1 Introduction

We recall the notion of “best possible maximum principle” introduced by L. Payne a few decades ago [7, 8]. A function P that depends on solutions and their derivatives of a boundary value problem on bounded domains is said to satisfy a best possible maximum principle if P satisfies the weak maximum principle for every bounded domain \(\Omega \), and if there is a special domain on which it is a constant. As an example, let u satisfy

$$\begin{aligned} \Delta u=1\ \ \hbox {in}\ \ \Omega ,\ \ u=0\ \ \hbox {on}\ \ \partial \Omega . \end{aligned}$$

The function

$$\begin{aligned} P=|Du|^2-\frac{2}{n}u \end{aligned}$$

satisfies

$$\begin{aligned} \Delta P=2\sum _{i,j=1}^nu_{ij}^2-\frac{2}{n}\ge 2\sum _{i=1}^nu_{ii}^2-\frac{2}{n}\ge \frac{2}{n}(\Delta u)^2-\frac{2}{n}=0, \end{aligned}$$

where \(u_i=\frac{\partial u}{\partial x_i},\) \(u_{ij}=\frac{\partial ^2 u}{\partial x_i\partial x_j}.\) It follows that P attains its maximum value on \(\partial \Omega \). If \(\Omega \) is a ball of radius R centered at the origin, we have

$$\begin{aligned} u=\frac{|x|^2-R^2}{2n}. \end{aligned}$$

The corresponding function \(P=|Du|^2-\frac{2}{n}u\) is a constant in \(\Omega \).

In [2], the following problem is discussed. Let \(\Omega \subset {\mathbb {R}}^n\) be a bounded convex domain, and let u be a convex solution to the boundary value problem

$$\begin{aligned} \textrm{det}(D^2u)=1\ \ \hbox {in}\ \ \Omega ,\ \ u=0\ \ \hbox {on}\ \ \partial \Omega . \end{aligned}$$

Corresponding to this solution, consider the function

$$\begin{aligned} P=\sum _{i,j=1}^n\frac{\partial \textrm{det}(D^2u)}{\partial u_{ij}}u_iu_j-2u. \end{aligned}$$

In [2], the authors prove that P satisfies a best possible maximum principle. Similar problems are discussed in [6, 9].

Let \(\Omega \subset {\mathbb {R}}^n\) be a bounded convex domain. For a smooth function u we have

$$\begin{aligned} \textrm{det}(D^2u)=\frac{1}{n}\Bigl (T_{(n-1)}^{ij}(D^2u)u_i\Bigr )_j, \end{aligned}$$

where \(T_{(n-1)}(D^2u)=[T_{(n-1)}^{ij}(D^2u)]\) is the adjoint of the Hessian matrix \(D^2u\). Here and in what follows sub-indices denote partial differentiation, and the summation convention from 1 to n over repeated indices is in effect.

In the present paper, we find a best possible maximum principle relative to the following generalized Monge-Ampère equation. With \(p>1\), we consider the boundary value problem

$$\begin{aligned} \frac{1}{n}\Bigl (T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_i\Bigr )_j=1\ \ \hbox {in}\ \ \Omega ,\ \ \ u=0\ \ \ \hbox {on}\ \ \ \partial \Omega . \end{aligned}$$
(1)

Note that this generalization of the Monge-Ampère operator is similar to the p-Laplacian as the generalization of the Laplacian [13]. For a discussion of problems related to Monge-Ampère operators we refer to [1, 4, 5].

Problem (1) in case of \(p=2\) has been discussed in [2]. From now on we concentrate on the case \(p>1\), \(p\not =2\). We suppose \(u\in \Phi \), where

$$\begin{aligned} \Phi = \{u\in C^1_0(\Omega )\cap C^2(\partial \Omega ),\ u\ \hbox {is strictly convex and smooth whenever}\ |Du|>0.\} \end{aligned}$$

Let \(u_m=\min _\Omega u(x)=u(x_0)\). Clearly, \(|Du|=0\) at \(x_0\) only. We say that u is smooth in \({\mathcal {O}}\) if it is at least \(C^4\) in \({\mathcal {O}}\).

Note that the matrix \(D^2u\) is positive definite where \(|Du|>0\). We say that \(u\in \Phi \) is a solution to (1) if

$$\begin{aligned} -\frac{1}{n}\int _\Omega T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_i\phi _j\, dx=\int _\Omega \phi \, dx\ \ \ \forall \phi \in H^1_0(\Omega ). \end{aligned}$$

We claim that

$$\begin{aligned} \lim _{x\rightarrow x_0}T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_iu_j=0. \end{aligned}$$

Indeed, let

$$\begin{aligned} \Omega ^t=\{x\in \Omega : u(x)<t\},\ \ \ u_m<t<0. \end{aligned}$$

If we multiply (1) by \((t-u)^+\) and we integrate over \(\Omega \) we find

$$\begin{aligned} \int _{\Omega ^t}T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_iu_j\, dx=n\int _{\Omega ^t}(t-u)\, dx\le n|\Omega ^t|\sup _{\Omega ^t}(t-u). \end{aligned}$$

It follows that

$$\begin{aligned} \frac{1}{|\Omega ^t|}\int _{\Omega ^t}T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_iu_j\, dx\le n\sup _{\Omega ^t}(t-u)=n(t-u_m). \end{aligned}$$

As \(t\rightarrow u_m\), the claim follows.

Define the P-function

$$\begin{aligned} P=\frac{p-1}{p}T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_iu_j-u,\ \ x\not =x_0, \end{aligned}$$
(2)

and \(P(x_0)=-u_m\).

Our first result is the following

Theorem 1.1

Let \(\Omega \) be a bounded convex domain. If \(u\in \Phi \) is solution to Problem (1), the function P defined as in (2) attains its maximum value either on the boundary \(\partial \Omega \) or at the point where \(Du=0\). Moreover, if \(\Omega \) is a ball then P is a constant.

By using Theorem 1.1, we shall discuss the following overdetermined problem. Let \(u\in \Phi \) be a solution to Problem (1). Furthermore, if \(u_m=\min _\Omega u(x)\), suppose there is some constant c such that

$$\begin{aligned} {{\mathcal {H}}}_{(n-1)}|Du|^{n(p-1)+1}=c\ \ \hbox {on}\ \ \partial \Omega ,\ \ \frac{p-1}{p}c\ge -u_m, \end{aligned}$$
(3)

where \({{\mathcal {H}}}_{(n-1)}\) is the Gauss curvature of \(\partial \Omega \).

Theorem 1.2

If there is a solution \(u\in \Phi \) to problem (1) which satisfies the additional condition (3), then the function P defined as in (2) is a constant in \(\Omega \).

Overdetermined problems for second order linear and quasilinear equations were discussed more than fifty years ago in the seminal papers [12, 15].

