assume that $\widehat{u}_{m_k} \to \varphi_1$, $\widehat{v}_{m_k} \to \varphi_2$ in $L^p(\Omega)$ as $k \to +\infty$.
From (2.4) we have From (2.4) we have

$$
-M \leq -\frac{\alpha}{p} \int_{\Omega} |\nabla u_{m_k}|^p dx - \frac{\beta}{p} \int_{\Omega} |\nabla v_{m_k}|^p dx + \lambda_1 \int_{\Omega} |u_{m_k}|^{\alpha-1} |v_{m_k}|^{\beta-1} u_{m_k} v_{m_k} dx + \int_{\Omega} H(x, w_{m_k}) dx - \int_{\Omega} (\alpha k_1 u_{m_k} + \beta k_2 v_{m_k}) dx \leq M.
$$
 (2.13)

Moreover, from [\(2.5\)](#page-4-3) there exists the sequence ϵ_k , $\epsilon_k \to 0^+, k \to +\infty$ such that

$$
| < I'(w_{m_k}), \left(\frac{u_{m_k}}{p}, \frac{v_{m_k}}{p}\right) > \vert \leq \epsilon_k \cdot \frac{1}{p} \vert \vert w_m \vert \vert_E.
$$

This implies

$$
-\epsilon_{k} \cdot \frac{1}{p} ||w_{m_{k}}||_{E} \leq \alpha \int_{\Omega} |\nabla u_{m_{k}}|^{p-2} \nabla u_{m_{k}} \nabla \left(\frac{u_{m_{k}}}{p}\right) dx + \beta \int_{\Omega} |\nabla v_{m_{k}}|^{p-2} \nabla v_{m_{k}} \nabla \left(\frac{v_{m_{k}}}{p}\right) dx
$$

$$
-\lambda_{1} \int_{\Omega} \left(\alpha |u_{m_{k}}|^{\alpha-1} |v_{m_{k}}|^{\beta-1} v_{m_{k}} \left(\frac{u_{m_{k}}}{p}\right) + \beta |u_{m_{k}}|^{\alpha-1} |v_{m_{k}}|^{\beta-1} u_{m_{k}} \left(\frac{v_{m_{k}}}{p}\right)\right) dx
$$

$$
-\int_{\Omega} \left(\alpha f(x, w_{m_{k}}) \frac{u_{m_{k}}}{p} + \beta g(x, w_{m_{k}}) \frac{v_{m_{k}}}{p}\right) dx + \int_{\Omega} \left(\alpha k_{1} \frac{u_{m_{k}}}{p} + \beta k_{2} \frac{v_{m_{k}}}{p}\right) dx
$$

$$
\leq \epsilon_{k} \cdot \frac{1}{p} ||w_{m_{k}}||_{E}.
$$

Remark that $\alpha + \beta = p$, we get

$$
-\epsilon_{k} \cdot \frac{1}{p} ||w_{m_{k}}||_{E} \leq \frac{\alpha}{p} \int_{\Omega} |\nabla u_{m_{k}}|^{p} dx + \frac{\beta}{p} \int_{\Omega} |\nabla v_{m_{k}}|^{p} dx
$$

$$
-\lambda_{1} \int_{\Omega} (\alpha |u_{m_{k}}|^{\alpha-1} |v_{m_{k}}|^{\beta-1} u_{m_{k}} v_{m_{k}}) dx - \int_{\Omega} (\alpha f(x, w_{m_{k}})^{\frac{u_{m_{k}}}{p}} + \beta g(x, w_{m_{k}})^{\frac{v_{m_{k}}}{p}}) dx
$$

$$
+ \int_{\Omega} (\frac{\alpha}{p} k_{1} u_{m_{k}} + \frac{\beta}{p} k_{2} v_{m_{k}}) dx \leq \epsilon_{k} \cdot \frac{1}{p} ||w_{m_{k}}||_{E}.
$$
 (2.14)

Hence, summing (2.13) , (2.14) we obtain

$$
-M - \frac{\epsilon_k}{p}||w_{m_k}||_E \le \int_{\Omega} \left(H(x, w_{m_k}) - \left(\frac{\alpha}{p} f(x, w_{m_k}) u_{m_k} + \frac{\beta}{p} g(x, w_{m_k}) v_{m_k} \right) \right) dx
$$

$$
- \int_{\Omega} \left(\alpha \left(1 - \frac{1}{p} \right) k_1 u_{m_k} + \beta \left(1 - \frac{1}{p} \right) k_2 v_{m_k} \right) dx \le M + \frac{\epsilon_k}{p} ||w_{m_k}||_E.
$$
 (2.15)

