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Abstract
This paper investigates a P-function associated with solutions to boundary value prob-
lems of some generalized Monge-Ampère equations in bounded convex domains. It
will be shown that P attains its maximum value either on the boundary or at a critical
point of any convex solution. Furthermore, it turns out that such P-function is actually
a constant when the underlying domain is a ball. Therefore, our results provide a best
possible maximum principle in the sense of L. Payne. As an application, we will use
these results to study an overdetermined boundary value problem. More specifically,
we will show solvability of this overdetermined boundary value problem forces their
P-function to be a constant.

Keywords Monge-Ampère type equations · P-function · Best possible maximum
principle · Overdetermined boundary-value problem

Mathematics Subject Classification 35N25 · 35B50 · 35J70

1 Introduction

We recall the notion of “best possible maximum principle” introduced by L. Payne a
few decades ago [7, 8]. A function P that depends on solutions and their derivatives
of a boundary value problem on bounded domains is said to satisfy a best possible
maximum principle if P satisfies the weak maximum principle for every bounded
domain �, and if there is a special domain on which it is a constant. As an example,
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let u satisfy

�u = 1 in �, u = 0 on ∂�.

The function

P = |Du|2 − 2

n
u

satisfies

�P = 2
n∑

i, j=1

u2i j − 2

n
≥ 2

n∑

i=1

u2i i − 2

n
≥ 2

n
(�u)2 − 2

n
= 0,

where ui = ∂u
∂xi

, ui j = ∂2u
∂xi ∂x j

. It follows that P attains its maximum value on ∂�. If
� is a ball of radius R centered at the origin, we have

u = |x |2 − R2

2n
.

The corresponding function P = |Du|2 − 2
n u is a constant in �.

In [2], the following problem is discussed. Let � ⊂ R
n be a bounded convex

domain, and let u be a convex solution to the boundary value problem

det(D2u) = 1 in �, u = 0 on ∂�.

Corresponding to this solution, consider the function

P =
n∑

i, j=1

∂det(D2u)

∂ui j
ui u j − 2u.

In [2], the authors prove that P satisfies a best possible maximum principle. Similar
problems are discussed in [6, 9].

Let � ⊂ R
n be a bounded convex domain. For a smooth function u we have

det(D2u) = 1

n

(
T i j

(n−1)(D
2u)ui

)

j
,

where T(n−1)(D2u) = [T i j
(n−1)(D

2u)] is the adjoint of the Hessian matrix D2u. Here
and in what follows sub-indices denote partial differentiation, and the summation
convention from 1 to n over repeated indices is in effect.

In the present paper, we find a best possible maximum principle relative to the fol-
lowing generalized Monge-Ampère equation. With p > 1, we consider the boundary
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value problem

1

n

(
T i j

(n−1)(D
2u)|Du|n(p−2)ui

)

j
= 1 in �, u = 0 on ∂�. (1)

Note that this generalization of the Monge-Ampère operator is similar to the p-
Laplacian as the generalization of the Laplacian [13]. For a discussion of problems
related to Monge-Ampère operators we refer to [1, 4, 5].

Problem (1) in case of p = 2 has been discussed in [2]. Fromnowonwe concentrate
on the case p > 1, p �= 2. We suppose u ∈ �, where

� = {u ∈ C1
0(�) ∩ C2(∂�), u is strictly convex and smooth whenever |Du| > 0.}

Let um = min� u(x) = u(x0). Clearly, |Du| = 0 at x0 only. We say that u is smooth
in O if it is at least C4 in O.

Note that the matrix D2u is positive definite where |Du| > 0. We say that u ∈ �

is a solution to (1) if

−1

n

∫

�

T i j
(n−1)(D

2u)|Du|n(p−2)uiφ j dx =
∫

�

φ dx ∀φ ∈ H1
0 (�).

We claim that

lim
x→x0

T i j
(n−1)(D

2u)|Du|n(p−2)uiu j = 0.

Indeed, let

�t = {x ∈ � : u(x) < t}, um < t < 0.

If we multiply (1) by (t − u)+ and we integrate over � we find

∫

�t
T i j

(n−1)(D
2u)|Du|n(p−2)uiu j dx = n

∫

�t
(t − u) dx ≤ n|�t | sup

�t
(t − u).

