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Abstract This article shows the existence of weak solutions of a resonance problem for
uniformly p-Laplacian system in a bounded domain in RN . Our arguments are based on the
Saddle Point Theorem (P.H.Rabinowitz) and rely on a generalization of theLandesman–Lazer
type condition.
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1 Introduction and preliminaries

Let� be a bounded domain in RN , (N ≥ 3), with smooth boundary ∂�. In the present paper
we consider the existence of weak solutions of the following Dirichlet problem at resonance
for p-Laplacian system:

{−�pu = λ1|u|α−1|v|β−1v + f (x, u, v) − k1(x)
−�pv = λ1|u|α−1|v|β−1u + g(x, u, v) − k2(x) in �,

(1.1)
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where

p ≥ 2, α ≥ 1, β ≥ 1, α + β = p (1.2)

and f, g : � × R2 → R are Carathéodory functions which will be specified later.

ki (x) ∈ L p′
(�), p′ = p

p − 1
, ki (x) > 0, for a.e x ∈ �̄, i = 1, 2.

λ1 denotes the first eigenvalue of the problem:{
−�pu = λ|u|α−1|v|β−1v

−�pv = λ|u|α−1|v|β−1u,
(1.3)

where (u, v) ∈ E = W 1,p
0 (�) × W 1,p

0 (�), p ≥ 2, α ≥ 1, β ≥ 1, α + β = p.
It’s well-known that the principle eigenvalue λ1 = λ1(p) of (1.3) is obtained using the

Ljusternick–Schnirelmann theory by minimizing the functional

J (u, v) = α

p

∫
�

|∇u|pdx + β

p

∫
�

|∇v|pdx

on the set:

S =
{
(u, v) ∈ E = W 1,p

0 (�) × W 1,p
0 (�) : A(u, v) = 1

}
,

where

A(u, v) =
∫

�

|u|α−1|v|β−1uvdx

that is λ1 = λ1(p) can be variational characterized as

λ1 = λ1(p) = in f
A(u,v)>0

J (u, v)

A(u, v)
. (1.4)

Moreover the eigenpair (ϕ1, ϕ2) associated with λ1 is componentwise positive and unique
(up to multiplication by nonzero scalar) (see Theorem 2.2 in [3] and Remark 5.4 in [5]). As
usual W 1,p

0 (�) denotes Sobolev space which can be defined as the completion of C∞
0 (�)

under the norm:

||u||
W 1,p

0
=

(∫
�

|∇u|pdx
) 1

p

and

for w = (u, v) ∈ E : ||w||E =
(

||u||p
W 1,p

0

+ ||v||p
W 1,p

0

) 1
p

.

Observe that the existence of weak solutions of (p, q)-Laplacian systems at resonance in
bounded domainswithDirichlet boundary condition,was first considered byZographopoulos
in [9]. Later in [4] Kandilakis and Magiropoulos have studied a quasilinear elliptic system
with resonance part and nonlinear boundary condition in an unbounded domain by assuming
the nonlinearities f and g depending only one variable u or v. In [8] Zeng-QiOu andChenLei
Tang have considered the same system as in [4] withDirichlet condition in a bounded domain.
In these the existence of weak solutions is obtained by critical point theory (the Minimum
Principle or the Saddle Point Theorem ) under a Landesman–Lazer type condition.
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In this paper by introducing a generalization of Landesman–Lazer type condition we shall
prove an existence result for a p-Laplacian system on resonance in bounded domain with the
nonlinearities f and g to be functions depending on both variables u and v.

Our arguments are based on the Saddle Point Theorem (P.H.Rabinowitz) and generaliza-
tion of the Landesman–Lazer type condition.

We have the following definition.

Definition 1.1 Function w = (u, v) ∈ E is called a weak solution of the problem (1.1) if
and only if, for all w̄ = (ū, v̄) ∈ E

α

∫
�

|∇u|p−2∇u.∇ūdx + β

∫
�

|∇v|p−2∇v.∇v̄dx

−λ1

∫
�

(α|u|α−1|v|β−1vū + β|u|α−1|v|β−1uv̄)dx

−
∫

�

(α f (x, u, v)ū + βg(x, u, v)v̄)dx +
∫

�

(αk1(x)ū + βk2(x)v̄)dx = 0.

We will use the following conditions
(H1)

(i) For a.e x ∈ � : f (x, .), g(x, .) ∈ C1(R2) and f (x, 0, 0) = 0, g(x, 0, 0) = 0.
(ii) There exists function τ ∈ L p′

(�), p′ = p
p−1 such that:

| f (x, s, t)| ≤ τ(x), |g(x, s, t)| ≤ τ(x), for a.e x ∈ �,∀(s, t) ∈ R2.