In case of \(n=2\), we shall prove the analogous of Theorem 1.1 for the minimum. Similar results are proved in [3]. As an application, we will prove Theorem 1.2 without the restriction \(\frac{p-1}{p}c\ge -u_m\).

2 A Best Possible Maximum Principle

Recall that, where \(|Du|>0\), the operator \(T_{(n-1)}^{ij}(D^2u)\) is divergence free (see, for example, [10, 11]), that is

$$\begin{aligned} \Bigl (T_{(n-1)}^{ij}(D^2u)\Bigr )_i=0,\ \ \ j=1,\cdots ,n. \end{aligned}$$
(4)

Moreover, since \(T_{(n-1)}(D^2u)\) is the adjoint of the Hessian matrix \(D^2u\), we have

$$\begin{aligned} T_{(n-1)}(D^2u)D^2u=I\textrm{det}(D^2u), \end{aligned}$$
(5)

where I is the \(n\times n\) identity matrix. On using these facts, after some computation one finds

$$\begin{aligned} \frac{1}{n}\Bigl (T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_i\Bigr )_j=(p-1)|Du|^{n(p-2)}\textrm{det}(D^2u). \end{aligned}$$

Therefore, Equation (1) for \(x\in \Omega \) such that \(|Du|>0\), can be written as

$$\begin{aligned} \textrm{det}(D^2u)=\frac{1}{p-1}|Du|^{n(2-p)}. \end{aligned}$$
(6)

Proof of Theorem 1.1

Let \(x_0\in \Omega \) be the point where \(Du=0\), and let \(u_m=u(x_0)\). Arguing by contradiction, let \({\tilde{x}}\in {\Omega {\setminus } \{x_0\}}\) be a point such that

$$\begin{aligned} \begin{aligned}&P({\tilde{x}})=\frac{p-1}{p}T_{(n-1)}^{ij}(D^2u({\tilde{x}}))|Du(\tilde{x})|^{n(p-2)}u_i({\tilde{x}})u_j({\tilde{x}})-u({\tilde{x}})\\&>\max \Bigl [\frac{p-1}{p}\max _{x\in \partial \Omega }\bigl (T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_iu_j\bigr ),-u_m\Bigr ]. \end{aligned} \end{aligned}$$

Choose \(0<\tau <1\) close enough to 1 so that

$$\begin{aligned} \begin{aligned} P({\tilde{x}})&=\frac{p-1}{p}T_{(n-1)}^{ij}(D^2u({\tilde{x}}))|Du(\tilde{x})|^{n(p-2)}u_i({\tilde{x}})u_j({\tilde{x}})-\tau u({\tilde{x}})\\&>\max \Bigl [\frac{p-1}{p}\max _{x\in \partial \Omega }\bigl (T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_iu_j\bigr ),-\tau u_m\Bigr ]. \end{aligned} \end{aligned}$$

Then, also the function

$$\begin{aligned} \tilde{P}(x)=\frac{p-1}{p}T_{(n-1)}^{ij}(D^2u)|Du|^{n(p-2)}u_iu_j-\tau u \end{aligned}$$

attains its maximum value at some point \({\bar{x}}\in {\Omega {\setminus } \{x_0\}}\). We show that this cannot happen.

On using the equations (5) and (6) we find

$$\begin{aligned} T_{(n-1)}(D^2u)=\frac{1}{p-1}|Du|^{n(2-p)}(D^2u)^{-1}, \end{aligned}$$

where \((D^2u)^{-1}\) is the inverse matrix of \(D^2u\). Therefore, if \([u^{kl}]= (D^2u)^{-1}\) we have

$$\begin{aligned} p{\tilde{P}}= u^{kl}u_ku_l-p\tau u. \end{aligned}$$

We compute

$$\begin{aligned} p{\tilde{P}}_i= u^{kl}_iu_ku_l +2 u^{kl}u_{ki}u_l-p\tau u_i. \end{aligned}$$

Since

$$\begin{aligned} u^{kl}u_{ki}=\delta ^{l}_i\ \ \ \hbox {(the Kronecker delta)} \end{aligned}$$

we find

$$\begin{aligned} p{\tilde{P}}_i= u^{kl}_iu_ku_l+(2-p\tau )u_i,\ \ \ i=1,\cdots ,n. \end{aligned}$$
(7)

Further differentiation yields

$$\begin{aligned} p{\tilde{P}}_{ii}= u^{kl}_{ii}u_ku_l +2 u^{kl}_iu_{ki}u_l+(2-p\tau )u_{ii}. \end{aligned}$$

We note that our equation (1) is invariant under a rigid rotation. Let us make a suitable rotation around the point \({\bar{x}}\) such that \(D^2u\) has a diagonal form at this point. With some abuse of notation, \({\tilde{P}}_i\) denote derivatives of \({\tilde{P}}\) with respect to the new variables. Then,

$$\begin{aligned} p{\tilde{P}}_{ii}= u^{kl}_{ii}u_ku_l +2 u^{il}_iu_{ii}u_l+(2- p\tau )u_{ii},\ \ \ i=1,\cdots ,n. \end{aligned}$$

Clearly, also \((D^2u)^{-1}\) will have a diagonal form at \({\bar{x}}\). Furthermore, for i fixed we have \( u^{ii}u_{ii}=1.\) Multiplying by \( u^{ii}\) the equation in above and adding from \(i=1\) up to \(i=n\) we get

$$\begin{aligned} pu^{ii}{\tilde{P}}_{ii}= u^{ii}u^{kl}_{ii}u_ku_l +2 u^{il}_iu_l+n(2- p\tau ). \end{aligned}$$
(8)

By (5) and (6) we find

$$\begin{aligned} |Du|^{n(2-p)}(D^2u)^{-1}=(p-1)T_{(n-1)}(D^2u). \end{aligned}$$
(9)

Hence, since the matrix \(T_{(n-1)}(D^2u)\) is divergence free, we have

$$\begin{aligned} \Bigl (|Du|^{n(2-p)}u^{il}\Bigr )_i=0,\ \ \ l=1,\cdots ,n, \end{aligned}$$

from which we find (recall that we are adding over repeated indices)

$$\begin{aligned} u^{il}_i=n(p-2)|Du|^{-2}u_{ik}u_ku^{il}=n(p-2)|Du|^{-2}\delta _k^lu_k=n(p-2)|Du|^{-2}u_l. \end{aligned}$$

Therefore,

$$\begin{aligned} u^{il}_iu_l=n(p-2). \end{aligned}$$
(10)

Insertion of this equation into (8) yields

$$\begin{aligned} pu^{ii}{\tilde{P}}_{ii}= u^{ii}u^{kl}_{ii}u_ku_l +n(2p-2-p\tau ).\end{aligned}$$
(11)