It follows that

1

|�t |
∫

�t
T i j

(n−1)(D
2u)|Du|n(p−2)uiu j dx ≤ n sup

�t
(t − u) = n(t − um).

As t → um , the claim follows.
Define the P-function

P = p − 1

p
T i j

(n−1)(D
2u)|Du|n(p−2)uiu j − u, x �= x0, (2)

and P(x0) = −um .
Our first result is the following
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Theorem 1.1 Let � be a bounded convex domain. If u ∈ � is solution to Problem (1),
the function P defined as in (2) attains its maximum value either on the boundary ∂�

or at the point where Du = 0. Moreover, if � is a ball then P is a constant.

By using Theorem 1.1, we shall discuss the following overdetermined problem. Let
u ∈ � be a solution to Problem (1). Furthermore, if um = min� u(x), suppose there
is some constant c such that

H(n−1)|Du|n(p−1)+1 = c on ∂�,
p − 1

p
c ≥ −um, (3)

where H(n−1) is the Gauss curvature of ∂�.

Theorem 1.2 If there is a solution u ∈ � to problem (1) which satisfies the additional
condition (3), then the function P defined as in (2) is a constant in �.

Overdetermined problems for second order linear and quasilinear equations were
discussed more than fifty years ago in the seminal papers [12, 15].

In case of n = 2, we shall prove the analogous of Theorem 1.1 for the minimum.
Similar results are proved in [3]. As an application, wewill prove Theorem 1.2 without
the restriction p−1

p c ≥ −um .

2 A Best Possible Maximum Principle

Recall that, where |Du| > 0, the operator T i j
(n−1)(D

2u) is divergence free (see, for
example, [10, 11]), that is

(
T i j

(n−1)(D
2u)

)

i
= 0, j = 1, · · · , n. (4)

Moreover, since T(n−1)(D2u) is the adjoint of the Hessian matrix D2u, we have

T(n−1)(D
2u)D2u = Idet(D2u), (5)

where I is the n×n identity matrix. On using these facts, after some computation one
finds

1

n

(
T i j

(n−1)(D
2u)|Du|n(p−2)ui

)

j
= (p − 1)|Du|n(p−2)det(D2u).

Therefore, Equation (1) for x ∈ � such that |Du| > 0, can be written as

det(D2u) = 1

p − 1
|Du|n(2−p). (6)
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Proof of Theorem 1.1. Let x0 ∈ � be the point where Du = 0, and let um = u(x0).
Arguing by contradiction, let x̃ ∈ �\{x0} be a point such that

P(x̃) = p − 1

p
T i j

(n−1)(D
2u(x̃))|Du(x̃)|n(p−2)ui (x̃)u j (x̃) − u(x̃)

> max
[ p − 1

p
max
x∈∂�

(
T i j

(n−1)(D
2u)|Du|n(p−2)uiu j

)
,−um

]
.

Choose 0 < τ < 1 close enough to 1 so that

P(x̃) = p − 1

p
T i j

(n−1)(D
2u(x̃))|Du(x̃)|n(p−2)ui (x̃)u j (x̃) − τu(x̃)

> max
[ p − 1

p
max
x∈∂�

(
T i j

(n−1)(D
2u)|Du|n(p−2)uiu j

)
,−τum

]
.

Then, also the function

P̃(x) = p − 1

p
T i j

(n−1)(D
2u)|Du|n(p−2)uiu j − τu

attains itsmaximumvalue at some point x̄ ∈ �\{x0}.We show that this cannot happen.
On using the equations (5) and (6) we find

T(n−1)(D
2u) = 1

p − 1
|Du|n(2−p)(D2u)−1,

where (D2u)−1 is the inverse matrix of D2u. Therefore, if [ukl ] = (D2u)−1 we have

pP̃ = uklukul − pτu.

We compute

pP̃i = ukli ukul + 2ukluki ul − pτui .