(iii) For (s, t) ∈ R2:

α
∂ f (x, s, t)

∂t
= β

∂g(x, s, t)

∂s
for a.e x ∈ �. (1.5)

For (u, v) ∈ R2, a.e x ∈ �, define

H(x, u, v) = α

2

∫ u

0
( f (x, s, v) + f (x, s, 0))]ds + β

2

∫ v

0
(g(x, u, t) + g(x, 0, t))dt.

(1.6)

By hypotheses (1.5), from (1.6) with some simple computations we deduce that:

∂H(x, s, t)

∂s
= α f (x, s, t),

∂H(x, s, t)

∂t
= βg(x, s, t), for a.e x ∈ �,∀(s, t) ∈ R2. (1.7)

Now, for i, j = 1, 2 we define

Fi (x) = lim
τ→+∞

1

τ

∫ τ

0

{
f
(
x, (−1)1+i yϕ1, (−1)1+iτϕ2

)
+ f

(
x, (−1)1+i yϕ1, 0

)}
dy

G j (x) = lim
τ→+∞

1

τ

∫ τ

0

{
g

(
x, (−1)1+ jτϕ1, (−1)1+ j yϕ2

)
+ g

(
x, 0, (−1)1+ j yϕ2

)}
dy

(1.8)

and

lim
s→+∞
t→+∞

f (x, s, t) = f +∞(x), lim
s→+∞
t→+∞

g(x, s, t) = g+∞(x)

lim
s→−∞
t→−∞

f (x, s, t) = f −∞(x), lim
s→−∞
t→−∞

g(x, s, t) = g−∞(x).
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Assume that
(H2)

(i)

f +∞(x) < k1(x) < f −∞(x)

g+∞(x) < k2(x) < g−∞(x) for a.e x ∈ � (1.9)

(ii)
∫

�

{
1

2
(αF2(x)ϕ1(x) + βG2(x)ϕ2(x)) − α

p
f −∞(x)ϕ1(x) − β

p
g−∞(x)ϕ2(x)

}
dx

<

(
1 − 1

p

) ∫
�

(αk1(x)ϕ1(x) + βk2(x)ϕ2(x))]dx

<

∫
�

{
1

2
(αF1(x)ϕ1(x)+βG1(x)ϕ2(x)) − α

p
f +∞(x)ϕ1(x)− β

p
g+∞(x)ϕ2(x)

}
dx .

(1.10)

The main result of this paper can be described in the following theorem:

Theorem 1.1 Assuming conditions (H1), (H2) are fulfilled. Then the problem (1.1) has at
least a nontrivial weak solution in E.

Proof of Theorem 1.1 is based on variational techniques and the Saddle Point Theorem
(P.H.Rabinowitz).

Theorem 1.2 (Saddle Point Theorem, P.H.Rabinowitz in [6]) Let E = X ⊕ Y be a Banach
space with Y closed in E and dimX < ∞. For 
 > 0 define

M := {u ∈ X : ||u|| ≤ 
} M0 := {u ∈ X : ||u|| = 
}
Let F ∈ C1(E, R) be such that

b := inf
u∈Y

F(u) > a := max
u∈M0

F(u)

If F satisfies the (PS)c condition with

c := inf
γ∈�

max
u∈MF(γ (u)) where � := {γ ∈ C(M, E) : γ |M0 = I },

then c is a critical value of F.

2 Proof of the main result

We define the Euler–Lagrange functional associated to the problem (1.1) by

I (w) = α

p

∫
�

|∇u|pdx + β

p

∫
�

|∇v|pdx − λ1

∫
�

|u|α−1|v|β−1u.vdx

−
∫

�

H(x, u, v)dx +
∫

�

(αk1(x)u + βk2(x)v)dx

= J (w) + T (w), for w = (u, v) ∈ E, (2.1)
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where

J (w) = α

p

∫
�

|∇u|pdx + β

p

∫
�

|∇v|pdx . (2.2)

T (w) = −λ1

∫
�

|u|α−1|v|β−1u.vdx −
∫

�

H(x, u, v)dx +
∫

�

(αk1(x)u + βk2(x)v)dx .

(2.3)

We deduce that I ∈ C1(E).

Remark 2.1 By similar arguments as those in the proof of Lemma 2.3 in [10] and Lemma 5
in [4], we infer that the functional A : E → R and the operator B : E → E∗ given by, for
any (u, v), (ū, v̄) ∈ E

A(u, v) =
∫

�

|u|α−1|v|β−1u.vdx

and

< B(u, v), (ū, v̄) >=
∫

�

|u|α−1|v|β−1ūvdx +
∫

�

|u|α−1|v|β−1uv̄dx,

are compact.

Remark 2.2 Applying Theorem 1.6 in [6, p9] we deduce that the functional J : E → R
given by (2.2) is weakly lower semicontinuous on E . Hence the functional I = T + J is also
weakly lower semicontinuous on E .