After dividing [\(2.15\)](#page-7-0) by $||w_{m_k}||_E$, letting $\lim_{k \to +\infty}$ sup we deduce that

$$
\lim_{k \to +\infty} \sup \int_{\Omega} \left\{ \frac{H(x, w_{m_k})}{\|w_{m_k}\|_E} - \frac{\alpha}{p} f(x, w_{m_k}) \widehat{u}_{m_k} - \frac{\beta}{p} g(x, w_{m_k}) \widehat{v}_{m_k} \right\} dx
$$
\n
$$
= \left(1 - \frac{1}{p} \right) \int_{\Omega} (\alpha k_1 \varphi_1 + \beta k_2 \varphi_2) dx. \tag{2.16}
$$

We remark that, from (1.6) by some standard computations we get

$$
\lim_{k\to+\infty}\sup\int_{\Omega}\frac{H(x,w_{m_k})}{||w_{m_k}||_E}dx=\frac{1}{2}\int_{\Omega}(\alpha F_1\varphi_1+\beta G_1\varphi_2)dx,
$$

where $F_1(x)$, $G_1(x)$ are given by [\(1.8\)](#page-2-2).

Letting $\lim_{k \to +\infty} \sup (2.16)$ $\lim_{k \to +\infty} \sup (2.16)$ we obtain

$$
\int_{\Omega} \left\{ \frac{1}{2} (\alpha F_1 \varphi_1 + \beta G_1 \varphi_2) - \frac{\alpha}{p} f^{+\infty} \varphi_1 - \frac{\beta}{p} g^{+\infty} \varphi_2 \right\} dx
$$

$$
= \left(1 - \frac{1}{p} \right) \int_{\Omega} (\alpha k_1 \varphi_1 + \beta k_2 \varphi_2) dx,
$$

which contradicts $(H_2(ii))$.

Similarly, in the case when $\widehat{u}_{m_k} \to -\varphi_1, \widehat{v}_{m_k} \to -\varphi_2$, in $L^p(\Omega)$ as $k \to +\infty$, by similar moutations, we also have computations, we also have

$$
\int_{\Omega} \left\{ \frac{1}{2} (\alpha F_2 \varphi_1 + \beta G_2 \varphi_2) - \frac{\alpha}{p} f^{-\infty} \varphi_1 - \frac{\beta}{p} g^{-\infty} \varphi_2 \right\} dx
$$

=
$$
\left(1 - \frac{1}{p} \right) \int_{\Omega} (\alpha k_1 \varphi_1 + \beta k_2 \varphi_2) dx,
$$

where $F_2(x)$, $G_2(x)$ are given by [\(1.8\)](#page-2-2), which contradicts ($H_2(ii)$).

This implies that the (PS) sequence $\{w_m\}$ is bounded in *E*. Then there exists a subsequence w_{m_k} which converges weakly to $w_0 = (u_0, v_0) \in E$.

We shall prove that w_{m_k} converges strongly to $w_0 = (u_0, v_0) \in E$.

Indeed, since $w_{m_k} \rightharpoonup w_0 = (u_0, v_0)$ in *E* and the embedding $W_0^{1,p} \times W_0^{1,p} \rightharpoonup L^p(\Omega) \times$ $L^p(\Omega)$ is compact, the subsequences u_{m_k} , v_{m_k} converge strongly to u_0 , v_0 in L^p respectively. We have

$$
|T'(w_{m_k}, (w_{m_k} - w_0))| \leq \lambda_1 \left\{ \int_{\Omega} \alpha |u_{m_k}|^{\alpha - 1} |v_{m_k}|^{\beta} |u_{m_k} - u_0| dx \right\}
$$

+
$$
\int_{\Omega} \beta |u_{m_k}|^{\alpha} |v_{m_k}|^{\beta - 1} |v_{m_k} - v_0| dx \right\} + \int_{\Omega} {\alpha |f(x, w_{m_k})| |u_{m_k} - u_0|}
$$

+
$$
\beta |g(x, w_{m_k})| |v_{m_k} - v_0| \left\{ dx + \int_{\Omega} {\alpha k_1(x) |u_{m_k} - u_0| + \beta k_2(x) |v_{m_k} - v_0|} \right\} dx
$$

$$
\leq \lambda_1 \left\{ \alpha ||u_{m_k}||_{L^p}^{\alpha-1} ||v_{m_k}||_{L^p}^{\beta} ||u_{m_k} - u_0||_{L^p} + \beta ||u_{m_k}||_{L^p}^{\alpha} ||v_{m_k}||_{L^p}^{\beta-1} ||v_{m_k} - v_0||_{L^p} \right\} \n+ ||\tau||_{L^{p'}} (\alpha ||u_{m_k} - u_0||_{L^p} + \beta ||v_{m_k} - v_0||_{L^p}) \n+ \alpha ||k_1||_{L^{p'}} ||u_{m_k} - u_0||_{L^p} + \beta ||k_2||_{L^{p'}} ||u_{m_k} - u_0||_{L^p}.
$$
\n(2.17)