Since

ukluki = δli (the Kronecker delta)

we find

pP̃i = ukli ukul + (2 − pτ)ui , i = 1, · · · , n. (7)

Further differentiation yields

pP̃ii = uklii ukul + 2ukli uki ul + (2 − pτ)uii .
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We note that our equation (1) is invariant under a rigid rotation. Let us make a suitable
rotation around the point x̄ such that D2u has a diagonal form at this point. With some
abuse of notation, P̃i denote derivatives of P̃ with respect to the new variables. Then,

pP̃ii = uklii ukul + 2uili uii ul + (2 − pτ)uii , i = 1, · · · , n.

Clearly, also (D2u)−1 will have a diagonal form at x̄ . Furthermore, for i fixed we have
uii uii = 1. Multiplying by uii the equation in above and adding from i = 1 up to
i = n we get

puii P̃ii = uii uklii ukul + 2uili ul + n(2 − pτ). (8)

By (5) and (6) we find

|Du|n(2−p)(D2u)−1 = (p − 1)T(n−1)(D
2u). (9)

Hence, since the matrix T(n−1)(D2u) is divergence free, we have

(
|Du|n(2−p)uil

)

i
= 0, l = 1, · · · , n,

from which we find (recall that we are adding over repeated indices)

uili = n(p − 2)|Du|−2uikuku
il = n(p − 2)|Du|−2δlkuk = n(p − 2)|Du|−2ul .

Therefore,

uili ul = n(p − 2). (10)

Insertion of this equation into (8) yields

puii P̃ii = uii uklii ukul + n(2p − 2 − pτ). (11)

Nowwe evaluate the quantity uii uklii ukul . Unfortunately, our computations are quite
long. Since [ukl ] is the inverse matrix of [ukl ], we have

ukli = −ukmulqumqi .

Differentiating with respect to xi we find

uklii = (uksumjulq + ukmulsuq j )us ji umqi − ukmulqumqii .

Since D2u has a diagonal form at x̄ , from the latter equation we find (here we do not
add with respect to i , k or l)

uklii = 2ukku j j ullui jkui jl − ukkulluklii , i, k, l = 1, · · · , n.
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Multiplying by uii and adding from i = 1 up to i = n we get

uii uklii = 2uii u j j ukkullui jkui jl − uii ukkulluiikl . (12)

To evaluate the last quantity in (12), let us differentiate Equation (6) with respect to
xk . We find

∂det(D2u)

∂ui j
ui jk = n(2 − p)

p − 1
|Du|n(2−p)−2uksus, k = 1, · · · , n.

By (9) we have

∂det(D2u)

∂ui j
= T i j

(n−1)(D
2u) = 1

p − 1
|Du|n(2−p)ui j .

By the last two equations we find

1

p − 1
|Du|n(2−p)ui j ui jk = n(2 − p)

p − 1
|Du|n(2−p)−2uksus .

Simplifying we get

ui j ui jk = n(2 − p)|Du|−2uksus .

Further differentiation with respect to xl yields

ui j ui jkl + ui jl ui jk = n(2 − p)
[ − 2|Du|−4ullulukkuk + |Du|−2ukslus + |Du|−2u2llδ

k
l

]
.

Note that we are using the condition that D2u has a diagonal form at the point x̄ . Since
ui jl = −uii u j j ui jl (with i and j fixed), by the previous equation we find

uii uiikl = uii u j j ui jkui jl + n(2 − p)
[ − 2|Du|−4ullulukkuk

+ |Du|−2ukslus + |Du|−2u2llδ
k
l

]
.

(13)

Insertion of (13) into (12) leads to

uii uklii = 2uii u j j ukkullui jkui jl − uii u j j ukkullui jkui jl

+ n(p − 2)
[ − 2|Du|−4uluk + |Du|−2ukkulluklsus + |Du|−2δkl

]
.

Simplifying we find

uii uklii = uii u j j ukkullui jkui jl + n(p − 2)
[ − 2|Du|−4uluk

+ |Du|−2ukkulluklsus + |Du|−2δkl
]
.
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Multiplying by ukul (and adding with respect to k and l) we get,

uii uklii ukul = uii u j j (ukkui jkuk
)2 − n(p − 2) + n(p − 2)|Du|−2ukkulluklsukulus .

Inserting this equation into (11) we find

puii P̃ii = uii u j j (ukkui jkuk
)2 + np(1 − τ) + n(p − 2)|Du|−2ukkulluklsukulus .