Proposition 2.1 Assuming the hypotheses (H1) and (H2) are fulfilled. The functional I :
E → R given by (2.1) satisfies the (PS) condition on E.

Proof Let {wm = (um, vm)} be a Palais–Smale sequence in E , i.e:

|I (wm)| ≤ M, M is positive constant (2.4)

I ′(wm) → 0 in E∗ as m → +∞ (2.5)

First, we shall prove that {wm} is bounded in E . We suppose by contradiction that {wm} is
not bounded in E . Without loss of generality we assume that

||wm ||E → +∞ as m → +∞.

Let ŵm = wm||wm ||E = (̂um, v̂m) that is ûm = um||wm ||E and v̂m = vm||wm ||E .
Thus ŵm is bounded in E . Then there exists a subsequence {ŵmk = (̂umk , v̂mk )}k which

converges weakly to ŵ = (̂u, v̂) in E . Since the embeddingW 1,p
0 (�) into L p(�) is compact,

the sequences {̂umk } and {̂vmk } converge strongly to û and v̂ in L p(�) respectively.
From (2.4) we have

lim
k→+∞sup

{
α

p

∫
�

|∇ûmk |pdx + β

p

∫
�

|∇v̂mk |pdx − λ1

∫
�

|̂umk |α−1 |̂vmk |β−1ûmk v̂mk dx

−
∫

�

H(x, wmk )

||wmk ||pE
dx +

∫
�

αk1ûmk + βk2v̂mk

||wmk ||p−1
E

dx

}
≤ 0. (2.6)
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By hypotheses (H1), we deduce that

H(x, wmk)= α

2

∫ umk

0
( f (x, s, vmk)+ f (x, s, 0))ds+ β

2

∫ vmk

0
(g(x, umk, t)+g(x, 0, t))dt.

This implies that |H(x, wmk)| ≤ c.τ (x)(|umk | + |vmk |), c is positive constant.
Hence,∣∣∣∣

∫
�

H(x, wmk)

||wmk ||p
∣∣∣∣ ≤ c

||wmk ||p−1
E

||τ ||L p′ (�)

(||̂umk ||L p(�) + ||̂vmk ||L p(�)

)
.

Since ûmk , v̂mk converge strongly in L p(�) then bounded in L p(�), hence

lim
k→+∞sup

∫
�

H(x, wmk)

||wmk ||pE
= 0 (2.7)

and

lim
k→+∞

∫
�

αk1ûmk + βk2v̂mk

||wmk ||p−1
E

dx = 0.

From the compactness of operator A it follows that

lim
k→+∞λ1

∫
�

|̂umk |α−1 |̂vmk |β−1ûmk v̂mk dx = λ1

∫
�

|̂u|α−1 |̂v|β−1û .̂vdx . (2.8)

Using the weak lower semicontinuity of the functional J and the variational characterization
of λ1 from (2.6) we get

λ1

∫
�

|̂u|α−1 |̂v|β−1û .̂vdx ≤ α

p

∫
�

|∇û|pdx + β

p

∫
�

|∇v̂|pdx

≤ lim
k→+∞inf

{
α

p

∫
�

|∇ûmk |pdx + β

p

∫
�

|∇v̂mk |pdx
}

≤ lim
k→+∞sup

{
α

p

∫
�

|∇ûmk |pdx + β

p

∫
�

|∇v̂mk |pdx
}

≤ λ1

∫
�

|̂u|α−1 |̂v|β−1û .̂vdx .

(2.9)

Thus, theses inequalities are indeed equalities and we have

lim
k→+∞

{
α

p

∫
�

|∇ûmk |pdx + β

p

∫
�

|∇v̂mk |pdx
}

= α

p

∫
�

|∇û|pdx + β

p

∫
�

|∇v̂|pdx

= λ1

∫
�

|̂u|α−1 |̂v|β−1û .̂vdx . (2.10)

We shall prove that û �= 0 and v̂ �= 0.
By contradiction suppose that û = 0, thus ûmk → 0 in L p(�) as k → +∞. We have

|A(̂umk , v̂mk )| =
∣∣∣∣
∫

�

|̂umk |α−1 |̂vmk |β−1ûmk v̂mk dx

∣∣∣∣
≤ ||̂umk ||αL p(�).||̂vmk ||βL p(�).