Letting $k \to +\infty$ and remark that $||u_{m_k} - u_0||_{L^p}$ → 0, $||v_{m_k} - v_0||_{L^p}$ → 0. We obtain

$$
\lim_{k \to +\infty} < T'(w_{m_k}), (w_{m_k} - w_0) > = 0.
$$

Moreover,

 $\lim_{k \to +\infty} (J'(w_{m_k}), (w_{m_k} - w_0)) = \lim_{k \to +\infty} \left\{ (I'(w_{m_k}), (w_{m_k} - w_0)) - (T'(w_{m_k}), (w_{m_k} - w_0)) \right\}.$

We have

$$
\lim_{k \to +\infty} (J'(w_{m_k}), (w_{m_k} - w_0)) = 0
$$

i.e

$$
(J'(w_{m_k}), (w_{m_k} - w_0)) = \alpha \int_{\Omega} |\nabla u_{m_k}|^{p-2} |\nabla u_{m_k}| \nabla (u_{m_k} - u_0) dx
$$

$$
+ \beta \int_{\Omega} |\nabla v_{m_k}|^{p-2} |\nabla v_{m_k}| \nabla (v_{m_k} - v_0) dx \to 0 \quad \text{as } k \to +\infty.
$$
(2.18)

Since w_{m_k} → w_0 in *E* and $J'(w_0) \in E^*$, $(J'(w_0), (w_m - w_0))$ → 0 as $k \to +\infty$. That is

$$
(J'(w_0), (w_{m_k} - w_0)) = \alpha \int_{\Omega} |\nabla u_0|^{p-2} |\nabla u_0| \nabla (u_{m_k} - u_0) dx + \beta \int_{\Omega} |\nabla v_0|^{p-2} |\nabla v_0| \nabla (v_{m_k} - v_0) dx \to 0, \quad \text{as } k \to +\infty.
$$
\n(2.19)

Using the well-know inequality:

$$
(|s|^{r-2}s-|\bar{s}|^{r-2})(s-\bar{s})\geq c_r|s-\bar{s}|^r,
$$

for $s, \overline{s} \in R^N$, $r > 2$, we deduce that

$$
\langle J'(w_{m_k}) - J'(w_0), (w_{m_k} - w_0) \rangle
$$

= $\alpha \int_{\Omega} (|\nabla u_{m_k}|^{p-2} \nabla u_{m_k} - |\nabla u_0|^{p-2} \nabla u_0) \nabla (u_{m_k} - u_0) dx$
+ $\beta \int_{\Omega} (|\nabla v_{m_k}|^{p-2} \nabla v_{m_k} - |\nabla v_0|^{p-2} \nabla v_0) \nabla (v_{m_k} - v_0) dx$
 $\ge c_1 ||u_{m_k} - u_0||_{W_0^{1,p}} + c_2 ||v_{m_k} - v_0||_{W_0^{1,p}}.$

From (2.18) , (2.19) it follows that the left-hand side of this inequality converges to zero as $k \to +\infty$. Then we arrive at $u_{m_k} \to u_0$, $v_{m_k} \to v_0$ as $k \to +\infty$ in $W_0^{1,p}(\Omega)$.

Hence, we deduce that $\{w_{m_k}\}$ converges strongly to w_0 in E . Therefore, the functional *I* satisfies the Palais−Smale condition in *E*. The proof of the Proposition [2.1](#page-4-4) is complete.

Splitting *E* as the direct sum of *X*, *Y* : $E = X \oplus Y$ where

$$
X = L(\varphi) = \{ t\varphi = t(\varphi_1, \varphi_2), \ t \in R \}
$$

$$
Y = \left\{ w = (u, v) \in E : \int_{\Omega} (u\varphi_1^{\alpha-1}\varphi_2^{\beta} + v\varphi_1^{\alpha}\varphi_2^{\beta-1}) dx = 0 \right\},
$$

where $\varphi = (\varphi_1, \varphi_2)$ is a nomartized eigenpair associated with the eigenvalue λ_1 of the problem [\(1.3\)](#page-1-0)

$$
||(\varphi_1, \varphi_2)|| = \left(\int_{\Omega} |\nabla \varphi_1|^p dx + \int_{\Omega} |\nabla \varphi_2|^p dx\right)^{\frac{1}{p}} = 1.
$$

Since $w = (u, v) \in E$, $w = t(\varphi_1, \varphi_2) + w_0$, $w_0 = (u_0, v_0) \in Y$.

