1 Introduction

Abualrub and Oehmke determined the generators for cyclic codes over \(\mathbb {Z}_4\) for lengths of the form \(2^k\) in [1], and Blackford presented the generators for cyclic codes over \(\mathbb {Z}_4\) of lengths of the form 2n where n is odd in [2]. The case for odd n follows from results in [3] and also appears in more detail in [6]. Dougherty and Ling [4] determined the structure of cyclic codes over \(\mathbb {Z}_4\) of arbitrary even length by giving the generator polynomials for these codes, described the number and dual codes of cyclic codes for a given length and presented the form of cyclic codes that are self-dual. Moreover, [4] proposed an open problem: study the structure of cyclic codes of arbitrary lengths over \(\mathbb {Z}_{p^e},\) where p is a prime and \(e\ge 2\) is a positive integer.

Kiah et al. [5] derived a method of representing cyclic codes of length \(p^k\) over \(\mathrm{GR}(p^2,\,m),\) classified all cyclic codes and analysed the dual codes and self-duality. Then Sobhani and Esmaeili investigated cyclic and negacyclic codes over the Galois ring \(\mathrm{GR}(p^2,\,m)\) in [7], and their main contribution is an expression for each cyclic code of length \(p^k\) over \(\mathrm{GR}(p^2,\,m)\) and an algorithm to find a unique set of generators for cyclic and negacyclic codes over the Galois ring \(\mathrm{GR}(p^2,\,m).\) To the best of our knowledge, the problem of determining precise expressions for cyclic codes and their dual codes of arbitrary length over \(\mathrm{GR}(p^2,\,m)\) has not been solved completely.

A code over a ring R of length N is a nonempty subset \(\mathcal{C}\) of \(R^N.\) The code \(\mathcal{C}\) is said to be linear if \(\mathcal{C}\) is an R-submodule. All codes in this paper are assumed to be linear unless otherwise specified. The ambient space \(R^N\) is equipped with the usual Euclidean inner product, i.e., \([a,\,b]=\sum \nolimits _{j=0}^{N-1}a_jb_j,\) where \(a=(a_0,\,a_1,\ldots ,a_{N-1}),\,b=(b_0,\,b_1,\ldots ,b_{N-1})\in R^N,\) and the dual code is defined by \(\mathcal{C}^{\bot }=\{a\in R^N\mid [a,\,b]=0,\,\forall b\in \mathcal{C}\}.\) If \(\mathcal{C}^{\bot }=\mathcal{C},\) then \(\mathcal{C}\) is called a self-dual code over \(R.\,\mathcal{C}\) is said to be \(\zeta \)-constacyclic if \((c_0,\,c_1,\ldots , c_{N-1})\in \mathcal{C}\) implies \((\zeta c_{N-1},\,c_0,\,c_1,\ldots , c_{N-2})\in \mathcal{C},\) where \(\zeta \) is an invertible element of R. Especially, \(\mathcal{C}\) is called a negacyclic code if \(\zeta ={-}1,\) and \(\mathcal{C}\) is called a cyclic code if \(\zeta =1.\) We use the natural connection of \(\zeta \)-constacyclic codes to polynomial rings, where \(c=(c_0,\,c_1,\ldots , c_{N-1})\) is viewed as \(c(x)=\sum \nolimits _{j=0}^{N-1}c_jx^j\) and the \(\zeta \)-constacyclic code \(\mathcal{C}\) is an ideal in the polynomial residue ring \(R[x]/\langle x^N-\zeta \rangle .\)

In this paper, let \(N=p^kn\) where p is a prime, and \(n,\,k\) are positive integers satisfying \(\mathrm{gcd}(p,\,n)=1.\) Then cyclic codes over \(\mathbb {Z}_{p^2}\) of length N are viewed as ideals of the ring \(\mathbb {Z}_{p^2}[x]/\langle x^{N}-1\rangle .\) In this paper, following [7] we attempt to give a precise description for cyclic codes over \(\mathbb {Z}_{p^2}\) of length N by use of concatenated structure of codes. It is clear that all the conclusions we obtained can be generalized to \(\mathrm{GR}(p^2,\,m)\) directly.

The present paper is organized as follows. In Sect. 2, we overview properties for concatenated structure of codes over rings. In Sect. 3, we present a canonical form decomposition for every cyclic code over \(\mathbb {Z}_{p^2}\) of length N,  where each subcode is concatenated by a basic irreducible cyclic code over \(\mathbb {Z}_{p^2}\) of length n as the inner code and a constacyclic code over a Galois extension ring of \(\mathbb {Z}_{p^2}\) of length \(p^k\) as the outer code, and give a precise description for cyclic codes by determining their outer codes when \(p\ne 2.\) Using the canonical form decomposition, we present precisely dual codes and investigate the self-duality of cyclic codes over \(\mathbb {Z}_{p^2}\) in Sect. 4. Finally, we list all cyclic self-dual codes over \(\mathbb {Z}_9\) of length 33.

2 Preliminaries

In this section, we overview properties for concatenated structure of codes.

Notation 2.1

In this paper, let n be a positive integer satisfying \(\mathrm{gcd}(p,\,n)=1,\) and assume

$$\begin{aligned} y^n-1=f_1(y),\,f_2(y),\ldots ,f_r(y), \end{aligned}$$
(1)

where \(f_1(y),\,f_2(y),\ldots , f_r(y)\) are pairwise coprime monic basic irreducible polynomials in \(\mathbb {Z}_{p^2}[y].\) For each \(i,\,1\le i\le r,\) we assume \(\mathrm{deg}(f_i(y))=m_i,\) and denote \(R_i=\mathbb {Z}_{p^2}[y]/\langle f_i(y)\rangle =\mathbb {Z}_{p^2}[\zeta _i]\) where \(\zeta _i=y+\langle f_i(y)\rangle \in R_i\) satisfying \(f_i(\zeta _i)=0.\)

For each integer \(i,\,1\le i\le r,\) It is known that \(R_i\) is a GR of characteristic \(p^2\) and cardinality \(p^{2m_i}.\) The Teichmüller set of \(R_i\) is

$$\begin{aligned} \mathcal{T}_i =\left\{ \sum \limits _{j=0}^{m_i-1}t_jy^j\mid t_0,\,t_1,\ldots ,t_{m_i-1}\in \mathbb {Z}_p\right\} =\left\{ \sum \limits _{j=0}^{m_i-1}t_j\zeta _i^j\mid t_0,\,t_1,\ldots ,t_{m_i-1}\in \mathbb {Z}_p\right\} , \end{aligned}$$

and every element \(\alpha \) of \(R_i\) has a unique p-adic expression: \(\alpha =r_0+pr_1,\,r_0,\,r_1\in \mathcal{T}_i.\) Moreover, \(\alpha \) is invertible if and only if \(r_0\ne 0.\)

Denote \(F_i(y)=\frac{y^n-1}{f_i(y)}\in \mathbb {Z}_{p^2}[y]\) in the following. Since \(F_i(y)\) and \(f_i(y)\) are coprime, there are polynomials \(a_i(y),\,b_i(y)\in \mathbb {Z}_{p^2}[y]\) such that

$$\begin{aligned} a_i(y)F_i(y)+b_i(y)f_i(y)=1. \end{aligned}$$

In the rest of this paper, we set

$$\begin{aligned} \varepsilon _i(y)\equiv a_i(y)F_i(y)=1-b_i(y)f_i(y) \, \left( \mathrm{mod} \, y^n-1\right) . \end{aligned}$$
(2)

Then using classical ring theory, we deduce the following lemma.

Lemma 2.2

Denote \(\mathcal{A}=\mathbb {Z}_{p^2}[y]/\langle y^n-1\rangle .\) The following hold in \(\mathcal{A}.\)

(i) \(\varepsilon _1(y)+\cdots +\varepsilon _r(y)=1,\, \varepsilon _i(y)^2=\varepsilon _i(y)\) and \(\varepsilon _i(y)\varepsilon _j(y)=0\) for all \(1\le i\ne j\le r.\)

(ii) \(\mathcal{A}=\mathcal{A}_1\oplus \cdots \oplus \mathcal{A}_r,\) where \(\mathcal{A}_i=\varepsilon _i(y)\mathcal{A}\) and its multiplicative identity is \(\varepsilon _i(y).\) Moreover, this decomposition is a direct sum of rings in that \(\mathcal{A}_i\mathcal{A}_j=\{0\}\) for all i and \(j,\,1\le i\ne j\le r.\)

(iii) For each \(1\le i\le r,\) define a mapping \(\varphi _i{\text {:}}\, g(y)\mapsto \varepsilon _i(y)g(y)\,(\forall g(y)\in R_i).\) Then \(\varphi _i\) is a ring isomorphism from \(R_i\) onto \(\mathcal{A}_i.\) Hence \(|\mathcal{A}_i|=p^{2m_i}.\)

(iv) For each \(1\le i\le r,\,\mathcal{A}_i\) is a basic irreducible cyclic code over \(\mathbb {Z}_{p^2}\) of length n having parity check polynomial \(f_i(y)\) and generator polynomial \(F_i(y).\)

For convenience and self-sufficiency of the paper, we restate the concatenated structure of codes over rings.