(14)

Let us evaluate thefirst quantity of the right hand side in (14).Byusing the inequality

n∑

i=1

a2i ≥ 1

n

( n∑

i=1

ai
)2

, ai ∈ R,

with ai = bi (
∑

k cik) we find

∑

i

b2i

(∑

k

cik
)2 ≥ 1

n

(∑

i,k

bi cik
)2

.

Hence,

∑

i, j

uii u j j
(∑

k

ukkui jkuk
)2 ≥

∑

i

(uii )2
(∑

k

ukkuiikuk
)2 ≥ 1

n

(∑

i,k

uii ukkuiikuk
)2

.

Since

uii ukkuiik = −uiki ,

on using (10) we find

uii ukkuiikuk = −uiki uk = −n(p − 2).

Therefore,

∑

i, j

uii u j j
(∑

k

ukku jki uk
)2 ≥ n(p − 2)2. (15)

Insertion of (15) into (14) yields

puii P̃ii ≥ n(p − 2)2 + np(1 − τ) + n(p − 2)|Du|−2ukkulluklsukulus . (16)

To finish, we must evaluate the last quantity of the right hand side in (16). This is
easy. By (7), at x̄ (the point of maximum of P̃) we have

0 = ukli ukul + (2 − pτ)ui , i = 1, · · · , n,
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whence,

ukkullukli ukul = (2 − pτ)ui .

Multiplying by ui and adding from i = 1 up to i = n we find

|Du|−2ukkullukli ukului = 2 − pτ.

Insertion of this equation into (16) yields

puii P̃ii ≥ n(p − 2)2 + np(1 − τ) + n(p − 2)(2 − pτ).

After simplification we get

uii P̃ii ≥ n(p − 1)(1 − τ) > 0,

contradicting the assumption that x̄ is a point ofmaximum for P̃ . It follows that P must
attain its maximum value either on the boundary ∂� or at the point where Du = 0.

Now consider the case � is a ball of radius R, centered at the origin. If u = u(r),
r = |x |, we may assume u1 = u′, ui = 0, 2 ≤ i ≤ n. Then,

D2u = diag
{
u′′, u

′

r
, · · · ,

u′

r

}
.

Therefore, Equation (6) reads as

u′′(u′

r

)n−1 = 1

p − 1
(u′)n(2−p),

or

(u′)n(p−1)−1u′′ = rn−1

p − 1
.

Integrating we find

u′ = r
1

p−1 .

Integrating again and using the condition u(R) = 0 we find

u(r) = p − 1

p

(
r

p
p−1 − R

p
p−1

)
.

Recall that our P-function reads as

P = 1

p
ui j ui u j − u,
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where [ui j ] is the inverse matrix of [ui j ]. Then,

P = 1

p

1

u′′ (u
′)2 − u = p − 1

p
r

p
p−1 − p − 1

p

(
r

p
p−1 − R

p
p−1

)
= p − 1

p
R

p
p−1 .

Hence P is a constant, and the theorem is proved.

3 An Overdetermined Problem

Proof of Theorem 1.2. We note that (see [14])

T kl
(n−1)(D

2u)|Du|n(p−2)ukul = H(n−1)|Du|n(p−1)+1 on ∂�,

whereH(n−1) is the Gauss curvature of ∂�. Therefore, we can write condition (3) as

T kl
(n−1)(D

2u)|Du|n(p−2)ukul = c on ∂�,
p − 1

p
c ≥ −um . (17)

By Theorem 1.1, the maximum of the function P is either p−1
p c (attained on ∂�)

or −um (attained where Du = 0). Hence, since p−1
p c ≥ −um , we have

P(x) = p − 1

p
T kl

(n−1)(D
2u)|Du|n(p−2)ukul − u ≤ p − 1

p
c, ∀x ∈ �. (18)

Recall that x0 is the point of minimum for u, and that um is the minimum value of
u. For um ≤ t < 0 we define

�t = {x ∈ � : t ≤ u(x) < 0}.

Clearly, �um = �. Moreover we have

∂�t = ∂� ∪ 	t , 	t = {x ∈ � : u(x) = t}.