$$
u = t\varphi_1 + u_0 \tag{2.20}
$$

$$
v = t\varphi_2 + v_0 \tag{2.21}
$$

Multiplying the equations in [\(2.20\)](#page-9-0), [\(2.21\)](#page-9-0) by $\varphi_1^{\alpha-1} \varphi_2^{\beta} \lambda_1$ and $\varphi_1^{\alpha} \varphi_2^{\beta-1} \lambda_1$ respectively, we have

$$
\lambda_1 u \varphi_1^{\alpha - 1} \varphi_2^{\beta} = \lambda_1 t \varphi_1^{\alpha} \varphi_2^{\beta} + \lambda_1 u_0 \varphi_1^{\alpha - 1} \varphi_2^{\beta}.
$$
 (2.22)

$$
\lambda_1 v \varphi_1^{\alpha} \varphi_2^{\beta - 1} = \lambda_1 t \varphi_1^{\alpha} \varphi_2^{\beta} + \lambda_1 v_0 \varphi_1^{\alpha} \varphi_2^{\beta - 1}.
$$
 (2.23)

We remark that

$$
-\Delta_p \varphi_1 = -\text{div}(|\nabla \varphi_1|^{p-2} \nabla \varphi_1) = \lambda_1 \varphi_1^{\alpha-1} \varphi_2^{\beta}.
$$

From [\(2.22\)](#page-9-1) we have $\lambda_1 u \varphi_1^{\alpha-1} \varphi_2^{\beta} = t(-\text{div}(|\nabla \varphi_1|^{p-2} \nabla \varphi_1))\varphi_1 + \lambda_1 u_0 \varphi_1^{\alpha-1} \varphi_2^{\beta}$. By integrating both sides of (2.22) , we obtain that

$$
\lambda_1 \int_{\Omega} u \varphi_1^{\alpha-1} \varphi_2^{\beta} dx = t \int_{\Omega} \left(-\text{div}(|\nabla \varphi_1|^{p-2} \nabla \varphi_1) \right) \varphi_1 dx + \lambda_1 \int_{\Omega} u_0 \varphi_1^{\alpha-1} \varphi_2^{\beta} dx
$$

$$
= t \int_{\Omega} |\nabla \varphi_1|^p dx + \lambda_1 \int_{\Omega} u_0 \varphi_1^{\alpha-1} \varphi_2^{\beta} dx. \tag{2.24}
$$

Similary, from (2.23) we also have

$$
\lambda_1 \int_{\Omega} v \varphi_1^{\alpha} \varphi_2^{\beta - 1} dx = t \int_{\Omega} |\nabla \varphi_2|^p dx + \lambda_1 \int_{\Omega} v_0 \varphi_1^{\alpha} \varphi_2^{\beta - 1} dx. \tag{2.25}
$$

Hence combining (2.24) and (2.25) we obtain

$$
\lambda_1 \int_{\Omega} \left(u \varphi_1^{\alpha-1} \varphi_2^{\beta} + v \varphi_1^{\alpha} \varphi_2^{\beta-1} \right) dx = t \int_{\Omega} |\nabla \varphi_1|^p dx + \lambda_1 \int_{\Omega} u_0 \varphi_1^{\alpha-1} \varphi_2^{\beta} dx \n+ t \int_{\Omega} |\nabla \varphi_2|^p dx + \lambda_1 \int_{\Omega} v_0 \varphi_1^{\alpha} \varphi_2^{\beta-1} dx.
$$

Since $(u_0, v_0) \in Y$, we have

$$
\int_{\Omega} \left(u_0 \varphi_1^{\alpha-1} \varphi_2^{\beta} + v_0 \varphi_1^{\alpha} \varphi_2^{\beta-1} \right) dx = 0.
$$

Thus, for any $w \in E$ such that $w = t\varphi + w_0$, $w_0 \in Y$ we get

$$
t = \frac{\lambda_1 \int_{\Omega} \left(u \varphi_1^{\alpha - 1} \varphi_2^{\beta} + v \varphi_1^{\alpha} \varphi_2^{\beta - 1} \right) dx}{\int_{\Omega} |\nabla \varphi_1|^p dx + \int_{\Omega} |\nabla \varphi_2|^p dx} = \lambda_1 \int_{\Omega} \left(u \varphi_1^{\alpha - 1} \varphi_2^{\beta} + v \varphi_1^{\alpha} \varphi_2^{\beta - 1} \right) dx. \tag{2.26}
$$

Moreover, if $w = t\varphi + \tilde{w}$ where *t* is defined in [\(2.26\)](#page-10-0) then $\tilde{w} \in Y$. Therefore, $E = X \oplus Y$.