Definition 2.3

Using notations above, let C be a linear code over \(R_i\) of length l,  i.e., C is an \(R_i\)-submodule of \(R_i^l=\{(r_0,\,r_1,\ldots , r_{l-1})\mid r_j\in R_i,\,j=0,\,1,\ldots ,l-1\}.\) The concatenated code of \(\mathcal{A}_i\) and C is defined by

$$\begin{aligned} \mathcal{A}_i\Box _{\varphi _i}C=\left\{ \left( \varphi _i\left( c_0\right) ,\,\varphi _i\left( c_1\right) ,\ldots ,\varphi _{i}\left( c_{l-1}\right) \right) \mid \left( c_0,\,c_1,\ldots ,c_{l-1}\right) \in C\right\} , \end{aligned}$$

where the cyclic code \(\mathcal{A}_i\) over \(\mathbb {Z}_{p^2}\) of length n is called the inner code and C is called the outer code.

Lemma 2.4

\(\mathcal{A}_i\Box _{\varphi _i}C\) is a linear code over \(\mathbb {Z}_{p^2}\) of length nl. The number of codewords in this concatenated code is equal to \(|\mathcal{A}_i\Box _{\varphi _i}C|=|C|\) and

$$\begin{aligned} d_{\mathrm{min}}\left( \mathcal{A}_i\Box _{\varphi _i}C\right) \ge d_{\mathrm{min}}\left( \mathcal{A}_i\right) d_{\mathrm{min}}(C), \end{aligned}$$

where \(d_{\mathrm{min}}(\mathcal{A}_i)\) is the minimal distance of \(\mathcal{A}_i\) as a linear code over \(\mathbb {Z}_{p^2}\) of length n and \(d_{\mathrm{min}}(C)\) is the minimal distance of C as a linear code over the GR \(R_i\) of length l.

By the following theorem, we see that a generator matrix of the concatenated code \(\mathcal{A}_i\Box _{\varphi _i}C\) as a \(\mathbb {Z}_{p^2}\)-submodule can be constructed from a generator matrix of the cyclic code \(\mathcal{A}_i\) over \(\mathbb {Z}_{p^2}\) and a generator matrix of the linear code C over the GR \(R_i\) straightforwardly.

Theorem 2.5

Let \(\varepsilon _i(y)=\sum \nolimits _{j=0}^{n-1}e_{i,j}y^j\) with \(e_{i,j}\in \mathbb {Z}_{p^2},\) and C be a linear code over the GR \(R_i\) of length l with a generator matrix \(G_{C}\in \mathrm{M}_{t\times l}(R_i),\) i.e., C is an \(R_i\)-submodule of \(R_i^l\) generated by the row vectors of \(G_{C}.\) The following hold.

(i) A generator matrix of the cyclic code \(\mathcal{A}_i\) is given by

$$\begin{aligned} G_{\mathcal{A}_i}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c}e_{i,0} &{} e_{i,1} &{} \ldots &{} e_{i,n-2} &{} e_{i,n-1}\\ e_{i,n-1} &{} e_{i,0} &{} \ldots &{} e_{i,n-3} &{} e_{i,n-2}\\ \ldots &{}\ldots &{}\ldots &{}\ldots &{}\ldots \\ e_{i,n-m_i+1} &{} e_{i,n-m_i+2} &{} \ldots &{} e_{i,n-m_i-1} &{} e_{i,n-m_i} \end{array}\right) . \end{aligned}$$

(ii) Assume \(f_i(y)=\sum \nolimits _{j=0}^{m_i}f_{i,j}y^j\) with \(f_{i,j}\in \mathbb {Z}_{p^2}\) and \(f_{i,m_i}=1,\) and let \(M_{f_i}=\left( \begin{array}{cc}0&{} I_{m_i-1}\\ -f_{i,0} &{} V_i\end{array}\right) \) be the companion matrix of \(f_i(y)\) where \(I_{m_i-1}\) is the identity matrix of order \(m_i-1\) and \(V_i=(-f_{i,1},\ldots ,-f_{i,m_i-1}).\) For any \(\alpha =\alpha (y)=\sum \nolimits _{j=0}^{m_i-1}r_jy^j\in R_i\) with \(r_j\in \mathbb {Z}_{p^2},\) denote \(A_{\alpha }=\alpha (M_{f_i})=\sum \nolimits _{j=0}^{m_i-1}r_jM_{f_i}^j\in \mathrm{M}_{m_i\times m_i}(\mathbb {Z}_{p^2})\) in the rest of the paper. Then

$$\begin{aligned} \alpha Y=A_{\alpha }Y, \quad \mathrm{where}\quad Y=\left( \begin{array}{c}1\\ y\\ \ldots \\ y^{m_i-1}\end{array}\right) . \end{aligned}$$

(iii) Let \(G_C=(\alpha _{j,s})_{1\le j\le t,\,1\le s\le l}\) with \(\alpha _{j,s}\in R_i.\) Then a generator matrix of the concatenated code \(\mathcal{A}_i\Box _{\varphi _i}C\) is given by

$$\begin{aligned} G_{\mathcal{A}_i\Box _{\varphi _i}C}=\left( \begin{array}{c@{\quad }c@{\quad }c}A_{\alpha _{1,1}}G_{\mathcal{A}_i} &{} \ldots &{} A_{\alpha _{1,l}}G_{\mathcal{A}_i}\\ \ldots &{} \ldots &{} \ldots \\ A_{\alpha _{t,1}}G_{\mathcal{A}_i} &{} \ldots &{} A_{\alpha _{t,l}}G_{\mathcal{A}_i}\end{array}\right) . \end{aligned}$$

Hence \(\mathcal{A}_i\Box _{\varphi _i}C=\{\underline{w}G_{\mathcal{A}_i\Box _{\varphi _i}C}\mid \underline{w}\in \mathbb {Z}_{p^2}^{m_it}\}.\)

Proof

(i) Since \(f_i(y)\) is a monic basic irreducible polynomial in \(\mathbb {Z}_{p^2}[y]\) of degree \(m_i,\,\{1,\,y,\ldots ,y^{m_i-1}\}\) is a \(\mathbb {Z}_{p^2}\)-basis of the GR \(R_i=\mathbb {Z}_{p^2}[y]/\langle f_i(y)\rangle .\) As \(\varphi _i\) is a \(\mathbb {Z}_{p^2}\)-module isomorphism from \(R_i\) onto \(\mathcal{A}_i\) by Lemma 2.2(iii), we conclude that \(\{\varepsilon _i(y),\,y\varepsilon _i(y),\ldots ,y^{m_i-1}\varepsilon _i(y)\}\) is a \(\mathbb {Z}_{p^2}\)-basis of \(\mathcal{A}_i.\) Hence \(G_{\mathcal{A}_i}\) is a generator matrix of \(\mathcal{A}_i\) as a \(\mathbb {Z}_{p^2}\)-submodule of \(\mathbb {Z}_{p^2}^n.\)

(ii) It is obvious that \(yY=M_{f_i}Y,\) which then implies that \(y^jY=M_{f_i}^jY\) for all \(j=0,\,1,\ldots ,m_i-1.\) Hence \(\alpha Y=\sum \nolimits _{j=0}^{m_i-1}r_j(y^jY)=A_\alpha Y.\)

(iii) Let \(\mathcal{C}\) be the \(\mathbb {Z}_{p^2}\)-submodule of \(\mathbb {Z}_{p^2}^{nl}\) generated by the row vectors of \(G_{\mathcal{A}_i\Box _{\varphi _i}C},\) i.e., \(\mathcal{C}=\{\underline{w}G_{\mathcal{A}_i\Box _{\varphi _i}C}\mid \underline{w}\in \mathbb {Z}_{p^2}^{m_it}\}.\) By Definition 2.3, \(\xi \in \mathcal{A}_i\Box _{\varphi _i}C\) if and only if there exists a unique codeword \(c=(c_1,\ldots ,c_l)\in C\) such that \(\xi =(\varphi _i(c_1),\ldots ,\varphi _i(c_l)).\) Since \(G_C\) is a generator matrix of \(C,\,c\in C\) if and only if c is an \(R_i\)-combination of the row vectors \((\alpha _{1,1},\ldots ,\alpha _{1,l}),\ldots ,(\alpha _{t,1},\ldots ,\alpha _{t,l})\) of \(G_C,\) which is equivalent that there exist \(\beta _1,\ldots ,\beta _t\in R_i\) such that

$$\begin{aligned} \xi= & {} \left( \varphi _i\left( \beta _1\alpha _{1,1}+\cdots +\beta _{t}\alpha _{t,1}\right) , \ldots , \varphi _i\left( \beta _1\alpha _{1,l}+\cdots +\beta _{t}\alpha _{t,l}\right) \right) \\= & {} \left( \varphi _i\left( \beta _1\alpha _{1,1}\right) +\cdots +\varphi _i\left( \beta _{t}\alpha _{t,1}\right) ,\ldots ,\varphi _i\left( \beta _1\alpha _{1,l}\right) +\cdots +\varphi _i\left( \beta _{t}\alpha _{t,l}\right) \right) , \end{aligned}$$

since \(\varphi _i\) is a \(\mathbb {Z}_{p^2}\)-module isomorphism. For each integer \(j,\,1\le j\le t,\) by \(\beta _j\in R_i\) there is a unique row vector \(\underline{b}_j\in \mathbb {Z}_{p^2}^{m_i}\) such that \(\beta _j=\underline{b}_jY.\) From this and by (ii) we deduce that \(\beta _j\alpha _{j,s}=\underline{b}_j(\alpha _{j,s}Y)=\underline{b}_jA_{\alpha _{j,s}}Y\) for all \(s=1,\ldots ,l.\) Also, since \(\varphi _i\) is a \(\mathbb {Z}_{p^2}\)-module isomorphism, we have