Let e = (e1, · · · , en) be the exterior unit normal to ∂�t . On ∂�t we have uk =
|Du|ek . Therefore, using Equation (1) we find

∫

�t

T kl
(n−1)(D

2u)|Du|n(p−2)uluk dx = t
∫

	t

T kl
(n−1)(D

2u)|Du|n(p−2)ule
k dσ

+
∫

�t

(−u)
(
T kl

(n−1)(D
2u)|Du|n(p−2)ul

)

k
dx

= t
∫

	t

T kl
(n−1)(D

2u)|Du|n(p−2)−1uluk dσ + n
∫

�t

(−u) dx .
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On 	t we have (see [14])

T kl
(n−1)(D

2u)|Du|n(p−2)ukul = H(n−1)|Du|n(p−1)+1,

where H(n−1) is the Gauss curvature of 	t . Hence,

∫

�t

T kl
(n−1)(D

2u)|Du|n(p−2)uluk dx= t
∫

	t

H(n−1)|Du|n(p−1) dσ + n
∫

�t

(−u) dx .

(19)

On noting that

∫

	t

H(n−1) dσ = nωn (ωn = n − measure of the unit sphere),

and that

lim
t→um

|Du| = 0,

we have

lim
t→um

∫

	t

H(n−1)|Du|n(p−1) dσ = 0.

Hence, by (27) we find

lim
t→um

∫

�t

T kl
(n−1)(D

2u)|Du|n(p−2)uluk dx = n
∫

�

(−u) dx, (20)

and

∫

�

T kl
(n−1)(D

2u)|Du|n(p−2)uluk dx = n
∫

�

(−u) dx . (21)
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Now we use a sort of Pohozaev identity. We find

∫

∂�t

x i ei T kl
(n−1)(D

2u)|Du|n(p−2)ukul dσ

=
∫

∂�t

x i ui T
kl
(n−1)(D

2u)|Du|n(p−2)uke
l dσ

=
∫

�t

(
xi ui T

kl
(n−1)(D

2u)|Du|n(p−2)uk
)

l
dx

=
∫

�t

T kl
(n−1)(D

2u)|Du|n(p−2)uluk dx

+
∫

�t

x i uil T
kl
(n−1)(D

2u)|Du|n(p−2)uk dx

+
∫

�t

x i ui
(
T kl

(n−1)(D
2u)|Du|n(p−2)uk

)

l
dx .

(22)

Since

uil T
kl
(n−1)(D

2u) = det(D2u)δki = |Du|n(2−p)

p − 1
δki

we have
∫

�t

x i uil T
kl
(n−1)(D

2u)|Du|n(p−2)uk dx = 1

p − 1

∫

�t

x i ui dx

= t

p − 1

∫

	t

x i ei dσ + n

p − 1

∫

�t

(−u) dx

= nt

p − 1
|� \ �t | + n

p − 1

∫

�t

(−u) dx .

Hence,

lim
t→um

∫

�t

x i uil T
kl
(n−1)(D

2u)|Du|n(p−2)uk dx = n

p − 1

∫

�

(−u) dx . (23)

Finally, on using Equation (1) once more we find

∫

�t

x i ui
(
T kl

(n−1)(D
2u)|Du|n(p−2)uk

)

l
dx = n

∫

�t

x i ui dx

= n2t |� \ �t | + n2
∫

�t

(−u) dx .

Therefore,

lim
t→um

∫

�t

x i ui
(
T kl

(n−1)(D
2u)|Du|n(p−2)uk

)

l
dx = n2

∫

�

(−u) dx . (24)
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Hence, letting t → um in (22) and using (21), (23) and (24) we find

∫

∂�

xi ei T kl
(n−1)(D

2u)|Du|n(p−2)ukul dσ

= n
∫

�

(−u) dx + n

p − 1

∫

�

(−u) dx + n2
∫

�

(−u) dx

= n
(
n + p

p − 1

) ∫

�

(−u) dx .

(25)

On the other hand, using condition (17) we find

∫

∂�

xi ei T kl
(n−1)(D

2u)|Du|n(p−2)ukul dσ = c
∫

∂�

xi ei dσ = cn|�|.