Lemma 2.1 *Exists* $\bar{\lambda} > \lambda_1$ *such that*

$$
\frac{\alpha}{p}\int_{\Omega}|\nabla u|^pdx+\frac{\beta}{p}\int_{\Omega}|\nabla v|^pdx\geq \bar{\lambda}\int_{\Omega}|u|^{\alpha-1}|v|^{\beta-1}uvdx, \forall w=(u,v)\in Y.
$$

Proof Let $\lambda = \inf \{ \frac{\alpha}{p} \int_{\Omega} |\nabla u|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v|^p dx : (u, v) \in Y, \int_{\Omega} |u|^{\alpha-1} |v|^{\beta-1} uv dx = 1 \}.$ We shall prove that this value is attained in *Y* .

Let $w_m = (u_m, v_m) \in Y$ be a minimizing sequence i.e

$$
\int_{\Omega} |u_m|^{\alpha - 1} |v_m|^{\beta - 1} u_m v_m dx = 1, \text{ for } m = 1, 2, ...
$$

and

$$
\lim_{m \to +\infty} \frac{\alpha}{p} \int_{\Omega} |\nabla u_m|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v_m|^p dx = \lambda.
$$

This implies that $\{w_m\}$ is bounded in *E*. Hence there exists a subsequence $\{w_{m_k}\}$ of $\{w_m\}$ which weakly converges to $w_0 = (u_0, v_0) \in E$ and the compactness of the embedding $W_0^{1,p}(\Omega)$ into $L^p(\Omega)$ implies that the subsequences $\{u_{m_k}\}\$ and $\{v_{m_k}\}\$ converge strongly to u_0 and v_0 respectively in $L^p(\Omega)$.

Observe further that with $\alpha + \beta = p$

$$
\int_{\Omega} \left((u_{m_k} - u_0) \varphi_1^{\alpha - 1} \varphi_2^{\beta} + (v_{m_k} - v_0) \varphi_1^{\alpha} \varphi_2^{\beta - 1} \right) dx
$$
\n
$$
\leq ||u_{m_k} - u_0||_{L^p} ||\varphi_1||_{L^p}^{\alpha - 1} |\varphi_2||_{L^p}^{\beta} + ||v_{m_k} - v_0||_{L^p} ||\varphi_1||_{L^p}^{\alpha} |\varphi_2||_{L^p}^{\beta - 1}.
$$

Since $||u_{m_k} - u_0||_{L^p(\Omega)} \to 0$, $||v_{m_k} - v_0||_{L^p(\Omega)} \to 0$ as $k \to +\infty$, we deduce that

$$
\lim_{k \to +\infty} \int_{\Omega} \left(u_{m_k} \varphi_1^{\alpha-1} \varphi_2^{\beta} + v_{m_k} \varphi_1^{\alpha} \varphi_2^{\beta-1} \right) dx = \int_{\Omega} \left(u_0 \varphi_1^{\alpha-1} \varphi_2^{\beta} + v_0 \varphi_1^{\alpha} \varphi_2^{\beta-1} \right) dx.
$$

From this it follows that

$$
\int_{\Omega} \left(u_0 \varphi_1^{\alpha-1} \varphi_2^{\beta} + v_0 \varphi_1^{\alpha} \varphi_2^{\beta-1} \right) dx = 0,
$$

hence $(u_0, v_0) \in Y$.

On the other hand, by the continuity of the operator *A*

$$
\lim_{k \to +\infty} \int_{\Omega} |u_{m_k}|^{\alpha-1} |v_{m_k}|^{\beta-1} u_{m_k} v_{m_k} dx = \int_{\Omega} |u_0|^{\alpha-1} |v_0|^{\beta-1} u_0 v_0 dx.
$$

This implies

$$
\int_{\Omega} |u_0|^{\alpha - 1} |v_0|^{\beta - 1} u_0 v_0 dx = 1.
$$

So $u_0 \neq 0$ and $v_0 \neq 0$.

Moreover, since the functional J given by (2.2) is lower weakly semicontinuous, we obtain

$$
\lambda \le J(u_0, v_0) = \frac{\alpha}{p} \int_{\Omega} |\nabla u_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v_{m_k}|^p dx
$$

$$
\le \lim_{m \to +\infty} \inf \left\{ \frac{\alpha}{p} \int_{\Omega} |\nabla u_{m_k}|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v_{m_k}|^p dx \right\} = \lambda,
$$

hence

$$
\lambda = J(u_0, v_0) = \frac{\alpha}{p} \int_{\Omega} |\nabla u_0|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v_0|^p dx.
$$

It means that λ is attained at w_0 .

Our goal is to show that $\lambda > \lambda_1$.

By the variational characterization of λ_1 , it is clear that: $\lambda > \lambda_1$.