$$\begin{aligned} \xi= & {} \left( \underline{b}_1A_{\alpha _{1,1}}\varphi _i(Y)+\cdots +\underline{b}_tA_{\alpha _{t,1}}\varphi _i(Y), \ldots , \underline{b}_1A_{\alpha _{1,l}}\varphi _i(Y)+\cdots +\underline{b}_tA_{\alpha _{t,l}}\varphi _i(Y)\right) \\= & {} \underline{w}\left( \begin{array}{c@{\quad }c@{\quad }c}A_{\alpha _{1,1}}\varphi _i(Y) &{} \ldots &{} A_{\alpha _{1,l}}\varphi _i(Y)\\ \ldots &{} \ldots &{} \ldots \\ A_{\alpha _{t,1}}\varphi _i(Y) &{} \ldots &{} A_{\alpha _{t,l}}\varphi _i(Y)\end{array}\right) , \end{aligned}$$

where \(\underline{w}=(\underline{b}_1,\ldots ,\underline{b}_t)\in \mathbb {Z}_{p^2}^{m_it}.\) Then by

$$\begin{aligned} \varphi _i(Y)=\left( \begin{array}{c}\varphi _i(1)\\ \varphi _i(y)\\ \ldots \\ \varphi _i(y^{m_i-1})\end{array}\right) =\left( \begin{array}{c}\varepsilon _i(y)\\ y\varepsilon _i(y)\\ \ldots \\ y^{m_i-1}\varepsilon _i(y)\end{array}\right) =G_{\mathcal{A}_i}\left( \begin{array}{c}1 \\ y\\ \ldots \\ y^{n-1}\end{array}\right) , \end{aligned}$$

and the identification of \(\mathbb {Z}_{p^2}[y]\langle y^n-1\rangle \) with \(\mathbb {Z}_{p^2}^n,\) we deduce \(\xi =\underline{w}G_{\mathcal{A}_i\Box _{\varphi _i}C}\in \mathcal{C}.\) Therefore, \(\mathcal{A}_i\Box _{\varphi _i}C=\mathcal{C}.\) \(\square \)

3 The concatenated structure of cyclic codes over \(\mathbb {Z}_{p^2}\) of length \(p^kn\)

From now on, let \(N=p^kn\) where k is a positive integer. As usual, we will identify \(\mathbb {Z}_{p^2}^N\) with \(\mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle \) under the natural \(\mathbb {Z}_{p^2}\)-module isomorphism: \((c_0,\,c_1,\ldots ,c_{N-1})\mapsto c_0+c_1x+\cdots +c_{N-1}x^{N-1}\) (\(\forall c_j\in \mathbb {Z}_{p^2},\,j=0,\,1,\ldots ,N-1\)).

Using the notations of Lemma 2.2, each element of the ring \(\mathcal{A}\) can be uniquely expressed as \(a(y)=\sum \nolimits _{j=0}^{n-1}a_jy^j\) with \(a_j\in \mathbb {Z}_{p^2}.\) Then each element of the quotient ring \(\mathcal{A}[x]/\langle x^{p^k}-y\rangle \) can be uniquely expressed as

$$\begin{aligned} \alpha (x,\,y)=\left( 1,\,y,\ldots ,y^{n-1}\right) M \left( \begin{array}{c} 1 \\ x\\ \ldots \\ x^{p^k-1} \end{array}\right) , \end{aligned}$$

where M is a matrix over \(\mathbb {Z}_{p^2}\) of size \(n\times p^k.\) Now, define

$$\begin{aligned} \Psi (\alpha (x,\,y))=\alpha \left( x,\,x^{p^k}\right) =\left( 1,\,x^{p^k},\ldots ,x^{p^k(n-1)}\right) M\left( \begin{array}{c}1 \\ x\\ \ldots \\ x^{p^k-1} \end{array}\right) . \end{aligned}$$

It is clear that \(\Psi \) is a ring isomorphism from \(\mathcal{A}[x]/\langle x^{p^k}-y\rangle \) onto \(\mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle .\) In the rest of this paper, we will identify \(\mathcal{A}[x]/\langle x^{p^k}-y\rangle \) with \(\mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle \) under this isomorphism \(\Psi .\)

Theorem 3.1

Using the notations in Notation 2.1 and Lemma 2.2, and let \(\mathcal{C}\subseteq \mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle .\) The following are equivalent:

(i) \(\mathcal{C}\) is a cyclic code over \(\mathbb {Z}_{p^2}\) of length N.

(ii) \(\mathcal{C}\) is an ideal of the ring \(\mathcal{A}[x]/\langle x^{p^k}-y\rangle .\)

(iii) For each integer \(i,\,1\le i\le r,\) there is a unique \(\zeta _i\)-constacyclic code \(C_i\) over \(R_i\) of length \(p^k,\) i.e., an ideal \(C_i\) of the ring \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle ,\) such that \(\mathcal{C}=(\mathcal{A}_1\Box _{\varphi _1}C_1)\oplus \cdots \oplus (\mathcal{A}_r\Box _{\varphi _r}C_r).\)

Proof

We only need to prove (ii)\(\Leftrightarrow \)(iii). By Lemma 2.2(ii) it follows that \(\mathcal{A}[x]/\langle x^{p^k}-y\rangle =\oplus _{i=1}^r(\mathcal{A}_i[x]/\langle x^{p^k}-y\rangle ).\) As \(\mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle =\mathcal{A}[x]/\langle x^{p^k}-y\rangle ,\) we see that \(\mathcal{C}\) is an ideal of the ring \(\mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle \) if and only if for each integer \(i,\,1\le i\le r,\) there is a unique ideal \(\mathcal{C}_i\) of the ring \(\mathcal{A}_i[x]/\langle x^{p^k}-y\rangle \) such that \(\mathcal{C}=\oplus _{i=1}^r\mathcal{C}_i.\)

By Lemma 2.2(iii), \(\varphi _i{\text {:}}\,g(y)\mapsto \varepsilon _i(y)g(y)\) \(({\forall } g(y)\in R_i)\) is a ring isomorphism from \(R_i\) onto \(\mathcal{A}_i.\) As \(R_i=\mathbb {Z}_{p^2}[y]/\langle f_i(y)\rangle =\mathbb {Z}_{p^2}[\zeta _i]\) where \(\zeta _i=y+\langle f_i(y)\rangle ,\) the inverse isomorphism \(\psi _i\) of \(\varphi _i\) is given by

$$\begin{aligned} \psi _i(h(y))=h(y) \, \left( \mathrm{mod} \, f_i(y)\right) \quad \mathrm{or} \quad \psi _i(h(y))=h\left( \zeta _i\right) , \quad \forall h(y)\in \mathcal{A}_i. \end{aligned}$$

Then \(\psi _i\) induces a ring isomorphism from \(\mathcal{A}_i[x]/\langle x^{p^k}-y\rangle \) onto \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle \) in the natural way:

$$\begin{aligned} \psi _i\left( \sum \limits _{j=0}^{p^k-1}h_j(y)x^j\right) =\sum \limits _{j=0}^{p^k-1}h_j\left( \zeta _i\right) x^j, \quad {\forall } h_0(y),\,h_1(y),\ldots , h_{p^k-1}(y)\in \mathcal{A}_i. \end{aligned}$$

By \(\varphi _i=\psi _i^{-1},\,\varphi _i\) induces a ring isomorphism from \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle \) onto \(\mathcal{A}_i[x]/\langle x^{p^k}-y\rangle \) by the following: \({\forall } g_0,\,g_1,\ldots ,g_{p^k-1}\in R_i,\)

$$\begin{aligned} \varphi _i\left( \sum \limits _{j=0}^{p^k-1}g_jx^j\right) =\sum \limits _{j=0}^{p^k-1}\varphi _i\left( g_j\right) x^j \leftrightarrow \left( \varphi _i\left( g_0\right) ,\,\varphi _i\left( g_1\right) ,\ldots ,\varphi _i\left( g_{p^k-1}\right) \right) \in \mathcal{A}_i^{p^k}. \end{aligned}$$

Therefore, for each integer \(i,\,1\le i\le r,\) and the ideal \(\mathcal{C}_i\) of \(\mathcal{A}_i[x]/\langle x^{p^k}-y\rangle ,\) there is a unique ideal \(C_i\) of \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle \) such that \(\mathcal{C}_i=\varphi _i(C_i),\) which implies \(\mathcal{C}_i=\mathcal{A}_i\Box _{\varphi _i}C_i\) by Definition 2.3. It is clear that \(\mathcal{C}_i\) is a \(\zeta _i\)-constacyclic code over \(R_i\) of length \(p^k.\) \(\square \)

By Theorem 3.1, in order to present all cyclic codes over \(\mathbb {Z}_{p^2}\) of length N it is sufficient to determine all ideals of the ring \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle ,\) where \(R_i=\mathbb {Z}_{p^2}[\zeta _i]\) and \(\zeta _i=y+\langle f_i(y)\rangle \) satisfies \(f_i(\zeta _i)=0,\) for all \(i=1,\ldots ,r.\)

Since \(\mathrm{gcd}(p,\,n)=1,\) there is a positive integer \(v,\,1\le v< n,\) such that \(p^kv\equiv 1\) (mod n). By Eq. (1) it follows that \(\zeta _i^n=1.\) From this we deduce \((\zeta _i^v)^{p^k}=\zeta _i,\) which implies \((\zeta _i^e)^{p^k}=\zeta _i^{-1}\) where \(e=n-v.\)

Lemma 3.2

Using the notations above, define a mapping \(\sigma _i{\text {:}}\,R_i[z]/\langle z^{p^k}-1\rangle \rightarrow R_i[x]/\langle x^{p^k}-\zeta _i\rangle \) by

$$\begin{aligned} \sigma _i(a(z))=a\left( \zeta _i^{e}x\right) , \quad {\forall } a(z)\in R_i[z]/\left\langle z^{p^k}-1\right\rangle . \end{aligned}$$

Then \(\sigma _i\) is a ring isomorphism from \(R_i[z]/\langle z^{p^k}-1\rangle \) onto \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle \) preserving Hamming weight.