Since ||̂umk ||L p(�) → 0, letting k → +∞ shows that

lim
k→+∞A(̂umk , v̂mk ) = 0. (2.11)
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From (2.6) taking lim
k→+∞sup with (2.7) and (2.10) we arrive at

lim
k→+∞sup

{
α

p

∫
�

|∇ûmk |pdx + β

p

∫
�

|∇v̂mk |pdx
}

= 0. (2.12)

On the other hand, since ||ŵmk ||E = 1 and

α

p

∫
�

|∇ûmk |pdx + β

p

∫
�

|∇v̂mk |pdx ≥ min

(
α

p
,
β

p

)
.||ŵmk ||E = min

(
α

p
,
β

p

)
> 0

which contradicts (2.11). Thus û �= 0. Similary we have v̂ �= 0.
By again the definition of λ1 from (2.10) we deduce that

ŵ = (̂u, v̂) = (ϕ1, ϕ2) or ŵ = (̂u, v̂) = (−ϕ1,−ϕ2),

where (ϕ1, ϕ2) is eigenpair associated with λ1 of the problem (1.3).
Next, we shall consider following two cases:
Firstly, assume that ûmk → ϕ1, v̂mk → ϕ2 in L p(�) as k → +∞.
From (2.4) we have

− M ≤ −α

p

∫
�

|∇umk |pdx − β

p

∫
�

|∇vmk |pdx + λ1

∫
�

|umk |α−1|vmk |β−1umkvmk dx

+
∫

�

H(x, wmk )dx −
∫

�

(αk1umk + βk2vmk )dx ≤ M. (2.13)

Moreover, from (2.5) there exists the sequence εk , εk → 0+, k → +∞ such that

| < I ′(wmk ),

(
umk

p
,
vmk

p

)
> | ≤ εk .

1

p
||wm ||E .

This implies

−εk .
1

p
||wmk ||E ≤ α

∫
�

|∇umk |p−2∇umk∇
(
umk

p

)
dx + β

∫
�

|∇vmk |p−2∇vmk∇
(

vmk

p

)
dx

−λ1

∫
�

(
α|umk |α−1|vmk |β−1vmk

(
umk

p

)
+ β|umk |α−1|vmk |β−1umk

(
vmk

p

))
dx

−
∫

�

(
α f

(
x, wmk

)umk

p
+ βg

(
x, wmk

)vmk

p

)
dx +

∫
�

(
αk1

umk

p
+ βk2

vmk

p

)
dx

≤ εk .
1

p
||wmk ||E .

Remark that α + β = p, we get

−εk .
1

p
||wmk ||E ≤ α

p

∫
�

|∇umk |pdx + β

p

∫
�

|∇vmk |pdx

−λ1

∫
�

(
α|umk |α−1|vmk |β−1umkvmk

)
dx−

∫
�

(
α f

(
x, wmk

)umk

p
+ βg

(
x, wmk

)vmk

p

)
dx

+
∫

�

(
α

p
k1umk + β

p
k2vmk

)
dx ≤ εk .

1

p
||wmk ||E . (2.14)

Hence, summing (2.13), (2.14) we obtain
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−M − εk

p
||wmk ||E ≤

∫
�

(
H

(
x, wmk

) −
(

α

p
f
(
x, wmk

)
umk + β

p
g
(
x, wmk

)
vmk

))
dx

−
∫

�

(
α

(
1 − 1

p

)
k1umk + β

(
1 − 1

p

)
k2vmk

)
dx ≤ M + εk

p
||wmk ||E . (2.15)

After dividing (2.15) by ||wmk ||E , letting lim
k→+∞sup we deduce that

lim
k→+∞sup

∫
�

{
H(x, wmk )

||wmk ||E
− α

p
f (x, wmk )̂umk − β

p
g(x, wmk )̂vmk

}
dx

=
(
1 − 1

p

) ∫
�

(αk1ϕ1 + βk2ϕ2)dx . (2.16)

We remark that, from (1.6) by some standard computations we get

lim
k→+∞sup

∫
�

H(x, wmk )

||wmk ||E
dx = 1

2

∫
�

(αF1ϕ1 + βG1ϕ2)dx,

where F1(x),G1(x) are given by (1.8).
Letting lim

k→+∞sup (2.16) we obtain

∫
�

{
1

2
(αF1ϕ1 + βG1ϕ2) − α

p
f +∞ϕ1 − β

p
g+∞ϕ2

}
dx

=
(
1 − 1

p

) ∫
�

(αk1ϕ1 + βk2ϕ2)dx,

which contradicts (H2(i i)).
Similarly, in the case when ûmk → −ϕ1, v̂mk → −ϕ2, in L p(�) as k → +∞, by similar

computations, we also have

∫
�

{
1

2
(αF2ϕ1 + βG2ϕ2) − α

p
f −∞ϕ1 − β

p
g−∞ϕ2

}
dx

=
(
1 − 1

p

) ∫
�

(αk1ϕ1 + βk2ϕ2)dx,

where F2(x),G2(x) are given by (1.8), which contradicts (H2(i i)).
This implies that the (PS) sequence {wm} is bounded in E . Then there exists a subsequence

wmk which converges weakly to w0 = (u0, v0) ∈ E .