Now we evaluate the quantity \( u^{ii}u^{kl}_{ii}u_ku_l\). Unfortunately, our computations are quite long. Since \([u^{kl}]\) is the inverse matrix of \([u_{kl}]\), we have

$$\begin{aligned} u^{kl}_i=-u^{km}u^{lq}u_{mqi}. \end{aligned}$$

Differentiating with respect to \(x^i\) we find

$$\begin{aligned} u^{kl}_{ii}=(u^{ks}u^{mj}u^{lq}+u^{km}u^{ls}u^{qj})u_{sji}u_{mqi}-u^{km}u^{lq}u_{mqii}. \end{aligned}$$

Since \(D^2u\) has a diagonal form at \({\bar{x}}\), from the latter equation we find (here we do not add with respect to i, k or l)

$$\begin{aligned} u^{kl}_{ii}=2u^{kk}u^{jj}u^{ll}u_{ijk}u_{ijl}-u^{kk}u^{ll}u_{klii},\ \ i,k,l=1,\cdots ,n. \end{aligned}$$

Multiplying by \(u^{ii}\) and adding from \(i=1\) up to \(i=n\) we get

$$\begin{aligned} u^{ii}u^{kl}_{ii}=2u^{ii}u^{jj}u^{kk}u^{ll}u_{ijk}u_{ijl}-u^{ii}u^{kk}u^{ll}u_{iikl}. \end{aligned}$$
(12)

To evaluate the last quantity in (12), let us differentiate Equation (6) with respect to \(x^k\). We find

$$\begin{aligned} \frac{\partial \textrm{det}(D^2u)}{\partial u_{ij}}u_{ijk}=\frac{n(2-p)}{p-1}|Du|^{n(2-p)-2}u_{ks}u_s,\ \ \ k=1,\cdots ,n. \end{aligned}$$

By (9) we have

$$\begin{aligned} \frac{\partial \textrm{det}(D^2u)}{\partial u_{ij}}=T_{(n-1)}^{ij}(D^2u)=\frac{1}{p-1}|Du|^{n(2-p)}u^{ij}. \end{aligned}$$

By the last two equations we find

$$\begin{aligned} \frac{1}{p-1}|Du|^{n(2-p)}u^{ij}u_{ijk}=\frac{n(2-p)}{p-1}|Du|^{n(2-p)-2}u_{ks}u_s. \end{aligned}$$

Simplifying we get

$$\begin{aligned} u^{ij}u_{ijk}=n(2-p)|Du|^{-2}u_{ks}u_s. \end{aligned}$$

Further differentiation with respect to \(x^l\) yields

$$\begin{aligned} u^{ij}u_{ijkl}+u^{ij}_lu_{ijk}=n(2-p)\big [-2|Du|^{-4}u_{ll}u_lu_{kk}u_k+|Du|^{-2}u_{ksl}u_s+|Du|^{-2}u^2_{ll}\delta ^k_{l}\bigr ]. \end{aligned}$$

Note that we are using the condition that \(D^2u\) has a diagonal form at the point \({\bar{x}}\). Since \(u^{ij}_l=-u^{ii}u^{jj}u_{ijl}\) (with i and j fixed), by the previous equation we find

$$\begin{aligned} \begin{aligned}u^{ii}u_{iikl}&=u^{ii}u^{jj}u_{ijk}u_{ijl}+n(2-p)\big [-2|Du|^{-4}u_{ll}u_lu_{kk}u_k\\&+|Du|^{-2}u_{ksl}u_s+|Du|^{-2}u^2_{ll}\delta ^k_{l}\bigr ]. \end{aligned} \end{aligned}$$
(13)

Insertion of (13) into (12) leads to

$$\begin{aligned}\begin{aligned} u^{ii}u^{kl}_{ii}&=2u^{ii}u^{jj}u^{kk}u^{ll}u_{ijk}u_{ijl}-u^{ii}u^{jj}u^{kk}u^{ll}u_{ijk}u_{ijl}\\&+n(p-2)\big [-2|Du|^{-4}u_lu_k+|Du|^{-2}u^{kk}u^{ll}u_{kls}u_s+|Du|^{-2}\delta ^k_{l}\bigr ].\end{aligned} \end{aligned}$$

Simplifying we find

$$\begin{aligned}\begin{aligned} u^{ii}u^{kl}_{ii}&=u^{ii}u^{jj}u^{kk}u^{ll}u_{ijk}u_{ijl}+n(p-2)\big [-2|Du|^{-4}u_lu_k\\&+|Du|^{-2}u^{kk}u^{ll}u_{kls}u_s+|Du|^{-2}\delta ^k_{l}\bigr ].\end{aligned} \end{aligned}$$

Multiplying by \(u_ku_l\) (and adding with respect to k and l) we get,

$$\begin{aligned} u^{ii}u^{kl}_{ii}u_ku_l =u^{ii}u^{jj}\bigl (u^{kk}u_{ijk}u_k\bigr )^2-n(p-2) +n(p-2)|Du|^{-2}u^{kk}u^{ll}u_{kls}u_ku_lu_s. \end{aligned}$$

Inserting this equation into (11) we find

$$\begin{aligned} pu^{ii}{\tilde{P}}_{ii}= u^{ii}u^{jj}\bigl (u^{kk}u_{ijk}u_k\bigr )^2+np(1-\tau ) +n (p-2)|Du|^{-2}u^{kk}u^{ll}u_{kls}u_ku_lu_s.\nonumber \\ \end{aligned}$$
(14)

Let us evaluate the first quantity of the right hand side in (14). By using the inequality

$$\begin{aligned} \sum _{i=1}^na_i^2\ge \frac{1}{n}\Bigl (\sum _{i=1}^na_i\Bigr )^2,\ \ \ a_i\in {\mathbb {R}}, \end{aligned}$$

with \(a_i=b_i(\sum _kc_{ik})\) we find

$$\begin{aligned} \sum _{i}b_i^2\Bigl (\sum _{k}c_{ik}\Bigr )^2\ge \frac{1}{n} \Bigl (\sum _{i,k}b_ic_{ik}\Bigr )^2. \end{aligned}$$

Hence,

$$\begin{aligned} \sum _{i,j}u^{ii}u^{jj}\Bigl (\sum _ku^{kk}u_{ijk}u_k\Bigr )^2\ge \sum _{i}(u^{ii})^2\Bigl (\sum _ku^{kk}u_{iik}u_k\Bigr )^2 \ge \frac{1}{n}\Bigl ( \sum _{i,k}u^{ii}u^{kk}u_{iik}u_k\Bigr )^2. \end{aligned}$$