Proof

It follows that \((\zeta _i^{e}x)^{p^k}-1=\zeta _i^{ep^k}x^{p^k}-1=\zeta _i^{-1}(x^{p^k}-\zeta _i).\) \(\square \)

Recall that ideals of the ring \(R_i[z]/\langle z^{p^k}-1\rangle \) are in fact cyclic codes over the GR \(R_i=\mathrm{GR}(p^2,\,m_i)\) of length \(p^k.\) This kind of cyclic codes have been researched in many literatures, for example Kiah et al. [5] and Sobhani and Esmaeili [7]. For purpose of application in this paper, we list some conclusions.

Lemma 3.3

(cf. [7, Theorem 4.3]) The number of ideals of \(R_i[z]/\langle z^{p^k}-1\rangle ,\) where \(R_i=\mathrm{GR}(p^2,\,m_i),\) is equal to

$$\begin{aligned} N_{(p^2,m_i;k)}= & {} 4\left( \frac{p^{m_ip^{k-1}}-1}{p^{m_i}-1}\right) + \left( 2(p-2)p^{k-1}+1\right) p^{m_ip^{k-1}}\\&\quad +\left( p^{m_i}+3\right) \left( \frac{p^{m_ip^{k-1}}-1}{(p^{m_i}-1)^2}-\frac{p^{k-1}}{p^{m_i}-1}\right) \\&\quad +\,2(p-2)p^{k-1}\left( \frac{p^{m_ip^{k-1}}-1}{p^{m_i}-1}\right) +p^{k-1}. \end{aligned}$$

Especially, \(N_{(p^2,m_i;k)}=1+2p+(2p-3)p^{m_i}\) when \(k=1.\)

Lemma 3.4

([7, Corollary 4.4]) Let \(p\ne 2,\,\alpha =p-1\) and \(\beta =p-2.\) Then all distinct cyclic codes \(\mathcal{L}_i\) over the GR \(R_i\) of length \(p^k\) and their annihilating ideals \(\mathrm{Ann}(\mathcal{L}_i)=\{\alpha \in R_i[z]/\langle z^{p^k}-1\rangle \mid \alpha \beta =0,\,{\forall } \beta \in \mathcal{L}_i\}\) are given by the following:

Cases

\(\mathcal{L}_i\)

Ann\((\mathcal{L}_i)\)

(1)

\(\langle 0\rangle \)

\(\langle 1\rangle \)

(2)

\(\langle 1\rangle \)

\(\langle 0\rangle \)

(3)

\(\langle p\rangle \)

\(\langle p\rangle \)

(4)

\(\langle p(z-1)^s\rangle \, (1\le s\le p^k-1)\)

\(\langle p,\,(z-1)^{p^k-s}\rangle \)

(5)

\(\langle (z-1)^s\rangle \, (1\le s\le p^{k-1})\)

\(\langle (z-1)^{p^k-s}+p(z-1)^{p^{k-1}-s}(-w(z))\rangle \)

(6)

\(\langle (z-1)^s\rangle \, (p^{k-1}+1\le s\le p^{k}-1)\)

\(\langle (z-1)^{\alpha p^{k-1}}+p(-w(z)),\,p(z-1)^{p^k-s}\rangle \)

(7)

\(\langle (z-1)^s+p(z-1)^{s-\alpha p^{k-1}}(-w(z))\rangle \)

\(\langle (z-1)^{p^k-s}\rangle \)

 

   \((\alpha p^{k-1}\le s\le p^{k}-1)\)

 

(8)

\(\langle (z-1)^s+p(z-1)^{s-\alpha p^{k-1}}(-w(z)\)

\(\langle (z-1)^{p^k-s}+p(z-1)^{p^{k-1}+\nu -s}(-\widetilde{h}(z))\rangle \)

 

   \(+(z-1)^{\nu }\widetilde{h}(z))\rangle \)

 
 

\(\quad (\alpha p^{k-1}\le s\le p^{k-1}+\nu , \, \nu \ge 1)\)

 

(9)

\(\langle (z-1)^s+p(z-1)^{s-\alpha p^{k-1}}(-w(z)\)

\(\langle (z-1)^{\alpha p^{k-1}-\nu }+p(-\widetilde{h}(z)),\)

 

   \(+(z-1)^{\nu }\widetilde{h}(z))\rangle \)

   \(p(z-1)^{p^k-s}\rangle \)

 

   \((p^{k-1}+\nu \le s\le p^{k}-1,\)

 
 

   \(s>\alpha p^{k-1}, \, \nu \ge 1)\)

 

(10)

\(\langle (z-1)^{\alpha p^{k-1}}+p(-w(z)\)

\(\langle (z-1)^{\alpha p^{k-1}-\nu }+p(-\widetilde{h}(z))\rangle \)

 

   \(+(z-1)^{\nu }\widetilde{h}(z))\rangle \)

 
 

   \(p^{k-1}+\nu <\alpha p^{k-1}, \, \nu \ge 1)\)

 

(11)

\(\langle (z-1)^{s}+p(z-1)^{s-\alpha p^{k-1}}h(z)\rangle \)

\(\langle (z-1)^{\alpha p^{k-1}}+p(1-h(z)),\)

 

   \( (\alpha p^{k-1}<s<p^k-1, \, h_0\ne 0,\,1)\)

   \(p(z-1)^{p^k-s}\rangle \)

(12)

\(\langle (z-1)^{\alpha p^{k-1}}+ph(z)\rangle \, (h_0\ne 0,\,1)\)

\(\langle (z-1)^{\alpha p^{k-1}}+p(1-h(z))\rangle \)

(13)

\(\langle (z-1)^s+p(z-1)^{t}h(z)\rangle \)

\(\langle (z-1)^{p^{k}-s}+p(z-1)^{p^{k-1}-s}(-w(z)\)

 

   \((p^k+t-s\ne p^{k-1},\,s\le p^{k-1},\)

   \(+\,(z-1)^{\alpha p^{k-1}+t-s}(-h(z)))\rangle \)

 

   \( h(z)\ne 0)\)

 

(14)

\(\langle (z-1)^s+p(z-1)^{t}h(z)\rangle \)

\(\langle (z-1)^{\alpha p^{k-1}}+p(-w(z)\)

 

   \((p^k+t-s\ne p^{k-1}, \)

   \(+\,(z-1)^{\alpha p^{k-1}+t-s}(-h(z))),\)

 

   \(p^{k-1}<s\le \alpha p^{k-1}+t,\)

   \( p(z-1)^{p^k-s}\rangle \)

 

   \(t>0,\, h(z)\ne 0)\)

 

(15)

\(\langle (z-1)^s+ph(z)\rangle \)

\(\langle p(-w(z)+(z-1)^{\alpha p^{k-1}-s}(-h(z)))\)

 

   \((p^{k-1}<s<\alpha p^{k-1},\,h(z)\ne 0)\)

\(\quad +\,(z-1)^{\alpha p^{k-1}}\rangle \)

(16)

\(\langle (z-1)^s+p(z-1)^th(z)\rangle \)

\(\langle p(-h(z)+(z-1)^{s-t-\alpha p^{k-1}})\)

 

   \((p^k+t-s\ne p^{k-1},\, s>\alpha p^{k-1}+t,\)

   \(+\,(z-1)^{s-t},\, p(z-1)^{p^k-s}\rangle \)

 

   \(h(z)\ne 0,\, t>0\))

 

(17)

\(\langle (z-1)^s+ph(z)\rangle \)

\(\langle (z-1)^{s}+p(-h(z)+(z-1)^{s-\alpha p^{k-1}})\rangle \)

 

   \((s>\alpha p^{k-1},\, h(z)\ne 0)\)

 

(18)

\(\langle (z-1)^s,\,p(z-1)^l\rangle \)

\(\langle (z-1)^{p^k-1}+p(z-1)^{p^{k-1}-l}(-w(z)),\)

 

   \((1\le s\le p^k-1,\)

   \(p(z-1)^{p^k-s}\rangle \)

 

   \(0\le l\le \mathrm{min}\{s,\,p^{k-1}\})\)

 

(19)

\(\langle p(z-1)^{s-\alpha p^{k-1}}(-w(z))\)

\(\langle (z-1)^{p^k-l},\,p(z-1)^{p^k-s}\rangle \)

 

   \(+(z-1)^s,\,p(z-1)^l\rangle \)

 
 

   \((\alpha p^{k-1}\le s\le p^k-1, \)

 
 

   \(s-\alpha p^{k-1}<l<s)\)

 

(20)

\(\langle p(z-1)^{s-\alpha p^{k-1}}(-w(z)+\pi _i^{\nu }\widetilde{h}(z))\)

\(\langle (z-1)^{p^k-l}+p(z-1)^{p^{k-1}+\nu -l}(-\widetilde{h}(z)),\)

 

   \(+\,(z-1)^{s},\,p(z-1)^l\rangle \)

   \(p(z-1)^{p^k-s}\rangle \)

 

   \((\alpha p^{k-1}<s\le p^{k}-1,\,\nu \ge 1,\)

 
 

   \(s-\alpha p^{k-1}<l<\mathrm{min}\{s,\,p^{k-1}+\mu \})\)

 

(21)

\(\langle p(-w(z)+(z-1)^{\nu }\widetilde{h}(z))\)