We shall prove that wmk converges strongly to w0 = (u0, v0) ∈ E .

Indeed, since wmk ⇀ w0 = (u0, v0) in E and the embeddingW 1,p
0 ×W 1,p

0 ↪→ L p(�)×
L p(�) is compact, the subsequences umk , vmk converge strongly to u0, v0 in L

p respectively.
We have

|T ′(wmk , (wmk − w0))| ≤ λ1

{∫
�

α|umk |α−1|vmk |β |umk − u0|dx

+
∫

�

β|umk |α|vmk |β−1|vmk − v0|dx
}

+
∫

�

{
α| f (x, wmk )||umk − u0|

+ β|g(x, wmk )||vmk − v0|
}
dx +

∫
�

{
αk1(x)|umk − u0| + βk2(x)|vmk − v0|

}
dx
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≤ λ1

{
α||umk ||α−1

L p ||vmk ||βL p ||umk − u0||L p + β||umk ||αL p ||vmk ||β−1
L p ||vmk − v0||L p

}
+ ||τ ||L p′ (α||umk − u0||L p + β||vmk − v0||L p )

+α||k1||L p′ ||umk − u0||L p + β||k2||L p′ ||umk − u0||L p . (2.17)

Letting k → +∞ and remark that ||umk − u0||L p → 0, ||vmk − v0||L p → 0. We obtain

lim
k→+∞ < T ′(wmk ), (wmk − w0) >= 0.

Moreover,

lim
k→+∞(J ′(wmk ), (wmk − w0)) = lim

k→+∞
{
(I ′(wmk ), (wmk − w0)) − (T ′(wmk ), (wmk − w0))

}
.

We have

lim
k→+∞(J ′(wmk ), (wmk − w0)) = 0

i.e

(J ′(wmk ), (wmk − w0)) = α

∫
�

|∇umk |p−2|∇umk |∇(umk − u0)dx

+β

∫
�

|∇vmk |p−2|∇vmk |∇(vmk − v0)dx → 0 as k → +∞.

(2.18)

Since wmk ⇀ w0 in E and J ′(w0) ∈ E∗,(J ′(w0), (wm − w0)) → 0 as k → +∞.
That is

(J ′(w0), (wmk − w0)) = α

∫
�

|∇u0|p−2|∇u0|∇(umk − u0)dx

+β

∫
�

|∇v0|p−2|∇v0|∇(vmk − v0)dx → 0, as k → +∞.

(2.19)

Using the well-know inequality:

(|s|r−2s − |s̄|r−2)(s − s̄) ≥ cr |s − s̄|r ,
for s, s̄ ∈ RN , r ≥ 2, we deduce that

< J ′(wmk ) − J ′(w0), (wmk − w0) >

= α

∫
�

(|∇umk |p−2∇umk − |∇u0|p−2∇u0)∇(umk − u0)dx

+β

∫
�

(|∇vmk |p−2∇vmk − |∇v0|p−2∇v0)∇(vmk − v0)dx

≥ c1||umk − u0||W 1,p
0

+ c2||vmk − v0||W 1,p
0

.

From (2.18), (2.19) it follows that the left-hand side of this inequality converges to zero as
k → +∞. Then we arrive at umk → u0, vmk → v0 as k → +∞ in W 1,p

0 (�).
Hence, we deduce that {wmk } converges strongly to w0 in E .
Therefore, the functional I satisfies the Palais−Smale condition in E .
The proof of the Proposition 2.1 is complete.
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Splitting E as the direct sum of X, Y : E = X ⊕ Y where

X = L(ϕ) = {tϕ = t (ϕ1, ϕ2), t ∈ R}
Y =

{
w = (u, v) ∈ E :

∫
�

(uϕα−1
1 ϕ

β
2 + vϕα

1 ϕ
β−1
2 )dx = 0

}
,

where ϕ = (ϕ1, ϕ2) is a nomarlized eigenpair associated with the eigenvalue λ1 of the
problem (1.3)

||(ϕ1, ϕ2)|| =
(∫

�

|∇ϕ1|pdx +
∫

�

|∇ϕ2|pdx
) 1

p = 1.

Since w = (u, v) ∈ E , w = t (ϕ1, ϕ2) + w0, w0 = (u0, v0) ∈ Y .

u = tϕ1 + u0 (2.20)

v = tϕ2 + v0 (2.21)

Multiplying the equations in (2.20), (2.21) by ϕα−1
1 ϕ

β
2 λ1 and ϕα

1 ϕ
β−1
2 λ1 respectively, we

have

λ1uϕα−1
1 ϕ

β
2 = λ1tϕ

α
1 ϕ

β
2 + λ1u0ϕ

α−1
1 ϕ

β
2 . (2.22)

λ1vϕα
1 ϕ

β−1
2 = λ1tϕ

α
1 ϕ

β
2 + λ1v0ϕ

α
1 ϕ

β−1
2 . (2.23)

We remark that

−�pϕ1 = −div(|∇ϕ1|p−2∇ϕ1) = λ1ϕ
α−1
1 ϕ

β
2 .