Since

$$\begin{aligned} u^{ii}u^{kk}u_{iik}=-u^{ik}_i, \end{aligned}$$

on using (10) we find

$$\begin{aligned} u^{ii}u^{kk}u_{iik}u_k=-u^{ik}_iu_k=-n(p-2). \end{aligned}$$

Therefore,

$$\begin{aligned} \sum _{i,j}u^{ii}u^{jj}\Bigl (\sum _ku^{kk}u_{jki}u_k\Bigr )^2\ge n(p-2)^2. \end{aligned}$$
(15)

Insertion of (15) into (14) yields

$$\begin{aligned} \begin{aligned} pu^{ii}{\tilde{P}}_{ii}&\ge n(p-2)^2+np(1-\tau ) +n (p-2)|Du|^{-2}u^{kk}u^{ll}u_{kls}u_ku_lu_s. \end{aligned} \end{aligned}$$
(16)

To finish, we must evaluate the last quantity of the right hand side in (16). This is easy. By (7), at \({\bar{x}}\) (the point of maximum of \({\tilde{P}}\)) we have

$$\begin{aligned} 0= u^{kl}_iu_ku_l+(2-p\tau )u_i,\ \ \ i=1,\cdots ,n, \end{aligned}$$

whence,

$$\begin{aligned} u^{kk}u^{ll}u_{kli}u_ku_l=(2-p\tau )u_i. \end{aligned}$$

Multiplying by \(u_i\) and adding from \(i=1\) up to \(i=n\) we find

$$\begin{aligned} |Du|^{-2}u^{kk}u^{ll}u_{kli}u_ku_lu_i=2-p\tau . \end{aligned}$$

Insertion of this equation into (16) yields

$$\begin{aligned} pu^{ii}{\tilde{P}}_{ii}\ge n(p-2)^2+np(1-\tau )+n (p-2)(2-p\tau ). \end{aligned}$$

After simplification we get

$$\begin{aligned} u^{ii}{\tilde{P}}_{ii}\ge n(p-1)(1-\tau )>0, \end{aligned}$$

contradicting the assumption that \({\bar{x}}\) is a point of maximum for \({\tilde{P}}\). It follows that P must attain its maximum value either on the boundary \(\partial \Omega \) or at the point where \(Du=0\).

Now consider the case \(\Omega \) is a ball of radius R, centered at the origin. If \(u=u(r)\), \(r=|x|\), we may assume \(u_1=u'\), \(u_i=0,\ \ 2\le i\le n.\) Then,

$$\begin{aligned} D^2u=\textrm{diag}\Bigl \{u'',\frac{u'}{r},\cdots ,\frac{u'}{r}\Bigr \}. \end{aligned}$$

Therefore, Equation (6) reads as

$$\begin{aligned} u''\Bigl (\frac{u'}{r}\Bigr )^{n-1}=\frac{1}{p-1}(u')^{n(2-p)}, \end{aligned}$$

or

$$\begin{aligned} (u')^{n(p-1)-1}u''=\frac{r^{n-1}}{p-1}. \end{aligned}$$

Integrating we find

$$\begin{aligned} u'=r^\frac{1}{p-1}. \end{aligned}$$

Integrating again and using the condition \(u(R)=0\) we find

$$\begin{aligned} u(r)=\frac{p-1}{p}\Bigl (r^\frac{p}{p-1}-R^\frac{p}{p-1}\Bigr ). \end{aligned}$$

Recall that our P-function reads as

$$\begin{aligned} P=\frac{1}{p}u^{ij}u_iu_j-u, \end{aligned}$$

where \([u^{ij}]\) is the inverse matrix of \([u_{ij}].\) Then,

$$\begin{aligned} P=\frac{1}{p}\frac{1}{u''}(u')^2-u=\frac{p-1}{p}r^\frac{p}{p-1}-\frac{p-1}{p}\Bigl (r^\frac{p}{p-1}-R^\frac{p}{p-1}\Bigr )=\frac{p-1}{p}R^\frac{p}{p-1}. \end{aligned}$$

Hence P is a constant, and the theorem is proved.

3 An Overdetermined Problem

Proof of Theorem 1.2

We note that (see [14])

$$\begin{aligned} T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_ku_l=\mathcal{H}_{(n-1)}|Du|^{n(p-1)+1}\ \ \hbox {on}\ \ \partial \Omega , \end{aligned}$$

where \({{\mathcal {H}}}_{(n-1)}\) is the Gauss curvature of \(\partial \Omega \). Therefore, we can write condition (3) as

$$\begin{aligned} T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_ku_l=c\ \ \hbox {on}\ \ \partial \Omega ,\ \ \frac{p-1}{p}c\ge -u_m. \end{aligned}$$
(17)

By Theorem 1.1, the maximum of the function P is either \(\frac{p-1}{p}c\) (attained on \(\partial \Omega \)) or \(-u_m\) (attained where \(Du=0\)). Hence, since \(\frac{p-1}{p}c\ge -u_m\), we have

$$\begin{aligned} P(x)=\frac{p-1}{p}T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_ku_l-u\le \frac{p-1}{p} c,\ \ \forall x\in \Omega . \end{aligned}$$
(18)

Recall that \(x_0\) is the point of minimum for u, and that \(u_m\) is the minimum value of u. For \(u_m\le t<0\) we define

$$\begin{aligned} \Omega _t=\{x\in \Omega :\ t\le u(x)<0\}. \end{aligned}$$

Clearly, \(\Omega _{u_m}=\Omega .\) Moreover we have

$$\begin{aligned} \partial \Omega _t=\partial \Omega \cup \Sigma _t,\ \ \ \ \Sigma _t=\{x\in \Omega :\ u(x)=t\}. \end{aligned}$$

Let \(e=(e^1,\cdots ,e^n)\) be the exterior unit normal to \(\partial \Omega _t\). On \(\partial \Omega _t\) we have \(u_k=|Du|e^k\). Therefore, using Equation (1) we find

$$\begin{aligned} \begin{aligned}&\int _{\Omega _t}T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_lu_k\, dx=t\int _{\Sigma _t} T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_l e^k\, d\sigma \\&+\int _{\Omega _t} (-u)\Bigl (T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_l\Bigr )_k\, dx\\&=t\int _{\Sigma _t} T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)-1}u_lu_k\, d\sigma +n\int _{\Omega _t} (-u)\, dx. \end{aligned} \end{aligned}$$

On \(\Sigma _t\) we have (see [14])

$$\begin{aligned} T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_ku_l=\mathcal{H}_{(n-1)}|Du|^{n(p-1)+1}, \end{aligned}$$

where \({{\mathcal {H}}}_{(n-1)}\) is the Gauss curvature of \(\Sigma _t\). Hence,

$$\begin{aligned} \int _{\Omega _t}T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_lu_k\, dx=t\int _{\Sigma _t}{{\mathcal {H}}}_{(n-1)}|Du|^{n(p-1)}\, d\sigma +n\int _{\Omega _t} (-u)\, dx.\nonumber \\ \end{aligned}$$
(19)