\(\langle (z-1)^{p^k-l}+p(z-1)^{p^{k-1}+\nu -l}(-\widetilde{h}(z))\rangle \)

 

   \(+(z-1)^{\alpha p^{k-1}},\, p(z-1)^l\rangle \)

 
 

   \((0<l<\mathrm{min}\{\alpha p^{k-1},\,p^{k-1}+\nu \},\)

 
 

   \(\nu \ge 1)\)

 

(22)

\(\langle (z-1)^s+p(z-1)^{s-\alpha p^{k-1}}h(z),\)

\(\langle (z-1)^{p^k-l}+p(z-1)^{p^{k-1}-l}(1-h(z)),\)

 

   \(p(z-1)^l\rangle \)

 
 

   \((\alpha p^{k-1}<s\le p^k-1, \, h_0\ne 0,\,1,\)

   \(p(z-1)^{p^k-s}\rangle \)

 

   \(s-\alpha p^{k-1}<l<p^{k-1})\)

 

(23)

\(\langle (z-1)^{\alpha p^{k-1}}+ph(z),\,p(z-1)^l\rangle \)

\(\langle (z-1)^{p^k-l}+p(z-1)^{p^{k-1}-l}(1-h(z))\rangle \)

 

   \(( h_0\ne 0,\,1, \, 0<l<p^{k-1})\)

 

(24)

\(\langle (z-1)^s+p(z-1)^th(z),\,p(z-1)^l\rangle \)

\(\langle (z-1)^{p^k-l}+p(z-1)^{p^{k-1}-l}(-w(z)\)

 

   \((p^k+t-s\ne p^{k-1},\, 1\le s\le \alpha p^{k-1}+t,\)

   \(+\,(z-1)^{\alpha p^{k-1}+t-s}(-h(z))), \)

 

   \(h(z)\ne 0,\, 0<t<l<\mathrm{min}\{s,\,p^{k-1}\})\)

   \(p(z-1)^{p^k-s}\rangle \)

(25)

\(\langle (z-1)^s+ph(z),\,p(z-1)^l\rangle \)

\(\langle (z-1)^{p^k-l}+p(z-1)^{p^{k-1}-l}(-w(z)\)

 

   \((1\le s<\alpha p^{k-1},\, h(z)\ne 0,\)

   \(+\,(z-1)^{\alpha p^{k-1}+t-s}(-h(z)))\rangle \)

 

   \( 0<l<\mathrm{min}\{s,\,p^{k-1}\})\)

 

(26)

\(\langle (z-1)^s+p(z-1)^th(z),\,p(z-1)^l\rangle \)

\(\langle (z-1)^{p^k-l}+p(z-1)^{p^{k}+t-s-l}(-h(z)\)

 

   \((p^k+t-s\ne p^{k-1},\, h(z)\ne 0,\, t>0\)

   \(+\,(z-1)^{s-t-\alpha p^{k-1}}),\,p(z-1)^{p^k-s}\rangle \)

 

   \(s>\alpha p^{k-1},\,0<t<l<p^k+t-s)\)

 

(27)

\(\langle (z-1)^s+ph(z),\,p(z-1)^l\rangle \)

\(\langle (z-1)^{p^k-l}+p(z-1)^{p^k+t-s-l}(-h(z)\)

 

   \((s>\alpha p^{k-1},\, h(z)\ne 0,\, 0<l<p^k-s)\)

   \(+\,(z-1)^{s-\alpha p^{k-1}}) \rangle \)

Then by Theorem 3.1, Lemmas 3.2 and 3.3 we deduce the following corollary.

Corollary 3.5

Using the notations of Lemma 3.3, the number of all cyclic codes over \(\mathbb {Z}_{p^2}\) of length \(p^kn\) is equal to \(\prod \nolimits _{i=1}^rN_{(p^2,m_i;k)}.\)

Example 3.6

We calculate the number of cyclic codes over \(\mathbb {Z}_9\) of length 33. In this case, we have \(p=3,\,k=1\) and \(n=11.\)

Since {0, 1, 3, 9, 5, 4} and {2, 6, 7, 10, 8} are all distinct 3-cyclotomic cosets modulo 11, we have \(y^{11}-1=f_1(y)f_2(y)f_3(y),\) where \(f_1(y),\,f_2(y),\,f_3(y)\) are monic basic irreducible polynomials in \(\mathbb {Z}_9[y]\) satisfying \(m_1=\mathrm{deg}(f_1(y))=1\) and \(m_i=\mathrm{deg}(f_1(y))=5\) for \(i=2,\,3.\) By Corollary 3.5 and Lemma 3.3, the number of cyclic codes over \(\mathbb {Z}_9\) of length 33 is equal to

$$\begin{aligned} \prod \limits _{i=1}^3N_{(3^2,m_i;1)}=\prod \limits _{i=1}^3\left( 1+2p+(2p-3)p^{m_i}\right) =16\cdot 736^2=8,667,136. \end{aligned}$$

For any ideal \(C_i\) of the ring \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle ,\) the annihilating ideal of \(C_i\) is defined as \(\mathrm{Ann}(C_i)=\{\alpha \in R_i[x]/\langle x^{p^k}-\zeta _i\rangle \mid \alpha \beta =0,\,{\forall } \beta \in C_i \}.\) In the rest of this paper, we denote \(w(z)=\sum \nolimits _{j=0}^{p-2}\left[ \frac{(-1)^{j+1}}{j+1}\right] _1 (z-1)^{jp^{k-1}},\) where \([a]_1\) denotes a \((\mathrm{mod} \ p)\) (cf. [7]), and

$$\begin{aligned} \pi _i=\zeta _i^ex-1\in R_i[x]/\left\langle x^{p^k}-\zeta _i\right\rangle , \quad \mathrm{where} \quad R_i=\mathbb {Z}_{p^2}\left[ \zeta _i\right] . \end{aligned}$$

Now, by Lemmas 3.2 and 3.3, we can list all distinct \(\zeta _i\)-constacyclic codes over the GR \(R_i\) of length \(p^k\) by the following theorem.

Theorem 3.7

Let \(p\ne 2,\,\alpha =p-1\) and \(\beta =p-2.\) Then all distinct \(\zeta _i\)-constacyclic codes \(C_i\) over the GR \(R_i\) of length \(p^k\) and their annihilating ideals are given by the following:

Cases

\(C_i\)

Ann\((C_i)\)

(1)

\(\langle 0\rangle \)

\(\langle 1\rangle \)

(2)

\(\langle 1\rangle \)

\(\langle 0\rangle \)

(3)

\(\langle p\rangle \)

\(\langle p\rangle \)

(4)

\(\langle p\pi _i^s\rangle \) \((1\le s\le p^k-1)\)

\(\langle p,\, \pi _i^{p^k-s}\rangle \)

(5)

\(\langle \pi _i^s\rangle \, (1\le s\le p^{k-1})\)

\(\langle \pi _i^{p^k-s}+p\pi _i^{p^{k-1}-s}(-w(\zeta _i^ex))\rangle \)

(6)

\(\langle \pi _i^s\rangle \, (p^{k-1}+1\le s\le p^{k}-1)\)

\(\langle \pi _i^{\alpha p^{k-1}}+p(-w(\zeta _i^ex)),\,p\pi _i^{p^k-s}\rangle \)

(7)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex))\rangle \)

\(\langle \pi _i^{p^k-s}\rangle \)

 

   \((\alpha p^{k-1}\le s\le p^{k}-1)\)

 

(8)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex))\rangle \)

\(\langle \pi _i^{p^k-s}+p\pi _i^{p^{k-1}+\nu -s}(-\widetilde{h}(\zeta _i^ex))\rangle \)

 

   \((\alpha p^{k-1}\le s\le p^{k-1}+\nu , \, \nu \ge 1)\)

 

(9)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex))\rangle \)

\(\langle \pi _i^{\alpha p^{k-1}-\nu }+p(-\widetilde{h}(\zeta _i^ex)),\, p\pi _i^{p^k-s}\rangle \)

 

   \((p^{k-1}+\nu \le s\le p^{k}-1,\)

 
 

   \(s>\alpha p^{k-1}, \, \nu \ge 1)\)

 

(10)

\(\langle \pi _i^{\alpha p^{k-1}}+p(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex))\rangle \)

\(\langle \pi _i^{\alpha p^{k-1}-\nu }+p(-\widetilde{h}(\zeta _i^ex))\rangle \)

 

   \(p^{k-1}+\nu <\alpha p^{k-1}, \, \nu \ge 1)\)

 

(11)

\(\langle \pi _i^{s}+p\pi _i^{s-\alpha p^{k-1}}h(\zeta _i^ex)\rangle \)

\(\langle \pi _i^{\alpha p^{k-1}}+p(1-h(\zeta _i^ex)),\,p\pi _i^{p^k-s}\rangle \)

 

   \( (\alpha p^{k-1}<s<p^k-1, \, h_0\ne 0,1)\)

 

(12)

\(\langle \pi _i^{\alpha p^{k-1}}+ph(\zeta _i^ex)\rangle \, (h_0\ne 0,\,1)\)

\(\langle \pi _i^{\alpha p^{k-1}}+p(1-h(\zeta _i^ex))\rangle \)

(13)

\(\langle \pi _i^s+p\pi _i^{t}h(\zeta _i^ex)\rangle \)

\(\langle \pi _i^{p^{k}-s}+p\pi _i^{p^{k-1}-s}(-w(\zeta _i^ex)\)

 

   \((p^k+t-s\ne p^{k-1},\, s\le p^{k-1},\, h(x)\ne 0)\)