From (2.22) we have λ1uϕα−1
1 ϕ

β
2 = t (−div(|∇ϕ1|p−2∇ϕ1))ϕ1 + λ1u0ϕ

α−1
1 ϕ

β
2 .

By integrating both sides of (2.22), we obtain that

λ1

∫
�

uϕα−1
1 ϕ

β
2 dx = t

∫
�

(−div(|∇ϕ1|p−2∇ϕ1)
)
ϕ1dx + λ1

∫
�

u0ϕ
α−1
1 ϕ

β
2 dx

= t
∫

�

|∇ϕ1|pdx + λ1

∫
�

u0ϕ
α−1
1 ϕ

β
2 dx . (2.24)

Similary, from (2.23) we also have

λ1

∫
�

vϕα
1 ϕ

β−1
2 dx = t

∫
�

|∇ϕ2|pdx + λ1

∫
�

v0ϕ
α
1 ϕ

β−1
2 dx . (2.25)

Hence combining (2.24) and (2.25) we obtain

λ1

∫
�

(
uϕα−1

1 ϕ
β
2 + vϕα

1 ϕ
β−1
2

)
dx = t

∫
�

|∇ϕ1|pdx + λ1

∫
�

u0ϕ
α−1
1 ϕ

β
2 dx

+ t
∫

�

|∇ϕ2|pdx + λ1

∫
�

v0ϕ
α
1 ϕ

β−1
2 dx .

Since (u0, v0) ∈ Y , we have
∫

�

(
u0ϕ

α−1
1 ϕ

β
2 + v0ϕ

α
1 ϕ

β−1
2

)
dx = 0.
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Thus, for any w ∈ E such that w = tϕ + w0, w0 ∈ Y we get

t =
λ1

∫
�

(
uϕα−1

1 ϕ
β
2 + vϕα

1 ϕ
β−1
2

)
dx∫

�
|∇ϕ1|pdx + ∫

�
|∇ϕ2|pdx = λ1

∫
�

(
uϕα−1

1 ϕ
β
2 + vϕα

1 ϕ
β−1
2

)
dx . (2.26)

Moreover, if w = tϕ + w̃ where t is defined in (2.26) then w̃ ∈ Y.

Therefore, E = X ⊕ Y.

Lemma 2.1 Exists λ̄ > λ1 such that

α

p

∫
�

|∇u|pdx + β

p

∫
�

|∇v|pdx ≥ λ̄

∫
�

|u|α−1|v|β−1uvdx, ∀w = (u, v) ∈ Y.

Proof Letλ = inf{ α
p

∫
�

|∇u|pdx+ β
p

∫
�

|∇v|pdx : (u, v) ∈ Y,
∫
�

|u|α−1|v|β−1uvdx = 1}.
We shall prove that this value is attained in Y .
Let wm = (um, vm) ∈ Y be a minimizing sequence i.e∫

�

|um |α−1|vm |β−1umvmdx = 1, for m = 1, 2, ...

and

lim
m→+∞

α

p

∫
�

|∇um |pdx + β

p

∫
�

|∇vm |pdx = λ.

This implies that {wm} is bounded in E . Hence there exists a subsequence {wmk } of {wm}
which weakly converges to w0 = (u0, v0) ∈ E and the compactness of the embedding
W 1,p

0 (�) into L p(�) implies that the subsequences {umk } and {vmk } converge strongly to u0
and v0 respectively in L p(�).

Observe further that with α + β = p∫
�

(
(umk − u0)ϕ

α−1
1 ϕ

β
2 + (vmk − v0)ϕ

α
1 ϕ

β−1
2

)
dx

≤ ||umk − u0||L p ||ϕ1||α−1
L p |ϕ2||βL p + ||vmk − v0||L p ||ϕ1||αL p |ϕ2||β−1

L p .

Since ||umk − u0||L p(�) → 0, ||vmk − v0||L p(�) → 0 as k → +∞, we deduce that

lim
k→+∞

∫
�

(
umkϕ

α−1
1 ϕ

β
2 + vmkϕ

α
1 ϕ

β−1
2

)
dx =

∫
�

(
u0ϕ

α−1
1 ϕ

β
2 + v0ϕ

α
1 ϕ

β−1
2

)
dx .