On noting that

$$\begin{aligned} \int _{\Sigma _t}{{\mathcal {H}}}_{(n-1)}\, d\sigma =n\omega _n\ \ \ \ (\omega _n=\ n-\hbox {measure of the unit sphere}), \end{aligned}$$

and that

$$\begin{aligned} \lim _{t\rightarrow u_m}|Du|=0, \end{aligned}$$

we have

$$\begin{aligned} \lim _{t\rightarrow u_m}\int _{\Sigma _t}{{\mathcal {H}}}_{(n-1)}|Du|^{n(p-1)}\, d\sigma =0. \end{aligned}$$

Hence, by (27) we find

$$\begin{aligned} \lim _{t\rightarrow u_m}\int _{\Omega _t}T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_lu_k\, dx=n\int _{\Omega } (-u)\, dx, \end{aligned}$$
(20)

and

$$\begin{aligned} \int _{\Omega }T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_lu_k\, dx=n\int _{\Omega } (-u)\, dx. \end{aligned}$$
(21)

Now we use a sort of Pohozaev identity. We find

$$\begin{aligned} \begin{aligned}&\int _{\partial \Omega _t}x^ie^iT_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_ku_l\, d\sigma \\&\quad =\int _{\partial \Omega _t}x^iu_i T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_ke^l\, d\sigma \\&\quad =\int _{\Omega _t}\Bigl (x^iu_iT_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_k\Bigr )_l\, dx\\&\quad =\int _{\Omega _t}T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_lu_k\, dx\\&\qquad +\int _{\Omega _t}x^iu_{il}T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_k\, dx\\&\qquad +\int _{\Omega _t}x^iu_i\Bigr (T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_k\Bigr )_l\, dx. \end{aligned} \end{aligned}$$
(22)

Since

$$\begin{aligned} u_{il}T_{(n-1)}^{kl}(D^2u)=\textrm{det}(D^2u)\delta ^{k}_i=\frac{|Du|^{n(2-p)}}{p-1}\delta ^{k}_i \end{aligned}$$

we have

$$\begin{aligned}\begin{aligned}&\int _{\Omega _t}x^iu_{il}T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_k\, dx=\frac{1}{p-1}\int _{\Omega _t}x^iu_i\, dx\\&\quad =\frac{t}{p-1}\int _{\Sigma _t}x^i e^i\, d\sigma +\frac{n}{p-1}\int _{\Omega _t}(-u)\, dx\\&\quad =\frac{nt}{p-1}|\Omega \setminus \Omega _t|+\frac{n}{p-1}\int _{\Omega _t}(-u)\, dx. \end{aligned} \end{aligned}$$

Hence,

$$\begin{aligned} \lim _{t\rightarrow u_m}\int _{\Omega _t}x^iu_{il}T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_k\, dx=\frac{n}{p-1}\int _{\Omega }(-u)\, dx. \end{aligned}$$
(23)

Finally, on using Equation (1) once more we find

$$\begin{aligned} \begin{aligned}&\int _{\Omega _t}x^iu_i\Bigr (T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_k\Bigr )_l\, dx=n\int _{\Omega _t}x^iu_i\, dx\\&=n^2t|\Omega \setminus \Omega _t|+n^2\int _{\Omega _t}(-u)\, dx. \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} \lim _{t\rightarrow u_m}\int _{\Omega _t}x^iu_i\Bigr (T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_k\Bigr )_l\, dx= n^2\int _{\Omega }(-u)\, dx. \end{aligned}$$
(24)

Hence, letting \(t\rightarrow u_m\) in (22) and using (21), (23) and (24) we find

$$\begin{aligned} \begin{aligned}&\int _{\partial \Omega }x^ie^iT_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_ku_l\, d\sigma \\&\quad =n\int _{\Omega } (-u)\, dx+\frac{n}{p-1}\int _{\Omega }(-u)\, dx+n^2\int _{\Omega }(-u)\, dx\\&\quad =n\Bigl (n+\frac{p}{p-1}\Bigr )\int _\Omega (-u)\, dx. \end{aligned} \end{aligned}$$
(25)

On the other hand, using condition (17) we find

$$\begin{aligned} \int _{\partial \Omega }x^ie^iT_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_ku_l\, d\sigma =c\int _{\partial \Omega }x^ie^i\, d\sigma =cn|\Omega |. \end{aligned}$$

From this equation and (24) it follows that

$$\begin{aligned} c|\Omega |=\Bigl (n+\frac{p}{p-1}\Bigr )\int _\Omega (-u)\, dx. \end{aligned}$$
(26)

Using (21) and (26) we get

$$\begin{aligned} \begin{aligned}&\int _\Omega \Bigl [P(x)-\frac{p-1}{p}c\Bigr ]dx\\&\int _{\Omega }\Bigl [\frac{p-1}{p}T_{(n-1)}^{kl}(D^2u)|Du|^{n(p-2)}u_ku_l-u-\frac{p-1}{p}c\Bigr ]\, dx\\&=\int _{\Omega }\Bigl [\frac{p-1}{p}n(-u)-u-\frac{p-1}{p}c\Bigr ]\, dx\\&=\frac{p-1}{p}\Bigl [\Bigl (n+\frac{p}{p-1}\Bigr )\int _{\Omega }(-u)\, dx-c|\Omega |\Bigr ]=0. \end{aligned} \end{aligned}$$

This together with (18) shows that \(P(x)=\frac{p-1}{p}c\) in \(\Omega \).

The theorem is proved.

4 The Case \(n=2\)

Theorem 4.1

Let \(\Omega \subset {\mathbb {R}}^2\) be a bounded convex domain. If \(u\in \Phi \) is a solution to Problem (1) in \(\Omega \), the function P defined as in (2) for \(n=2\) attains its minimum value either on the boundary \(\partial \Omega \) or at the point where \(Du=0\).