From this equation and (24) it follows that

c|�| =
(
n + p

p − 1

) ∫

�

(−u) dx . (26)

Using (21) and (26) we get

∫

�

[
P(x) − p − 1

p
c
]
dx

∫

�

[ p − 1

p
T kl

(n−1)(D
2u)|Du|n(p−2)ukul − u − p − 1

p
c
]
dx

=
∫

�

[ p − 1

p
n(−u) − u − p − 1

p
c
]
dx

= p − 1

p

[(
n + p

p − 1

) ∫

�

(−u) dx − c|�|
]

= 0.

This together with (18) shows that P(x) = p−1
p c in �.

The theorem is proved.

4 The Case n = 2

Theorem 4.1 Let � ⊂ R
2 be a bounded convex domain. If u ∈ � is a solution to

Problem (1) in �, the function P defined as in (2) for n = 2 attains its minimum value
either on the boundary ∂� or at the point where Du = 0.
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Proof Let x0 ∈ � be the point where Du = 0, and let um = u(x0). Arguing by
contradiction, let x̃ ∈ �\{x0} be a point such that

P(x̃) = p − 1

p
T i j

(1)(D
2u(x̃))|Du(x̃)|2(p−2)ui (x̃)u j (x̃) − u(x̃)

< min
[ p − 1

p
min
x∈∂�

(
T i j

(1)(D
2u)|Du|2(p−2)uiu j

)
,−um

]
.

Choose 1 < τ < 2 − 1
p with τ close enough to 1 so that

P(x̃) = p − 1

p
T i j

(1)(D
2u(x̃))|Du(x̃)|2(p−2)ui (x̃)u j (x̃) − τu(x̃)

< min
[ p − 1

p
min
x∈∂�

(
T i j

(1)(D
2u)|Du|2(p−2)uiu j

)
,−τum

]
.

Then, also the function

P̃(x) = p − 1

p
T i j

(1)(D
2u)|Du|2(p−2)uiu j − τu

attains its minimum value at some point x̄ ∈ �\{x0}. Choose τ such that τ < 2 − 1
p .

We show that this cannot happen.
Let us write P̃ as

pP̃ = uklukul − pτu. (27)

We perform a rigid rotation around x̄ so that D2u has a diagonal form at this point.
By the same computation as in the proof of Theorem 1.1 we find Equation (14) with
n = 2, that is,

puii P̃ii = uii u j j (ukkui jkuk
)2 + 2p(1 − τ) + 2(p − 2)|Du|−2ukkulluklsukulus .

(28)

To evaluate the last quantity in (28) we differentiate P̃ with respect to xs . Since x̄ is
a point of minimum, by (27) we find

ukls ukul + 2ukluksul − pτus = 0,

ukls ukul + (2 − pτ)us = 0.

Recalling that D2u has a diagonal form, from the latter equation we find

ukkulluklsukul = (2 − pτ)us . (29)

If we multiply by us we get

|Du|−2ukkulluklsukulus = (2 − pτ).
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Inserting this into (27) we find

puii P̃ii = uii u j j (ukkui jkuk
)2 + 2p(1 − τ) + 2(p − 2)(2 − pτ). (30)

To finish, we must evaluate the first quantity in (30). From Equation (1) with n = 2
we find (recall that D2u is assumed to be diagonal at x̄)

uii uiik = 2(2 − p)|Du|−2ukkuk, k = 1, 2.

Putting 2(2 − p)|Du|−2 := α we have the two equations

u11u111 + u22u122 = αu11u1

u11u112 + u22u222 = αu22u2.
(31)

Moreover, from (29) we have the two more equations

(u11)2u111u
2
1 + 2u11u22u112u1u2 + (u22)2u122u

2
2 = (2 − pτ)u1

(u11)2u112u
2
1 + 2u11u22u122u1u2 + (u22)2u222u

2
2 = (2 − pτ)u2.

(32)

The system of four equations (31)-(32) is linear with respect to u111, u112, u122 and
u222, and the determinant of the coefficients is equal to (u11u22)2S2, where

S = u11u21 + u22u22.