From this it follows that ∫
�

(
u0ϕ

α−1
1 ϕ

β
2 + v0ϕ

α
1 ϕ

β−1
2

)
dx = 0,

hence (u0, v0) ∈ Y .
On the other hand, by the continuity of the operator A

lim
k→+∞

∫
�

|umk |α−1|vmk |β−1umkvmk dx =
∫

�

|u0|α−1|v0|β−1u0v0dx .

This implies ∫
�

|u0|α−1|v0|β−1u0v0dx = 1.

So u0 �= 0 and v0 �= 0.
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Moreover, since the functional J given by (2.2) is lower weakly semicontinuous, we
obtain

λ ≤ J (u0, v0) = α

p

∫
�

|∇umk |pdx + β

p

∫
�

|∇vmk |pdx

≤ lim
m→+∞in f

{
α

p

∫
�

|∇umk |pdx + β

p

∫
�

|∇vmk |pdx
}

= λ,

hence

λ = J (u0, v0) = α

p

∫
�

|∇u0|pdx + β

p

∫
�

|∇v0|pdx .

It means that λ is attained at w0.
Our goal is to show that λ > λ1.
By the variational characterization of λ1, it is clear that: λ ≥ λ1.
If λ = λ1, by simplicity of λ1 there exists t ∈ R such that w0 = (u0, v0) = t (ϕ1, ϕ2).

Since w0 = (u0, v0) ∈ Y

0 =
∫

�

(
tϕ1ϕ

α−1
1 ϕ

β
2 + tϕ2ϕ

α
1 ϕ

β−1
2

)
dx = t

∫
�

ϕα
1 ϕ

β
2 dx .

This contradicts the fact that

1 =
∫

�

|u0|α−1|v0|β−1u0v0dx = t
∫

�

ϕα
1 ϕ

β
2 dx .

Thus, there exists λ̄ such that: λ̄ > λ1 and the proof of proposition is complete. 
�
Proposition 2.2 The functional I given by (2.1) is coercive on Y provided hypotheses (H1)

and (H2) hold.

Proof Observe that by Holder inequality, Lemma 2.1, hypotheses (H1), (H2), we have

|I (w)| = |α
p

∫
�

|∇u|pdx + β

p

∫
�

|∇v|pdx − λ1

∫
�

|u|α−1|v|β−1uvdx

−
∫

�

H(x, u, v)dx +
∫

�

(αk1u + βk2v)dx |

≥ |min

(
α

p
; β

p

)
||w||pE − λ1

λ̄

(
α

p

∫
�

|∇u|pdx + β

p

∫
�

|∇v|pdx
)

−
∫

�

τ(x)(|u| + |v|)dx − α||k1||L p′ ||u||L p − β||k2||L p′ ||v||L p |

≥ |
(
1 − λ1

λ̄

)
min

(
α

p
; β

p

)
||w||pE − (||τ ||L p′

+α||k1||L p′ )||u||L p − (||τ ||L p′ + β||k2||L p′ )||v||L p |
≥ |

(
1− λ1

λ̄

)
min

(
α

p
; β

p

)
||w||pE−max

{
(||τ ||L p′ +α||k1||L p′ ), (||τ ||L p′ +β||k2||L p′ )

}
.

.c(||u||
W 1,p

0
+ ||v||

W 1,p
0

)|.

Since ||wE || → +∞ and
(
1 − λ1

λ̄

)
> 0, p ≥ 2, we obtain I (w) → +∞.

Thus the functional I given by (2.1) is coercive on Y and Proposition 2.2 is proved. 
�
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From Proposition 2.1 the functional I is coercive on Y , so that

BY = min
w∈Y I (w) > −∞.

On the other hand, for every t ∈ R we have

α

p

∫
�

|∇(tϕ1)|pdx + β

p

∫
�

|∇(tϕ2)|pdx − λ1

∫
�

|tϕ1|α−1|tϕ2|β−1(tϕ1)(tϕ2)dx = 0

as follows from the definition of λ1 and ϕ. Thus,

I (tϕ) = t
∫

�

(αk1ϕ1 + βk2ϕ2)dx −
∫

�

H(x, tϕ)dx

= t
∫

�

(
(αk1ϕ1 + βk2ϕ2) − H(x, tϕ)

t

)
dx .

Remark that

H(x, tϕ)

t
= 1

t

{
α

2

∫ tϕ1

0
( f (x, s, tϕ2) + f (x, s, 0))ds

+ β

2

∫ tϕ2

0
(g(x, tϕ1, τ ) + g(x, 0, τ ))dτ

}

= 1

t

{
α

2

∫ t

0
(( f (x, yϕ1, tϕ2) + f (x, yϕ1, 0))dy)ϕ1

+ β

2

∫ t

0
((g(x, tϕ1, yϕ2) + g(x, 0, yϕ2))dy)ϕ2

}
.

Hence,

lim
t→+∞

H(x, tϕ)

t
= 1

2
(αF1(x)ϕ1 + βG1(x)ϕ2).