Proof

Let \(x_0\in \Omega \) be the point where \(Du=0\), and let \(u_m=u(x_0)\). Arguing by contradiction, let \({\tilde{x}}\in {\Omega {\setminus } \{x_0\}}\) be a point such that

$$\begin{aligned} \begin{aligned} P({\tilde{x}})&=\frac{p-1}{p}T_{(1)}^{ij}(D^2u({\tilde{x}}))|Du(\tilde{x})|^{2(p-2)}u_i({\tilde{x}})u_j({\tilde{x}})-u({\tilde{x}})\\&<\min \Bigl [\frac{p-1}{p}\min _{x\in \partial \Omega }\bigl (T_{(1)}^{ij}(D^2u)|Du|^{2(p-2)}u_iu_j\bigr ),-u_m\Bigr ]. \end{aligned} \end{aligned}$$

Choose \(1<\tau <2-\frac{1}{p}\) with \(\tau \) close enough to 1 so that

$$\begin{aligned} \begin{aligned} P({\tilde{x}})&=\frac{p-1}{p}T_{(1)}^{ij}(D^2u({\tilde{x}}))|Du(\tilde{x})|^{2(p-2)}u_i({\tilde{x}})u_j({\tilde{x}})-\tau u({\tilde{x}})\\&<\min \Bigl [\frac{p-1}{p}\min _{x\in \partial \Omega }\bigl (T_{(1)}^{ij}(D^2u)|Du|^{2(p-2)}u_iu_j\bigr ),-\tau u_m\Bigr ]. \end{aligned} \end{aligned}$$

Then, also the function

$$\begin{aligned} {\tilde{P}}(x)=\frac{p-1}{p}T_{(1)}^{ij}(D^2u)|Du|^{2(p-2)}u_iu_j-\tau u \end{aligned}$$

attains its minimum value at some point \({\bar{x}}\in {\Omega {\setminus } \{x_0\}}\). Choose \(\tau \) such that \(\tau <2-\frac{1}{p}\). We show that this cannot happen.

Let us write \({\tilde{P}}\) as

$$\begin{aligned} p {\tilde{P}}= u^{kl}u_ku_l-p\tau u. \end{aligned}$$
(27)

We perform a rigid rotation around \({\bar{x}}\) so that \(D^2u\) has a diagonal form at this point. By the same computation as in the proof of Theorem 1.1 we find Equation (14) with \(n=2\), that is,

$$\begin{aligned} pu^{ii} {\tilde{P}}_{ii}= u^{ii}u^{jj}\bigl (u^{kk}u_{ijk}u_k\bigr )^2+2p(1-\tau )+2(p-2)|Du|^{-2}u^{kk}u^{ll}u_{kls}u_ku_lu_s. \end{aligned}$$
(28)

To evaluate the last quantity in (28) we differentiate \(\tilde{P}\) with respect to \(x^s\). Since \({\bar{x}}\) is a point of minimum, by (27) we find

$$\begin{aligned} u^{kl}_su_ku_l+2u^{kl}u_{ks}u_l-p\tau u_s= & {} 0, \\ u^{kl}_su_ku_l+(2-p\tau )u_s= & {} 0. \end{aligned}$$

Recalling that \(D^2u\) has a diagonal form, from the latter equation we find

$$\begin{aligned} u^{kk}u^{ll}u_{kls}u_ku_l=(2-p\tau )u_s. \end{aligned}$$
(29)

If we multiply by \(u_s\) we get

$$\begin{aligned} |Du|^{-2}u^{kk}u^{ll}u_{kls}u_ku_lu_s=(2-p\tau ). \end{aligned}$$

Inserting this into (27) we find

$$\begin{aligned} pu^{ii} {\tilde{P}}_{ii}= u^{ii}u^{jj}\bigl (u^{kk}u_{ijk}u_k\bigr )^2+2p(1-\tau )+2(p-2)(2-p\tau ). \end{aligned}$$
(30)

To finish, we must evaluate the first quantity in (30). From Equation (1) with \(n=2\) we find (recall that \(D^2u\) is assumed to be diagonal at \({\bar{x}}\))

$$\begin{aligned} u^{ii}u_{iik}=2(2-p)|Du|^{-2}u_{kk}u_k,\ \ \ k=1,2. \end{aligned}$$

Putting \(2(2-p)|Du|^{-2}:=\alpha \) we have the two equations

$$\begin{aligned} \begin{aligned}&u^{11}u_{111}+u^{22}u_{122}=\alpha u_{11}u_1\\&u^{11}u_{112}+u^{22}u_{222}=\alpha u_{22}u_2.\end{aligned} \end{aligned}$$
(31)

Moreover, from (29) we have the two more equations

$$\begin{aligned} \begin{aligned}&(u^{11})^2u_{111}u_1^2+2u^{11}u^{22}u_{112}u_1u_2+(u^{22})^2u_{122}u_2^2=(2-p\tau )u_1\\\\&(u^{11})^2u_{112}u_1^2+ 2u^{11}u^{22}u_{122}u_1u_2+(u^{22})^2u_{222}u_2^2=(2-p\tau )u_2. \end{aligned} \end{aligned}$$
(32)

The system of four equations (31)-(32) is linear with respect to \(u_{111}, u_{112}, u_{122}\) and \(u_{222}\), and the determinant of the coefficients is equal to \((u^{11}u^{22})^2S^2\), where

$$\begin{aligned} S=u^{11}u_1^2+u^{22}u_2^2. \end{aligned}$$

By elementary computation we find

$$\begin{aligned}{} & {} \begin{aligned} u_{111}&=\frac{1}{u^{11}S^2}\Bigl [(2-p\tau )\bigl (u^{11}u_1^3-3u^{22}u_1u_2^2\bigr )+\alpha u_{11}(u^{22})^2u_1u_2^4\\&\quad +2\alpha u_{22}(u^{22})^2 u_1u_2^4+3\alpha u_{11}u^{11}u^{22}u_1^3u_2^2\Bigr ], \end{aligned} \end{aligned}$$
(33)
$$\begin{aligned}{} & {} \begin{aligned} u_{112}&=\frac{1}{u^{11}S^2}\Bigl [(2-p\tau )\bigl (3u^{11}u_1^2u_2-u^{22}u_2^3\bigr )+\alpha u_{22}(u^{22})^2u_2^5\\&\quad -\alpha u_{22}u^{11}u^{22} u_1^2u_2^3-2\alpha u_{11}(u^{11})^2u_1^4u_2\Bigr ], \end{aligned} \end{aligned}$$
(34)
$$\begin{aligned}{} & {} \begin{aligned} u_{122}&=\frac{1}{u^{22}S^2}\Bigl [(2-p\tau )\bigl (3u^{22}u_1u_2^2-u^{11}u_1^3\bigr )+\alpha u_{11}(u^{11})^2u_1^5\\&\quad -\alpha u_{11}u^{11}u^{22} u_1^3u_2^2-2\alpha u_{22}(u^{22})^2u_1u_2^4\Bigr ], \end{aligned} \end{aligned}$$
(35)
$$\begin{aligned}{} & {} \begin{aligned} u_{222}&=\frac{1}{u^{22}S^2}\Bigl [(2-p\tau )\bigl (u^{22}u_2^3-3u^{11}u_1^2u_2\bigr )+\alpha u_{22}(u^{11})^2u_1^4u_2\\&\quad +2\alpha u_{11}(u^{11})^2 u_1^4u_2+3\alpha u_{22}u^{11}u^{22}u_1^2u_2^3\Bigr ]. \end{aligned} \end{aligned}$$
(36)