By elementary computation we find

u111 = 1

u11S2

[
(2 − pτ)

(
u11u31 − 3u22u1u

2
2

) + αu11(u
22)2u1u

4
2

+ 2αu22(u
22)2u1u

4
2 + 3αu11u

11u22u31u
2
2

]
,

(33)

u112 = 1

u11S2

[
(2 − pτ)

(
3u11u21u2 − u22u32

) + αu22(u
22)2u52

− αu22u
11u22u21u

3
2 − 2αu11(u

11)2u41u2
]
,

(34)

u122 = 1

u22S2

[
(2 − pτ)

(
3u22u1u

2
2 − u11u31

) + αu11(u
11)2u51

− αu11u
11u22u31u

2
2 − 2αu22(u

22)2u1u
4
2

]
,

(35)

u222 = 1

u22S2

[
(2 − pτ)

(
u22u32 − 3u11u21u2

) + αu22(u
11)2u41u2

+ 2αu11(u
11)2u41u2 + 3αu22u

11u22u21u
3
2

]
.

(36)
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We start computing ukku11kuk . On using (33) and (34) we find

u11u111u1 + u22u112u2

= 1

S2

[
(2 − pτ)

(
u11u41 − 3u22u21u

2
2

) + αu11(u
22)2u21u

4
2

+ 2αu22(u
22)2u21u

4
2 + 3αu11u

11u22u41u
2
2

+ (2 − pτ)
(
3u22u21u

2
2 − (u22)2

u11
u42

)
+ αu22

(u22)3

u11
u62

− αu22(u
22)2u21u

4
2 − 2αu11u

11u22u41u
2
2

]

= 1

S2

[
(2 − pτ)

(
u11u41 − (u22)2

u11
u42

)
+ αu11(u

22)2u21u
4
2

+ αu22(u
22)2u21u

4
2 + αu11u

11u22u41u
2
2 + αu22

(u22)3

u11
u62

]
.

Since

u11u41 − (u22)2

u11
u42 = 1

u11

(
(u11)2u41 − (u22)2u42

)
= S

u11
(
u11u21 − u22u22

)
.

we get

u11u111u1 + u22u112u2

= 1

S2

[
(2 − pτ)

S

u11
(
u11u21 − u22u22

) + αu11(u
22)2u21u

4
2

+ αu22(u
22)2u21u

4
2 + αu11u

11u22u41u
2
2 + αu22

(u22)3

u11
u62

]
.

(37)

Since

u11(u
22)2u21u

4
2 + u11u

11u22u41u
2
2 = u11u

22u21u
2
2S,

and

u22(u
22)2u21u

4
2 + u22

(u22)3

u11
u62 = 1

u11
u22(u

22)2u42S.
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by (43) we get

u11u111u1 + u22u112u2

= 1

S2

[
(2 − pτ)

S

u11
(
u11u21 − u22u22

) + αu11u
22u21u

2
2S

+ α
1

u11
u22(u

22)2u42S
]

= 1

S

[
(2 − pτ)

1

u11
(
u11u21 − u22u22

)

+ α
(
u11u

22u21u
2
2 + 1

u11
u22(u

22)2u42

)]
.

(38)

We find

u11u
22u21u

2
2 + 1

u11
u22(u

22)2u42 = 1

u11
u22u22

(
u11u

11u21 + u22u
22u22

)
. (39)

Recalling that D2u is diagonal, we have u11u11 = u22u22 = 1. Therefore, from (39)
we get

u11u
22u21u

2
2 + 1

u11
u22(u

22)2u42 = 1

u11
u22u22|Du|2.

Insertion of the latter result into (38) yields

u11u111u1 + u22u112u2 = 1

Su11

(
(2 − pτ)

(
u11u21 − u22u22

) + αu22u22|Du|2
)
.

(40)

Now we compute ukku22kuk . By using (35) and (36) (or changing the index 1 and
2 in (40)) we find

u11u122u1 + u22u222u2 = 1

Su22

(
(2 − pτ)

(
u22u22 − u11u21

) + αu11u21|Du|2
)
.