If $\lambda = \lambda_1$, by simplicity of λ_1 there exists $t \in R$ such that $w_0 = (u_0, v_0) = t(\varphi_1, \varphi_2)$. Since $w_0 = (u_0, v_0) \in Y$

$$
0 = \int_{\Omega} \left(t \varphi_1 \varphi_1^{\alpha-1} \varphi_2^{\beta} + t \varphi_2 \varphi_1^{\alpha} \varphi_2^{\beta-1} \right) dx = t \int_{\Omega} \varphi_1^{\alpha} \varphi_2^{\beta} dx.
$$

This contradicts the fact that

$$
1 = \int_{\Omega} |u_0|^{\alpha - 1} |v_0|^{\beta - 1} u_0 v_0 dx = t \int_{\Omega} \varphi_1^{\alpha} \varphi_2^{\beta} dx.
$$

Thus, there exists $\bar{\lambda}$ such that: $\bar{\lambda} > \lambda_1$ and the proof of proposition is complete.

Proposition 2.2 *The functional I given by* [\(2.1\)](#page-3-1) *is coercive on Y provided hypotheses* (*H*1) and $(H₂)$ *hold.*

Proof Observe that by Holder inequality, Lemma [2.1,](#page-10-1) hypotheses (H_1) , (H_2) , we have

$$
|I(w)| = |\frac{\alpha}{p} \int_{\Omega} |\nabla u|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v|^p dx - \lambda_1 \int_{\Omega} |u|^{\alpha-1} |v|^{\beta-1} uv dx
$$

\n
$$
- \int_{\Omega} H(x, u, v) dx + \int_{\Omega} (\alpha k_1 u + \beta k_2 v) dx|
$$

\n
$$
\geq |\min \left(\frac{\alpha}{p}; \frac{\beta}{p} \right) ||w||_E^p - \frac{\lambda_1}{\overline{\lambda}} \left(\frac{\alpha}{p} \int_{\Omega} |\nabla u|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla v|^p dx \right)
$$

\n
$$
- \int_{\Omega} \tau(x) (|u| + |v|) dx - \alpha ||k_1||_{L^{p'}} ||u||_{L^p} - \beta ||k_2||_{L^{p'}} ||v||_{L^p}|
$$

\n
$$
\geq |\left(1 - \frac{\lambda_1}{\overline{\lambda}} \right) \min \left(\frac{\alpha}{p}; \frac{\beta}{p} \right) ||w||_E^p - (||\tau||_{L^{p'}}
$$

\n
$$
+ \alpha ||k_1||_{L^{p'}} ||u||_{L^p} - (||\tau||_{L^{p'}} + \beta ||k_2||_{L^{p'}})||v||_{L^p}|
$$

\n
$$
\geq |\left(1 - \frac{\lambda_1}{\overline{\lambda}} \right) \min \left(\frac{\alpha}{p}; \frac{\beta}{p} \right) ||w||_E^p - \max \left\{ (||\tau||_{L^{p'}} + \alpha ||k_1||_{L^{p'}}), (||\tau||_{L^{p'}} + \beta ||k_2||_{L^{p'}}) \right\}.
$$

\n
$$
\therefore (||u||_{W_0^{1,p}} + ||v||_{W_0^{1,p}}).
$$

Since $||w_E|| \to +\infty$ and $\left(1 - \frac{\lambda_1}{\lambda}\right) > 0, p \ge 2$, we obtain $I(w) \to +\infty$. Thus the functional *I* given by (2.1) is coercive on *Y* and Proposition [2.2](#page-11-0) is proved. \square

From Proposition [2.1](#page-4-4) the functional *I* is coercive on *Y* , so that

$$
B_Y = \min_{w \in Y} I(w) > -\infty.
$$

On the other hand, for every $t \in R$ we have

$$
\frac{\alpha}{p} \int_{\Omega} |\nabla (t\varphi_1)|^p dx + \frac{\beta}{p} \int_{\Omega} |\nabla (t\varphi_2)|^p dx - \lambda_1 \int_{\Omega} |t\varphi_1|^{\alpha-1} |t\varphi_2|^{\beta-1} (t\varphi_1)(t\varphi_2) dx = 0
$$

as follows from the definition of λ_1 and φ . Thus,

$$
I(t\varphi) = t \int_{\Omega} (\alpha k_1 \varphi_1 + \beta k_2 \varphi_2) dx - \int_{\Omega} H(x, t\varphi) dx
$$

= $t \int_{\Omega} \left((\alpha k_1 \varphi_1 + \beta k_2 \varphi_2) - \frac{H(x, t\varphi)}{t} \right) dx.$