We start computing \(u^{kk}u_{11k}u_k\). On using (33) and (34) we find

$$\begin{aligned} \begin{aligned}&u^{11} u_{111}u_1+u^{22} u_{112}u_2\\&\quad =\frac{1}{S^2}\Bigl [(2-p\tau )\bigl (u^{11}u_1^4-3u^{22}u_1^2u_2^2\bigr )+\alpha u_{11}(u^{22})^2u_1^2u_2^4\\&\qquad +2\alpha u_{22}(u^{22})^2 u_1^2u_2^4+3\alpha u_{11}u^{11}u^{22}u_1^4u_2^2\\&\qquad +(2-p\tau )\Bigl (3u^{22}u_1^2u_2^2-\frac{(u^{22})^2}{u^{11}}u_2^4\Bigr )+\alpha u_{22}\frac{(u^{22})^3}{u^{11}}u_2^6\\&\qquad -\alpha u_{22}(u^{22})^2 u_1^2u_2^4-2\alpha u_{11}u^{11}u^{22}u_1^4u_2^2\Bigr ]\\&\quad =\frac{1}{S^2}\Bigl [(2-p\tau )\Bigl (u^{11}u_1^4-\frac{(u^{22})^2}{u^{11}}u_2^4\Bigr )+\alpha u_{11}(u^{22})^2u_1^2u_2^4\\&\qquad +\alpha u_{22}(u^{22})^2 u_1^2u_2^4+\alpha u_{11}u^{11}u^{22}u_1^4u_2^2+\alpha u_{22}\frac{(u^{22})^3}{u^{11}}u_2^6\Bigr ]. \end{aligned} \end{aligned}$$

Since

$$\begin{aligned} u^{11}u_1^4-\frac{(u^{22})^2}{u^{11}}u_2^4=\frac{1}{u^{11}}\Bigl ((u^{11})^2u_1^4-(u^{22})^2u_2^4\Bigr )=\frac{S}{u^{11}}\bigl (u^{11}u_1^2-u^{22}u_2^2\bigr ). \end{aligned}$$

we get

$$\begin{aligned} \begin{aligned}&u^{11} u_{111}u_1+u^{22} u_{112}u_2\\&\quad =\frac{1}{S^2}\Bigl [(2-p\tau )\frac{S}{u^{11}}\bigl (u^{11}u_1^2-u^{22}u_2^2\bigr )+\alpha u_{11}(u^{22})^2u_1^2u_2^4\\&\qquad +\alpha u_{22}(u^{22})^2 u_1^2u_2^4+\alpha u_{11}u^{11}u^{22}u_1^4u_2^2+\alpha u_{22}\frac{(u^{22})^3}{u^{11}}u_2^6 \Bigr ]. \end{aligned} \end{aligned}$$
(37)

Since

$$\begin{aligned} u_{11}(u^{22})^2u_1^2u_2^4+u_{11}u^{11}u^{22}u_1^4u_2^2=u_{11}u^{22}u_1^2u_2^2 S, \end{aligned}$$

and

$$\begin{aligned} u_{22}(u^{22})^2 u_1^2u_2^4+u_{22}\frac{(u^{22})^3}{u^{11}}u_2^6=\frac{1}{u^{11}}u_{22}(u^{22})^2u_2^4 S. \end{aligned}$$

by (43) we get

$$\begin{aligned} \begin{aligned}&u^{11} u_{111}u_1+u^{22} u_{112}u_2\\&\quad =\frac{1}{S^2}\Bigl [(2-p\tau )\frac{S}{u^{11}}\bigl (u^{11}u_1^2-u^{22}u_2^2\bigr )+\alpha u_{11}u^{22}u_1^2u_2^2 S\\&\qquad +\alpha \frac{1}{u^{11}}u_{22}(u^{22})^2u_2^4 S \Bigr ]\\&\quad =\frac{1}{S}\Bigl [(2-p\tau )\frac{1}{u^{11}}\bigl (u^{11}u_1^2-u^{22}u_2^2\bigr )\\&\qquad +\alpha \Bigl (u_{11}u^{22}u_1^2u_2^2+ \frac{1}{u^{11}}u_{22}(u^{22})^2u_2^4 \Bigr )\Bigr ]. \end{aligned} \end{aligned}$$
(38)

We find

$$\begin{aligned} u_{11}u^{22}u_1^2u_2^2 +\frac{1}{u^{11}}u_{22}(u^{22})^2u_2^4 =\quad \frac{1}{u^{11}}u^{22}u_2^2\bigl (u_{11}u^{11}u_1^2+u_{22}u^{22}u_2^2\bigr ). \end{aligned}$$
(39)

Recalling that \(D^2u\) is diagonal, we have \(u_{11}u^{11}=u_{22}u^{22}=1\). Therefore, from (39) we get

$$\begin{aligned} u_{11}u^{22}u_1^2u_2^2 +\frac{1}{u^{11}}u_{22}(u^{22})^2u_2^4 =\quad \frac{1}{u^{11}}u^{22}u_2^2|Du|^2. \end{aligned}$$

Insertion of the latter result into (38) yields

$$\begin{aligned} u^{11} u_{111}u_1+u^{22} u_{112}u_2=\frac{1}{Su^{11}}\Bigl ((2-p\tau )\bigl (u^{11}u_1^2-u^{22}u_2^2\bigr ) +\alpha u^{22}u_2^2|Du|^2 \Bigr ).\nonumber \\ \end{aligned}$$
(40)

Now we compute \(u^{kk}u_{22k}u_k\). By using (35) and (36) (or changing the index 1 and 2 in (40)) we find

$$\begin{aligned} u^{11} u_{122}u_1+u^{22} u_{222}u_2=\frac{1}{Su^{22}}\Bigl ((2-p\tau )\bigl (u^{22}u_2^2-u^{11}u_1^2\bigr ) +\alpha u^{11}u_1^2|Du|^2 \Bigr ).\nonumber \\ \end{aligned}$$
(41)

Finally, let us compute \(u^{kk}u_{12k}u_k\). By using (34) and (35), we find

$$\begin{aligned} \begin{aligned}&u^{11} u_{112}u_1+u^{22} u_{122}u_2\\&\quad =\frac{1}{S^2}\Bigl ((2-p\tau )\bigl (3u^{11}u_1^3u_2-u^{22}u_1u_2^3\bigr )+\alpha u_{22}(u^{22})^2u_1u_2^5\\&\qquad -\alpha u_{22}u^{11}u^{22} u_1^3u_2^3-2\alpha u_{11}(u^{11})^2u_1^5u_2\\&\qquad +(2-p\tau )\bigl (3u^{22}u_1u_2^3-u^{11}u_1^3u_2\bigr )+\alpha u_{11}(u^{11})^2u_1^5u_2\\&\qquad -\alpha u_{11}u^{11}u^{22} u_1^3u_2^3-2\alpha u_{22}(u^{22})^2u_1u_2^5\Bigr ). \end{aligned} \end{aligned}$$