(41)

Finally, let us compute ukku12kuk . By using (34) and (35), we find

u11u112u1 + u22u122u2

= 1

S2

(
(2 − pτ)

(
3u11u31u2 − u22u1u

3
2

) + αu22(u
22)2u1u

5
2

− αu22u
11u22u31u

3
2 − 2αu11(u

11)2u51u2

+ (2 − pτ)
(
3u22u1u

3
2 − u11u31u2

) + αu11(u
11)2u51u2

− αu11u
11u22u31u

3
2 − 2αu22(u

22)2u1u
5
2

)
.
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After some simplification we find

u11u112u1 + u22u122u2

= 1

S2

(
(2 − pτ)2

(
u11u31u2 + u22u1u

3
2

) − αu22(u
22)2u1u

5
2

− αu22u
11u22u31u

3
2 − αu11(u

11)2u51u2 − αu11u
11u22u31u

3
2

)
.

Further simplification and use of the equations u11u11 = u22u22 = 1 yields

u11u112u1 + u22u122u2

= 1

S

(
(2 − pτ)2u1u2 − αu1u2|Du|2

)
.

(42)

By using (40), (41) and (42) we find

uii u j j
(
ukkui jkuk

)2

= 1

S2

[(
(2 − pτ)

(
u11u21 − u22u22

) + αu22u22|Du|2
)2

+
(
(2 − pτ)

(
u22u22 − u11u21

) + αu11u21|Du|2
)2

+ 2u11u22
(
(2 − pτ)2u1u2 − αu1u2|Du|2

)2]
.

If we expand the powers in above and use the equations

2
(
u11u21 − u22u22

)2 + 8u11u22u21u
2
2 = 2S2,

(
u22u22|Du|2)2 + (

u11u21|Du|2)2 + 2u11u22
(
u1u2|Du|2)2 = S2|Du|4,

2
(
u11u21 − u22u22

)(
u22u22 − u11u21)|Du|2 − 8u11u22u21u

2
2|Du|2 = −2S2|Du|2.

we find

uii u j j
(
ukkui jkuk

)2 = 2(2 − pτ)2 + α2|Du|4 − 2α(2 − pτ)|Du|2.

Since α|Du|2 = 2(2 − p), we have

α2|Du|4 − 2α(2 − pτ)|Du|2 = 4p(2 − p)(τ − 1).

Therefore,

uii u j j (ukkui jkuk
)2 = 2(2 − pτ)2 + 4p(2 − p)(τ − 1).
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Inserting the latter result into (30), after simplification we find

uii Pii = 2(1 − τ)
[
p(2 − τ) − 1

]
.

Since 1 < τ < 2 − 1
p we have p(2 − τ) − 1 > 0 and uii Pii < 0, contradicting the

assumption that x̄ was a point of minimum. The theorem is proved.

If n = 2, we prove Theorem 1.2 by using the following condition

H(1)|Du|2(p−1)+1 = c on ∂�, (43)

where c is some positive constant and H(1) is the curvature of the boundary ∂�.

Theorem 4.2 Let � ⊂ R
2 be a bounded convex domain. If there is a solution u ∈ �

to problem (1) in � which satisfies the additional condition (43), then the function P
defined as in (2) with n = 2 is a constant in �.

Proof If p−1
p c ≥ −um , then the conclusion follows by Theorem 1.2. So, in what

follows, we suppose p−1
p c < −um . By Theorem 4.1, the function P has its minimum

value on ∂�. Therefore

p − 1

p
T kl

(1)(D
2u)|Du|2(p−2)ukul − u ≥ p − 1

p
c, ∀x ∈ �. (44)

By the same computation as in the proof of Theorem 1.2 we find (21) with n = 2,
that is,

∫

�

T kl
(1)(D

2u)|Du|2(p−2)uluk dx = 2
∫

�

(−u) dx . (45)

On the other hand, by the Pohozaev identity (26) for n = 2 we have

c|�| =
(
2 + p

p − 1

) ∫

�

(−u) dx . (46)

Using (45) and (46) we get

∫

�

[
P(x) − p − 1

p
c
]
dx =

∫

�

[ p − 1

p
T kl

(1)(D
2u)|Du|2(p−2)ukul − u − p − 1

p
c
]
dx

=
∫

�

[ p − 1

p
2(−u) − u − p − 1

p
c
]
dx = p − 1

p

[(
2 + p

p − 1

) ∫

�

(−u) dx − c|�|
]

= 0.

This result together with (44) shows that P(x) = p−1
p c in �.

The theorem is proved.
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