   \(+\,\pi _i^{\alpha p^{k-1}+t-s}(-h(\zeta _i^ex)))\rangle \)

(14)

\(\langle \pi _i^s+p\pi _i^{t}h(\zeta _i^ex)\rangle \)

\(\langle \pi _i^{\alpha p^{k-1}}+p(-w(\zeta _i^ex)\)

 

   \((p^k+t-s\ne p^{k-1},\, p^{k-1}<s\le \alpha p^{k-1}+t,\)

   \(+\,\pi _i^{\alpha p^{k-1}+t-s}(-h(\zeta _i^ex))),\, p\pi _i^{p^k-s}\rangle \)

 

   \(t>0,\, h(x)\ne 0)\)

 

(15)

\(\langle \pi _i^s+ph(\zeta _i^ex)\rangle \)

\(\langle p(-w(\zeta _i^ex)+\pi _i^{\alpha p^{k-1}-s}(-h(\zeta _i^ex)))\)

 

   \((p^{k-1}<s<\alpha p^{k-1},\, h(x)\ne 0)\)

   \(+\,\pi _i^{\alpha p^{k-1}}\rangle \)

(16)

\(\langle \pi _i^s+p\pi _i^th(\zeta _i^ex)\rangle \)

\(\langle \pi _i^{s-t}+p(-h(\zeta _i^ex)+\pi _i^{s-t-\alpha p^{k-1}}),\)

 

   \((p^k+t-s\ne p^{k-1},\, s>\alpha p^{k-1}+t,\)

   \(p\pi _i^{p^k-s}\rangle \)

 

   \(h(x)\ne 0,\, t>0\))

 

(17)

\(\langle \pi _i^s+ph(\zeta _i^ex)\rangle \)

\(\langle \pi _i^{s}+p(-h(\zeta _i^ex)+\pi _i^{s-\alpha p^{k-1}})\rangle \)

 

   \((s>\alpha p^{k-1},\, h(x)\ne 0)\)

 

(18)

\(\langle \pi _i^s,\,p\pi _i^l\rangle \)

\(\langle \pi _i^{p^k-1}+p\pi _i^{p^{k-1}-l}(-w(\zeta _i^ex)),\)

 

   \((1\le s\le p^k-1,\)

   \(p\pi _i^{p^k-s}\rangle \)

 

   \(0\le l\le \mathrm{min}\{s,\,p^{k-1}\})\)

 

(19)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex)),\,p\pi _i^l\rangle \)

\(\langle \pi _i^{p^k-l},\,p\pi _i^{p^k-s}\rangle \)

 

   \((\alpha p^{k-1}\le s\le p^k-1,\, s-\alpha p^{k-1}<l<s)\)

 

(20)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex)),\)

\(\langle \pi _i^{p^k-l}+p\pi _i^{p^{k-1}+\nu -l}(-\widetilde{h}(\zeta _i^ex)),\)

 

   \(p\pi _i^l\rangle \)

   \(p\pi _i^{p^k-s}\rangle \)

 

   \((\alpha p^{k-1}<s\le p^{k}-1,\,\nu \ge 1,\)

 
 

   \(s-\alpha p^{k-1}<l<\mathrm{min}\{s,\,p^{k-1}+\mu \})\)

 

(21)

\(\langle \pi _i^{\alpha p^{k-1}}+p(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex)),\, p\pi _i^l\rangle \)

\(\langle \pi _i^{p^k-l}+p\pi _i^{p^{k-1}+\nu -l}(-\widetilde{h}(\zeta _i^ex))\rangle \)

 

   \((0<l<\mathrm{min}\{\alpha p^{k-1},\,p^{k-1}+\nu \},\, \nu \ge 1)\)

 

(22)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}h(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _i^{p^k-l}+p\pi _i^{p^{k-1}-l}(1-h(\zeta _i^ex)),\)

 

   \((\alpha p^{k-1}<s\le p^k-1, \, h_0\ne 0,\,1,\)

   \(p\pi _i^{p^k-s}\rangle \)

 

   \(s-\alpha p^{k-1}<l<p^{k-1})\)

 

(23)

\(\langle \pi _i^{\alpha p^{k-1}}+ph(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _i^{p^k-l}+p\pi _i^{p^{k-1}-l}(1-h(\zeta _i^ex))\rangle \)

 

   \(( h_0\ne 0,\,1, \, 0<l<p^{k-1})\)

 

(24)

\(\langle \pi _i^s+p\pi _i^th(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _i^{p^k-l}+p\pi _i^{p^{k-1}-l}(-w(\zeta _i^ex)\)

 

   \((p^k+t-s\ne p^{k-1},\, 1\le s\le \alpha p^{k-1}+t,\)

   \(+\,\pi _i^{\alpha p^{k-1}+t-s}(-h(\zeta _i^ex))),\, p\pi _i^{p^k-s}\rangle \)

 

   \(h(x)\ne 0,\, 0<t<l<\mathrm{min}\{s,\,p^{k-1}\})\)

 

(25)

\(\langle \pi _i^s+ph(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _i^{p^k-l}+p\pi _i^{p^{k-1}-l}(-w(\zeta _i^ex)\)

 

   \((1\le s<\alpha p^{k-1},\, h(x)\ne 0,\)

   \(+\,\pi _i^{\alpha p^{k-1}+t-s}(-h(\zeta _i^ex)))\rangle \)

 

   \( 0<l<\mathrm{min}\{s,\,p^{k-1}\})\)

 

(26)

\(\langle \pi _i^s+p\pi _i^th(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _i^{p^k-l}+p\pi _i^{p^{k}+t-s-l}(-h(\zeta _i^ex)\)

 

   \((p^k+t-s\ne p^{k-1},\, h(x)\ne 0,\, t>0\)

   \(+\,\pi _i^{s-t-\alpha p^{k-1}}),\,p\pi _i^{p^k-s}\rangle \)

 

   \(s>\alpha p^{k-1},\, 0<t<l<p^k+t-s)\)

 

(27)

\(\langle \pi _i^s+ph(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _i^{p^k-l}+p\pi _i^{p^k+t-s-l}(-h(\zeta _i^ex)\)

 

   \((s>\alpha p^{k-1},\, h(x)\ne 0,\, 0<l<p^k-s)\)

   \(+\,\pi _i^{s-\alpha p^{k-1}}) \rangle \)

Finally, by Theorems 3.1 and 3.7 we deduce the following corollary.

Corollary 3.8

Every cyclic code \(\mathcal{C}\) over \(\mathbb {Z}_{p^2}\) of length \(p^kn\) can be constructed by the following two steps:

(i) For each \(i=1,\ldots ,r,\) choose a \(\zeta _i\)-constacyclic code \(C_i\) over \(R_i\) of length \(p^k\) listed in Theorem 3.7.

(ii) Set \(\mathcal{C}=\oplus _{i=1}^r\mathcal{C}_i\) with \(\mathcal{C}_i=\mathcal{A}_i\Box _{\varphi _i}C_i.\)

The number of codewords in \(\mathcal{C}\) is equal to \(|\mathcal{C}|=\prod \nolimits _{i=1}^r|C_i|\) and the minimal Hamming distance of \(\mathcal{C}\) satisfies \(d_{\mathrm{min}}(\mathcal{C})\le \mathrm{min}\{d_{\mathrm{min}}(\mathcal{A}_i)d_{\mathrm{min}}(C_i)\mid i=1,\ldots ,r \},\) where \(d_{\mathrm{min}}(\mathcal{A}_i)\) is the minimal \(\mathbb {Z}_{p^2}\)-Hamming weight of \(\mathcal{A}_i\) and \(d_{\mathrm{min}}(C_i)\) is the minimal \(R_i\)-Hamming weight of \(C_i.\) Moreover, a generator matrix of \(\mathcal{C}\) is given by \(G_{\mathcal{C}}=\left( \begin{array}{c}G_{\mathcal{A}_1\Box _{\varphi _1}C_1}\\ \ldots \\ G_{\mathcal{A}_r\Box _{\varphi _r}C_r}\end{array}\right) .\)

Using the notations of Corollary 3.8(ii), \(\mathcal{C}=\oplus _{i=1}^r\mathcal{C}_i\) with \(\mathcal{C}_i=\mathcal{A}_i\Box _{\varphi _i}C_i\) is called the canonical form decomposition of the cyclic code \(\mathcal{C}\) over \(\mathbb {Z}_{p^2}.\)

4 Dual codes of cyclic codes over \(\mathbb {Z}_{p^2}\) of length \(p^kn\)

In this section, we give the dual code of each cyclic code over \(\mathbb {Z}_{p^2}\) of length N and investigate the self-duality of these codes.

As usual, we will identify \(a=(a_0,\,a_1,\ldots ,a_{N-1})\in \mathbb {Z}_{p^2}^N\) with \(a(x)=\sum \nolimits _{j=0}^{N-1}a_jx^j\in \mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle .\) In this paper, we define

$$\begin{aligned} \mu (a(x))=a\left( x^{-1}\right) =a_0+\sum \limits _{j=1}^{N-1}a_jx^{N-j}, \quad {\forall } a(x)\in \mathbb {Z}_{p^2}[x]/\left\langle x^N-1\right\rangle . \end{aligned}$$

Then \(\mu \) is a ring automorphism of \(\mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle \) satisfying \(\mu ^{-1}=\mu \) and \(\mu (c)=c\) for all \(c\in \mathbb {Z}_{p^2}.\) The following lemma is well known.