Therefore,

lim
t→+∞t

∫
�

(
(αk1ϕ1 + βk2ϕ2) − H(x, tϕ)

t

)
dx

= lim
t→+∞t

∫
�

{
(αk1ϕ1 + βk2ϕ2) − 1

2
(αF1(x)ϕ1 + βG1(x)ϕ2)

}
dx .

On the other hand, from (H2(i)) we obtain

1

p

∫
�

(α f +∞ϕ1 + βg+∞ϕ2)dx <
1

p

∫
�

(αk1ϕ1 + βk2ϕ2) dx .

It follows from H2(i i) that∫
�

{
1

2
(αF1(x)ϕ1 + βG1(x)ϕ2) − α

p
f +∞(x)ϕ1 − β

p
g+∞(x)ϕ2

}
dx

>

(
1 − 1

p

) ∫
�

(αk1ϕ1 + βk2ϕ2)dx .

Thus, ∫
�

{
1

2
(αF1(x)ϕ1 + βG1(x)ϕ2) − (αk1ϕ1 + βk2ϕ2)

}
dx > 0.
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This shows that

lim
t→+∞I (tϕ) = −∞.

Next, with t < 0 we also have

H(x, tϕ)

t
= 1

t

{
α

2

∫ tϕ1

0
( f (x, s, tϕ2) + f (x, s, 0))ds

+β

2

∫ tϕ2

0
(g(x, tϕ1, τ ) + g(x, 0, τ ))dτ

}

= − 1

|t |
{

α

2

∫ −|t |ϕ1

0
( f (x, s,−|t |ϕ2) + f (x, s, 0))ds

+β

2

∫ −|t |ϕ2

0
(g(x,−|t |ϕ1, τ ) + g(x, 0, τ ))dτ

}
.

Set s = −yϕ1 → ds = −ϕ1dy and s = −|t |ϕ1 = −yϕ1 ⇒ y = |t |
H(x, tϕ)

t
= − 1

|t |
{

α

2

∫ −|t |

0
(( f (x,−yϕ1,−|t |ϕ2) + f (x,−yϕ1, 0))dy)(−ϕ1)

+β

2

∫ −|t |

0
((g(x,−|t |ϕ1,−yϕ2) + g(x, 0,−yϕ2))dy)(−ϕ2)

}
.

Now, letting t → −∞, we get

lim
t→−∞

H(x, tϕ)

t
= 1

2

∫
�

(αF2(x)ϕ1 + βG2(x)ϕ2)dx .

We deduce that

lim
t→−∞I (tϕ) = lim

t→−∞t
∫

�

{
(αk1ϕ1 + βk2ϕ2) − 1

2
(αF2(x)ϕ1 + βG2(x)ϕ2)

}
dx .

Similarly above from (H2(i i)) we obtain

1

2

∫
�

(αF2(x)ϕ1 + βG2(x)ϕ2)dx <

∫
�

(αk1ϕ1 + βk2ϕ2)dx .

This implies that

lim
t→−∞I (tϕ) = −∞.

Thus, there exists t0 such that |t0| large enough, we have I (t0ϕ) < 0.
Set w0(x) = (t0ϕ1, t0ϕ2) we get

I (w0) = I (t0ϕ) < BY ≤ I (tϕ).

Proof of theorem 1.1 By Propositions 2.1 and 2.2, applying the Saddle Point Theorem
(P.H.Rabinowitz) (see Theorem 2.1), we deduce that the functional I attains its proper infi-
mum at some w0 = (u0, v0) ∈ E , so that the problem (1.1) has at least a weak solution
w0 ∈ E . Moreover w0 is nontrivial weak solution of the Problem (1.1). The Theorem 1.1 is
completely proved. 
�
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Remark 2.3 Wewill get the same result as above if the hypotheses (H2) is replaced by reverse
inequalities as follows.

We assume that
(H2)

∗
∫

�

{
1

2
(αF2(x)ϕ1(x) + βG2(x)ϕ2(x)) − α

p
f −∞(x)ϕ1(x) − β

p
g−∞(x)ϕ2(x)

}
dx

>

(
1 − 1

p

) ∫
�

(αk1(x)ϕ1(x) + βk2(x)ϕ2(x))dx >

>

∫
�

{
1

2
(αF1(x)ϕ1(x) + βG1(x)ϕ2(x)) − α

p
f +∞(x)ϕ1(x) − β

p
g+∞(x)ϕ2(x)

}
dx .

(2.27)

This means that, if the conditions (H1), (H2)
∗ holds, then the problem (1.1) has at least a

nontrivial weak solution in E . This assertion is proved by using variational techniques, the
Minimum Principle and generalization of the Landesman–Lazer type condition.
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