After some simplification we find

$$\begin{aligned} \begin{aligned}&u^{11} u_{112}u_1+u^{22} u_{122}u_2\\&\quad =\frac{1}{S^2}\Bigl ((2-p\tau )2\bigl (u^{11}u_1^3u_2+u^{22}u_1u_2^3\bigr )-\alpha u_{22}(u^{22})^2u_1u_2^5\\&\qquad -\alpha u_{22}u^{11}u^{22} u_1^3u_2^3-\alpha u_{11}(u^{11})^2u_1^5u_2-\alpha u_{11}u^{11}u^{22} u_1^3u_2^3\Bigr ). \end{aligned} \end{aligned}$$

Further simplification and use of the equations \(u_{11}u^{11}=u_{22}u^{22}=1\) yields

$$\begin{aligned} \begin{aligned}&u^{11} u_{112}u_1+u^{22} u_{122}u_2\\&\quad =\frac{1}{S}\Bigl ((2-p\tau )2u_1u_2-\alpha u_1u_2|Du|^2\Bigr ). \end{aligned} \end{aligned}$$
(42)

By using (40), (41) and (42) we find

$$\begin{aligned} \begin{aligned}&u^{ii}u^{jj}\Bigl (u^{kk} u_{ijk}u_k\bigr )^2\\&\quad =\frac{1}{S^2}\Bigl [\Bigl ((2-p\tau )\bigl (u^{11}u_1^2-u^{22}u_2^2\bigr ) +\alpha u^{22}u_2^2|Du|^2\Bigr )^2\\&\qquad +\Bigl ((2-p\tau )\bigl (u^{22}u_2^2-u^{11}u_1^2\bigr ) +\alpha u^{11}u_1^2|Du|^2 \Bigr )^2\\&\qquad +2u^{11}u^{22}\Bigl ((2-p\tau )2u_1u_2-\alpha u_1u_2|Du|^2\Bigr )^2\Bigr ]. \end{aligned} \end{aligned}$$

If we expand the powers in above and use the equations

$$\begin{aligned} \begin{aligned}&2\bigl (u^{11}u_1^2-u^{22}u_2^2\bigr )^2+8u^{11}u^{22}u_1^2u_2^2=2S^2,\\\\&\bigl (u^{22}u_2^2|Du|^2\bigr )^2+\bigl (u^{11}u_1^2|Du|^2\bigr )^2+2u^{11}u^{22}\bigl (u_1u_2|Du|^2\bigr )^2=S^2|Du|^4,\\\\&2\bigl (u^{11}u_1^2-u^{22}u_2^2\bigr )\bigl (u^{22}u_2^2-u^{11}u_1^2)|Du|^2-8u^{11}u^{22}u_1^2u_2^2|Du|^2=-2S^2|Du|^2. \end{aligned} \end{aligned}$$

we find

$$\begin{aligned} u^{ii}u^{jj}\Bigl (u^{kk} u_{ijk}u_k\bigr )^2=2(2-p\tau )^2+\alpha ^2|Du|^4-2\alpha (2-p\tau )|Du|^2. \end{aligned}$$

Since \(\alpha |Du|^{2}=2(2-p)\), we have

$$\begin{aligned} \alpha ^2|Du|^4-2\alpha (2-p\tau )|Du|^2=4p(2-p)(\tau -1). \end{aligned}$$

Therefore,

$$\begin{aligned} u^{ii}u^{jj}\bigl (u^{kk} u_{ijk}u_k\bigr )^2=2(2-p\tau )^2+4p(2-p)(\tau -1). \end{aligned}$$

Inserting the latter result into (30), after simplification we find

$$\begin{aligned} u^{ii} P_{ii}=2(1-\tau )\bigl [p(2-\tau )-1\bigr ]. \end{aligned}$$

Since \(1<\tau <2-\frac{1}{p}\) we have \(p(2-\tau )-1>0\) and \(u^{ii} P_{ii}<0\), contradicting the assumption that \({\bar{x}}\) was a point of minimum. The theorem is proved.

If \(n=2\), we prove Theorem 1.2 by using the following condition

$$\begin{aligned} {{\mathcal {H}}}_{(1)}|Du|^{2(p-1)+1}=c\ \ \hbox {on}\ \ \partial \Omega , \end{aligned}$$
(43)

where c is some positive constant and \({{\mathcal {H}}}_{(1)}\) is the curvature of the boundary \(\partial \Omega \).

Theorem 4.2

Let \(\Omega \subset {\mathbb {R}}^2\) be a bounded convex domain. If there is a solution \(u\in \Phi \) to problem (1) in \(\Omega \) which satisfies the additional condition (43), then the function P defined as in (2) with \(n=2\) is a constant in \(\Omega \).

Proof

If \(\frac{p-1}{p}c\ge -u_m\), then the conclusion follows by Theorem 1.2. So, in what follows, we suppose \(\frac{p-1}{p}c< -u_m\). By Theorem 4.1, the function P has its minimum value on \(\partial \Omega \). Therefore

$$\begin{aligned} \frac{p-1}{p}T_{(1)}^{kl}(D^2u)|Du|^{2(p-2)}u_ku_l-u\ge \frac{p-1}{p} c,\ \ \forall x\in \Omega . \end{aligned}$$
(44)

By the same computation as in the proof of Theorem 1.2 we find (21) with \(n=2\), that is,

$$\begin{aligned} \int _{\Omega }T_{(1)}^{kl}(D^2u)|Du|^{2(p-2)}u_lu_k\, dx=2\int _{\Omega } (-u)\, dx. \end{aligned}$$
(45)

On the other hand, by the Pohozaev identity (26) for \(n=2\) we have

$$\begin{aligned} c|\Omega |=\Bigl (2+\frac{p}{p-1}\Bigr )\int _\Omega (-u)\, dx. \end{aligned}$$
(46)

Using (45) and (46) we get

$$\begin{aligned} \begin{aligned}&\int _{\Omega }\Bigl [P(x)-\frac{p-1}{p}c\Bigr ]dx=\int _{\Omega }\Bigl [\frac{p-1}{p}T_{(1)}^{kl}(D^2u)|Du|^{2(p-2)}u_ku_l-u-\frac{p-1}{p}c\Bigr ]\, dx\\&\quad =\int _{\Omega }\Bigl [\frac{p-1}{p}2(-u)-u-\frac{p-1}{p}c\Bigr ]\, dx=\frac{p-1}{p}\Bigl [\Bigl (2+\frac{p}{p-1}\Bigr )\int _{\Omega }(-u)\, dx-c|\Omega |\Bigr ]=0. \end{aligned} \end{aligned}$$

This result together with (44) shows that \(P(x)=\frac{p-1}{p}c\) in \(\Omega \).

The theorem is proved.