Lemma 4.1

Let \(a,\,b\in \mathbb {Z}_{p^2}^N.\) Then \([a,\,b]=0\) if \(a(x)\mu (b(x))=0\) in the ring \(\mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle .\)

Using the notations of Sect. 3, we have \(\mathbb {Z}_{p^2}[x]/\langle x^N-1\rangle =\mathcal{A}[x]/\langle x^{p^k}-y\rangle \) under the substitution \(y=x^{p^k},\) where \(\mathcal{A}=\mathbb {Z}_{p^2}[y]/\langle y^n-1\rangle .\) Hence

$$\begin{aligned} \mu (y)=\left( x^{-1}\right) ^{p^k}=y^{-1} \quad \mathrm{in} \quad \mathcal{A}[x]/\left\langle x^{p^k}-y\right\rangle . \end{aligned}$$

Therefore, the restriction of \(\mu \) to \(\mathcal{A}\) is given by

$$\begin{aligned} \mu (f(y))=f\left( y^{-1}\right) \quad ({\forall } f(y)\in \mathcal{A}), \end{aligned}$$

which is a ring automorphism of \(\mathcal{A}.\) For notations simplicity, we still denote this restriction by \(\mu .\) From this and by Notation 2.1, we deduce

$$\begin{aligned} \mu \left( \varepsilon _i(y)\right) =a_i\left( y^{-1}\right) F_i\left( y^{-1}\right) =1-b_i\left( y^{-1}\right) f_i\left( y^{-1}\right) \, \mathrm{in} \, \mathcal{A}. \end{aligned}$$
(3)

Let \(f(y)=\sum \nolimits _{j=0}^mc_jy^j\) be a polynomial in \(\mathbb {Z}_{p^2}[y]\) of degree \(m\ge 1.\) Recall that the reciprocal polynomial of f(y) is defined by \(\widetilde{f}(y)=y^mf\left( \frac{1}{y}\right) =\sum \nolimits _{j=0}^m c_jy^{m-j}.\) Especially, f(y) is said to be self-reciprocal if \(\widetilde{f}(y)=\delta f(y)\) for some invertible element \(\delta \) in \(\mathbb {Z}_{p^2},\) i.e., \(\delta \in \mathbb {Z}_{p^2}^{\times }.\) Then by Eq. (1) in Sect. 2, we have

$$\begin{aligned} y^n-1=-\widetilde{f}_1(y),\widetilde{f}_2(y),\ldots ,\widetilde{f}_r(y). \end{aligned}$$

Since \(f_1(y),\,f_2(y),\ldots ,f_r(y)\) are pairwise coprime monic basic polynomials in \(\mathbb {Z}_{p^2}[y],\) for each \(1\le i\le r\) there is a unique integer \(i^{\prime },\,1\le i^{\prime }\le r,\) such that \(\widetilde{f}_i(y)=\delta _if_{i^{\prime }}(y)\) where \(\delta _i\in \mathbb {Z}_{p^2}^{\times }.\) Then by (3) and \(y^n=1\) in \(\mathcal{A},\) we have

$$\begin{aligned} \mu \left( \varepsilon _i(y)\right)= & {} 1-y^{n-\mathrm{deg}(b_i(y))-m_i}\left( y^{\mathrm{deg}(b_i(y))}b_i\left( y^{-1}\right) \right) \left( y^{m_i}f_i\left( y^{-1}\right) \right) \\= & {} 1-y^{n-\mathrm{deg}(b_i(y))-m_i}\widetilde{b}_i(y)\widetilde{f}_i(y)\\= & {} 1-h_i(y)f_{i^{\prime }}(y), \end{aligned}$$

where \(h_i(y)=\delta _iy^{n-\mathrm{deg}(b_i(y))-m_i}\widetilde{b}_i(y)\in \mathcal{A}.\) Similarly, by (3) it follows that \(\mu (\varepsilon _i(y))=g_i(y)F_{i^{\prime }}(y)\) for some \(g_i(y)\in \mathcal{A}.\) Then from these and by Eq.  (2) we deduce that \(\mu (\varepsilon _i(y))=\varepsilon _{i^{\prime }}(y).\)

As stated above, we see that for each \(1\le i\le r\) there is a unique integer \(i^{\prime },\,1\le i^{\prime }\le r,\) such that \(\mu (\varepsilon _i(y))= \varepsilon _{i^{\prime }}(y).\) We still use \(\mu \) to denote this map \(i\mapsto i^{\prime };\) i.e., \(\mu (\varepsilon _i(y))=\varepsilon _{\mu (i)}(y).\) Whether \(\mu \) denotes the automorphism of \(\mathcal{A}\) or this map on the set \(\{1,\ldots ,r\}\) is determined by context. The next lemma shows the compatibility of the two uses of \(\mu .\)

Lemma 4.2

With the notations above, the following hold.

(i) \(\mu \) is a permutation on \(\{1,\ldots ,r\}\) satisfying \(\mu ^{-1}=\mu .\)

(ii) After a rearrangement of \(\varepsilon _1(y),\ldots ,\varepsilon _r(y)\) there are integers \(\lambda ,\,\rho \) such that \(\mu (i)=i\) for all \(i=1,\ldots ,\lambda \) and \(\mu (\lambda +j)=\lambda +\rho +j\) for all \(j=1,\ldots ,\rho ,\) where \(\lambda \ge 1,\,\rho \ge 0\) and \(\lambda +2\rho =r.\)

(iii) For each integer \(i,\,1\le i\le r,\) there is a unique invertible element \(\delta _i\) of \(\mathbb {Z}_{p^2}\) such that \(\widetilde{f}_i(y)=\delta _i f_{\mu (i)}(y).\)

(iv) For any integer \(i,\,1\le i\le r,\, \mu (\varepsilon _i(y))=\varepsilon _{\mu (i)}(y)\) in the ring \(\mathcal{A},\) and \(\mu (\mathcal{A}_{i})=\mathcal{A}_{\mu (i)}.\) Then \(\mu \) induces a ring isomorphism from \(\mathcal{A}_{i}\) onto \(\mathcal{A}_{\mu (i)}.\)

Proof

(i)–(iii) follow from the definition of the map \(\mu ,\) and (iv) follows from that \(\mathcal{A}_i=\varepsilon _i(y)\mathcal{A}\) immediately. \(\square \)

Lemma 4.3

Using the notations above, the following hold for any \(1\le i\le r.\)

(i) \(\mu \) induces a ring isomorphism \(\varphi _i^{-1}\mu \varphi _i\) from \(R_i\) onto \(R_{\mu (i)}.\) We still denote this isomorphism by \(\mu \) for notations simplicity. Then the following diagram commutes

$$\begin{aligned} \begin{array}{c@{\quad }c@{\quad }c} R_i=\mathbb {Z}_{p^2}[y]/\left\langle f_i(y)\right\rangle &{} \mathop {\longrightarrow }\limits ^{\mu } &{} R_{\mu (i)}=\mathbb {Z}_{p^2}[y]/\left\langle f_{\mu (i)}(y)\right\rangle \\ \varphi _i \downarrow &{} &{} \downarrow \varphi _i \\ \mathcal{A}_i &{} \mathop {\longrightarrow }\limits ^{\mu } &{} \mathcal{A}_{\mu (i)}. \end{array}\end{aligned}$$

Specifically, \(\mu (a(y))=a(y^{-1})\in R_{\mu (i)}\) for any \(a(y)\in R_i.\)

(ii) Using the notations in \((\mathrm{i}),\,\mu (\zeta _i)=\zeta _{\mu (i)}^{-1}\) and \(\mu \) induces a ring isomorphism from \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle \) onto \(R_{\mu (i)}[x]/\langle x^{p^k}-\zeta _{\mu (i)}\rangle \) given by

$$\begin{aligned} \alpha (x)=\sum \limits _{j=0}^{p^k-1}\alpha _jx^j\mapsto \widehat{\alpha }\left( x^{-1}\right) :=\mu \left( \alpha _0\right) +\zeta _{\mu (i)}^{-1}\sum \limits _{j=1}^{p^k-1}\mu \left( \alpha _j\right) x^{p^k-j}, \end{aligned}$$

where \(\widehat{\alpha }(x)=\sum \nolimits _{j=0}^{p^k-1}\mu (\alpha _j)x^j,\, {\forall } \alpha _0,\,\alpha _1,\ldots ,\alpha _{p^k-1}\in R_i.\)

Proof

(i) It follows from Lemma 2.2(iii) and Lemma 4.2(iii) and (iv).