Remark that

$$
\frac{H(x,t\varphi)}{t} = \frac{1}{t} \left\{ \frac{\alpha}{2} \int_0^{t\varphi_1} (f(x,s,t\varphi_2) + f(x,s,0)) ds + \frac{\beta}{2} \int_0^{t\varphi_2} (g(x,t\varphi_1,\tau) + g(x,0,\tau)) d\tau \right\}
$$

$$
= \frac{1}{t} \left\{ \frac{\alpha}{2} \int_0^t ((f(x,y\varphi_1,t\varphi_2) + f(x,y\varphi_1,0)) dy) \varphi_1 + \frac{\beta}{2} \int_0^t ((g(x,t\varphi_1,y\varphi_2) + g(x,0,y\varphi_2)) dy) \varphi_2 \right\}.
$$

Hence,

$$
\lim_{t\to+\infty}\frac{H(x,t\varphi)}{t}=\frac{1}{2}(\alpha F_1(x)\varphi_1+\beta G_1(x)\varphi_2).
$$

Therefore,

$$
\lim_{t \to +\infty} t \int_{\Omega} \left((\alpha k_1 \varphi_1 + \beta k_2 \varphi_2) - \frac{H(x, t\varphi)}{t} \right) dx
$$
\n
$$
= \lim_{t \to +\infty} t \int_{\Omega} \left\{ (\alpha k_1 \varphi_1 + \beta k_2 \varphi_2) - \frac{1}{2} (\alpha F_1(x) \varphi_1 + \beta G_1(x) \varphi_2) \right\} dx.
$$

On the other hand, from $(H_2(i))$ we obtain

$$
\frac{1}{p}\int_{\Omega}(\alpha f^{+\infty}\varphi_1+\beta g^{+\infty}\varphi_2)dx < \frac{1}{p}\int_{\Omega}(\alpha k_1\varphi_1+\beta k_2\varphi_2) dx.
$$

It follows from $H_2(ii)$ that

$$
\int_{\Omega} \left\{ \frac{1}{2} (\alpha F_1(x)\varphi_1 + \beta G_1(x)\varphi_2) - \frac{\alpha}{p} f^{+\infty}(x)\varphi_1 - \frac{\beta}{p} g^{+\infty}(x)\varphi_2 \right\} dx
$$

>
$$
\left(1 - \frac{1}{p}\right) \int_{\Omega} (\alpha k_1 \varphi_1 + \beta k_2 \varphi_2) dx.
$$

Thus,

$$
\int_{\Omega}\left\{\frac{1}{2}(\alpha F_1(x)\varphi_1+\beta G_1(x)\varphi_2)-(\alpha k_1\varphi_1+\beta k_2\varphi_2)\right\}dx>0.
$$

This shows that

$$
\lim_{t\to+\infty} I(t\varphi) = -\infty.
$$

Next, with $t < 0$ we also have

$$
\frac{H(x,t\varphi)}{t} = \frac{1}{t} \left\{ \frac{\alpha}{2} \int_0^{t\varphi_1} (f(x,s,t\varphi_2) + f(x,s,0)) ds \right. \left. + \frac{\beta}{2} \int_0^{t\varphi_2} (g(x,t\varphi_1,\tau) + g(x,0,\tau)) d\tau \right\} \n= -\frac{1}{|t|} \left\{ \frac{\alpha}{2} \int_0^{-|t|\varphi_1} (f(x,s,-|t|\varphi_2) + f(x,s,0)) ds \right. \left. + \frac{\beta}{2} \int_0^{-|t|\varphi_2} (g(x,-|t|\varphi_1,\tau) + g(x,0,\tau)) d\tau \right\} .
$$

Set $s = -y\varphi_1 \rightarrow ds = -\varphi_1 dy$ and $s = -|t|\varphi_1 = -y\varphi_1 \Rightarrow y = |t|$

$$
\frac{H(x,t\varphi)}{t} = -\frac{1}{|t|} \left\{ \frac{\alpha}{2} \int_0^{-|t|} ((f(x,-y\varphi_1,-|t|\varphi_2) + f(x,-y\varphi_1,0))dy)(-\varphi_1) + \frac{\beta}{2} \int_0^{-|t|} ((g(x,-|t|\varphi_1,-y\varphi_2) + g(x,0,-y\varphi_2))dy)(-\varphi_2) \right\}.
$$

Now, letting $t \to -\infty$, we get

$$
\lim_{t\to-\infty}\frac{H(x,t\varphi)}{t}=\frac{1}{2}\int_{\Omega}(\alpha F_2(x)\varphi_1+\beta G_2(x)\varphi_2)dx.
$$

We deduce that

$$
\lim_{t\to-\infty} I(t\varphi) = \lim_{t\to-\infty} t \int_{\Omega} \left\{ (\alpha k_1 \varphi_1 + \beta k_2 \varphi_2) - \frac{1}{2} (\alpha F_2(x) \varphi_1 + \beta G_2(x) \varphi_2) \right\} dx.
$$

Similarly above from $(H_2(ii))$ we obtain

$$
\frac{1}{2}\int_{\Omega}(\alpha F_2(x)\varphi_1+\beta G_2(x)\varphi_2)dx < \int_{\Omega}(\alpha k_1\varphi_1+\beta k_2\varphi_2)dx.
$$

This implies that

$$
\lim_{t\to-\infty} I(t\varphi) = -\infty.
$$

Thus, there exists t_0 such that $|t_0|$ large enough, we have $I(t_0\varphi) < 0$.

Set $w_0(x) = (t_0\varphi_1, t_0\varphi_2)$ we get

$$
I(w_0) = I(t_0\varphi) < B_Y \leq I(t\varphi).
$$

Proof of theorem 1.1 By Propositions [2.1](#page-4-4) and [2.2,](#page-11-0) applying the Saddle Point Theorem (P.H.Rabinowitz) (see Theorem 2.1), we deduce that the functional *I* attains its proper infimum at some $w_0 = (u_0, v_0) \in E$, so that the problem [\(1.1\)](#page-0-0) has at least a weak solution w_0 ∈ *E*. Moreover w_0 is nontrivial weak solution of the Problem [\(1.1\)](#page-0-0). The Theorem [1.1](#page-3-0) is completely proved. \Box completely proved.

Remark 2.3 We will get the same result as above if the hypotheses (H_2) is replaced by reverse inequalities as follows.

We assume that (H_2) [∗] \overline{a} Ω $\left(\begin{array}{c} 1 \end{array} \right)$ $\frac{1}{2}(\alpha F_2(x)\varphi_1(x) + \beta G_2(x)\varphi_2(x)) - \frac{\alpha}{p}f^{-\infty}(x)\varphi_1(x) - \frac{\beta}{p}g^{-\infty}(x)\varphi_2(x)\right]dx$ $> \left(1 - \frac{1}{p}\right)$ \mathcal{L} $\frac{\alpha}{2}$ $(\alpha k_1(x)\varphi_1(x) + \beta k_2(x)\varphi_2(x))dx >$ $>$ Ω $\left($ 1 $\frac{1}{2}(\alpha F_1(x)\varphi_1(x) + \beta G_1(x)\varphi_2(x)) - \frac{\alpha}{p}f^{+\infty}(x)\varphi_1(x) - \frac{\beta}{p}g^{+\infty}(x)\varphi_2(x) \right] dx.$ (2.27)

This means that, if the conditions (H_1) , $(H_2)^*$ holds, then the problem [\(1.1\)](#page-0-0) has at least a nontrivial weak solution in *E*. This assertion is proved by using variational techniques, the Minimum Principle and generalization of the Landesman–Lazer type condition.

Acknowledgments The authors would like to thank the referees for their suggestions and helpful comments which improved the presentation of the paper.

References

- 1. Arcoya, D., Orsina, L.: Landesman–Lazer condition and quasilinear elliptic equations. Nonlinear Anal. **28**, 1623–1632 (1997)
- 2. Boccando, L., Drábek, P., Kučera, M.: Landesman–Lazer conditions for strongly nonlinear boundary value problems. Comment. Math. Univ. Carolinae **30**, 411–427 (1989)
- 3. Afrouzi, G.A., Mirzapour, M., Zhang, Q.: Simplicity and stability of the first eigenvalue of a (*p*; *q*) Laplacian system. Electron. J. Differ. Equ. **2012**(08), 1–6 (2012)
- 4. Kandilakis, D.A., Magiropoulos, M.: A *p*-Laplacian system with resonance and nonlinear boundary conditions on an unbounded domain. Comment. Math. Univ. Carolin. **48**(1), 59–68 (2007)
- 5. Stavrakakis, N.M., Zographopoulos, N.B.: Existence results for quasilinear elliptic systems in *R^N* . Electron. J. Differ. Equ. No. 39, 1–15 (1999)
- 6. Struwe, M.: Variational methods, Second ed. Springer (2008)
- 7. Toan, H.Q., Hung, B.Q.: On a Neumann problem at resonance for nonuniformly semilinear elliptic systems in an unbounded domain with nonlinear boundary condition. Bull. Kor. Math. Soc. **51**(6), 1669–1687 (2014)
- 8. Zeng-Qi, Ou, Tang, C.L.: Resonance problems for the p-Laplacian systems. J. Math. Anal. Appl. **345**, 511–521 (2008)
- 9. Zographopoulos, N.B.: p-Laplacian systems on resonance. Appl. Anal. **83**(5), 509–519 (2004)
- 10. Zographopoulos, N.B.: On a class of degenerate potential elliptic system. Nonlinear Differ. Equ. Appl. (NoDEA). 11, 191–199 (2004)