(ii) From \(\zeta _i=y+\langle f_i(y)\rangle \in R_i\) and \(\zeta _{\mu (i)}=y+\langle f_{\mu (i)}(y)\rangle \in R_{\mu (i)},\) by (i) we deduce that \(\mu (\zeta _i)=\zeta _{\mu (i)}^{-1}\in R_{\mu (i)}.\) Since x and \(\zeta _{\mu (i)}\) are invertible elements of \(R_{\mu (i)}[x]/\langle x^{p^k}-\zeta _{\mu (i)}\rangle ,\) from \((x^{-1})^{p^k}-\zeta _{\mu (i)}^{-1}=-x^{-p^k}\zeta _{\mu (i)}^{-1}(x^{p^k}-\zeta _{\mu (i)})\) we deduce that \(\mu \) induces a ring isomorphism from \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle \) onto \(R_{\mu (i)}[x]/\langle x^{p^k}-\zeta _{\mu (i)}\rangle \) given by \(\alpha (x)=\sum \nolimits _{j=0}^{p^k-1}\alpha _jx^j\mapsto \mu (\alpha (x))=\widehat{\alpha }(x^{-1})=\sum \nolimits _{j=0}^{p^k-1}\mu (\alpha _j)x^{-j}, \, {\forall }\alpha _0,\ldots ,\alpha _{2^k-1}\in R_i.\) Finally, by \(x^{p^k}=\zeta _{\mu (i)}\) in \(R_{\mu (i)}[x]/\langle x^{p^k}-\zeta _{\mu (i)}\rangle \) it follows that \(\widehat{\alpha }(x^{-1})=\mu (\alpha _0)+\zeta _{\mu (i)}^{-1}\sum \nolimits _{j=1}^{p^k-1}\mu (\alpha _j)x^{p^k-j}\) as required. \(\square \)

Corollary 4.4

For each integer \(i,\,1\le i\le r,\) denote \(\pi _i=\zeta _i^ex-1\in R_i[x]/\langle x^{p^k}-\zeta _i\rangle ,\) where \(R_i=\mathbb {Z}_{p^2}[\zeta _i].\) Then \(\mu (\pi _i^l)=(-1)^l\zeta _{\mu (i)}^{-el}x^{-l}\pi _{\mu (i)}^l\in R_{\mu (i)}[x]/\langle x^{p^k}-\zeta _{\mu (i)}\rangle ,\) for any integer \(l,\,1\le l\le p^{k}-1.\)

Proof

By the proof of Lemma 4.3(ii), we have \(\mu (\pi _i^l)=(\mu (\zeta _i^ex-1))^l=((\zeta _{\mu (i)}^{-1})^ex^{-1}-1)^l=(-1)^l\zeta _{\mu (i)}^{-el}x^{-l}(\zeta _{\mu (i)}^ex-1)^l =(-1)^l\zeta _{\mu (i)}^{-el}x^{-l}\pi _{\mu (i)}^l.\) \(\square \)

Lemma 4.5

Let \(a(x)=\sum \nolimits _{i=1}^ra_i(x),\,b(x)=\sum \nolimits _{i=1}^rb_i(x)\in \mathcal{A}[x]/\langle x^{p^k}-y\rangle ,\) with \(a_i(x),\,b_i(x)\in \mathcal{A}_i[x]/\langle x^{p^k}-y\rangle .\) Then \(a(x)\mu (b(x))=\sum \nolimits _{i=1}^ra_i(x)\mu (b_{\mu (i)}(x)).\)

Proof

By Lemma 4.2 we have \(\mu (b_{\mu (i)}(x))\in \mu (\mathcal{A}_{\mu (i)}[x]/\langle x^{p^k}-y\rangle )\) and \(\mu (\mathcal{A}_{\mu (i)}[x]/\langle x^{p^k}-y\rangle )=\mathcal{A}_i[x]/\langle x^{p^k}-y\rangle .\) Hence \(a_i(x)\mu (b_{\mu (i)}(x))\in \mathcal{A}_i[x]/\langle x^{p^k}-y\rangle \) for all i. If \(j\ne \mu (i),\) then \(i\ne \mu (j),\) which implies \(a_i(x)\mu (b_j(x))\in (\mathcal{A}_i[x]/\langle x^{p^k}-y\rangle )(\mathcal{A}_{\mu (j)}[x]/\langle x^{p^k}-y\rangle ) =\{0\}\) by Lemma 2.2(ii). Therefore, \(a(x)\mu (b(x))=\sum \nolimits _{i=1}^r\sum \nolimits _{j=1}^ra_i(x)\mu (b_{j}(x))=\sum \nolimits _{i=1}^ra_i(x)\mu (b_{\mu (i)}(x)).\) \(\square \)

Now, we can determine the dual code of each cyclic code over \(\mathbb {Z}_{p^2}.\)

Theorem 4.6

Let \(\mathcal{C}\) be a cyclic code over \(\mathbb {Z}_{p^2}\) of length N with concatenated structure \(\mathcal{C}=\oplus _{i=1}^r(\mathcal{A}_i\Box _{\varphi _i}C_i),\) where \(C_i\) is an ideal of the ring \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle \) for all \(i=1,\ldots ,r.\) Using the notations of Theorem 3.7 and Lemma 4.3 \((\mathrm{ii}),\) the dual code \(\mathcal{C}^{\bot }\) is given by

$$\begin{aligned} \mathcal{C}^{\bot }=\oplus _{i=1}^r\left( \mathcal{A}_{\mu (i)}\Box _{\varphi _{\mu (i)}}D_{\mu (i)}\right) , \end{aligned}$$

where \(D_{\mu (i)}\) is an ideal of the ring \(R_{\mu (i)}[x]/\langle x^{p^k}-\zeta _{\mu (i)}\rangle \) given by one of the following cases \((1\le i\le r){\text {:}}\)

Cases

\(C_i\)

\(D_{\mu (i)}\)

(1)

\(\langle 0\rangle \)

\(\langle 1\rangle \)

(2)

\(\langle 1\rangle \)

\(\langle 0\rangle \)

(3)

\(\langle p\rangle \)

\(\langle p\rangle \)

(4)

\(\langle p\pi _i^s\rangle \, (1\le s\le p^k-1)\)

\(\langle p,\, \pi _{\mu (i)}^{p^k-s}\rangle \)

(5)

\(\langle \pi _i^s\rangle \, (1\le s\le p^{k-1})\)

\(\langle \pi _{\mu (i)}^{p^k-s}+p\pi _{\mu (i)}^{p^{k-1}-s}(-\widehat{w}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega \rangle \)

  

   \(\omega =(-1)^{p^{k-1}-p^k}\zeta _{\mu (i)}^{e(p^k-p^{k-1})}x^{p^k-p^{k-1}}\)

(6)

\(\langle \pi _i^s\rangle \, (p^{k-1}+1\le s\le p^{k}-1)\)

\(\langle \pi _{\mu (i)}^{\alpha p^{k-1}}+p(-\widehat{w}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega ,\,p\pi _{\mu (i)}^{p^k-s}\rangle \)

  

   \(\omega =(-1)^{-\alpha p^{k-1}}\zeta _{\mu (i)}^{e\alpha p^{k-1}}x^{\alpha p^{k-1}}\)

(7)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex))\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \((\alpha p^{k-1}\le s\le p^{k}-1)\)

 

(8)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex))\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-s}+p\pi _{\mu (i)}^{p^{k-1}+\nu -s}(-\widehat{\widetilde{h}}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega \rangle \)

 

   \((\alpha p^{k-1}\le s\le p^{k-1}+\nu , \, \nu \ge 1)\)

   \(\omega =(-1)^{p^{k-1}+\nu -p^k}\zeta _{\mu (i)}^{e(p^k-p^{k-1}-\nu )}\)

  

   \(\cdot x^{p^k-p^{k-1}-\nu }\)

(9)

\(\langle \pi _i^s +p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex))\rangle \)

\(\langle \pi _{\mu (i)}^{\alpha p^{k-1}-\nu }+p(-\widehat{\widetilde{h}}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega , p\pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \((p^{k-1}+\nu \le s\le p^{k}-1,\)

 
 

   \(s>\alpha p^{k-1}, \, \nu \ge 1)\)

   \(\omega =(-1)^{\nu -\alpha p^{k-1}}\zeta _{\mu (i)}^{e(\alpha p^{k-1}-\nu )}x^{\alpha p^{k-1}-\nu }\)

(10)

\(\langle \pi _i^{\alpha p^{k-1}}+p(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex))\rangle \)

\(\langle \pi _{\mu (i)}^{\alpha p^{k-1}-\nu }+p(-\widehat{\widetilde{h}}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega \rangle \)

 

   \(p^{k-1}+\nu <\alpha p^{k-1}, \, \nu \ge 1)\)

   \(\omega =(-1)^{\nu -\alpha p^{k-1}}\zeta _{\mu (i)}^{e(\alpha p^{k-1}-\nu )}x^{\alpha p^{k-1}-\nu }\)

(11)

\(\langle \pi _i^{s}+p\pi _i^{s-\alpha p^{k-1}}h(\zeta _i^ex)\rangle \)

\(\langle \pi _{\mu (i)}^{\alpha p^{k-1}}+p(1-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega ,\,p\pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \( (\alpha p^{k-1}<s<p^k-1, \, h_0\ne 0,\,1)\)

   \(\omega =(-1)^{-\alpha p^{k-1}}\zeta _{\mu (i)}^{e\alpha p^{k-1}}x^{\alpha p^{k-1}}\)

(12)

\(\langle \pi _i^{\alpha p^{k-1}}+ph(\zeta _i^ex)\rangle \, (h_0\ne 0,\,1)\)

\(\langle \pi _{\mu (i)}^{\alpha p^{k-1}}+p(1-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega \rangle \)

  

   \(\omega =(-1)^{-\alpha p^{k-1}}\zeta _{\mu (i)}^{e\alpha p^{k-1}}x^{\alpha p^{k-1}}\)

(13)

\(\langle \pi _i^s+p\pi _i^{t}h(\zeta _i^ex)\rangle \)

\(\langle \pi _{\mu (i)}^{p^{k}-s}+p\pi _{\mu (i)}^{p^{k-1}-s}(-\widehat{w}(\zeta _{\mu (i)}^{-e}x^{-1})\)

 

   \((p^k+t-s\ne p^{k-1},\, s\le p^{k-1},\)

   \(+\,\pi _{\mu (i)}^{\alpha p^{k-1}+t-s}(-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega _1)\omega _2\rangle \)

 

   \(h(x)\ne 0)\)

   \(\omega _1=(-1)^{\alpha p^{k-1}+t-s}\zeta _{\mu (i)}^{e(s-\alpha p^{k-1}-t)}\)

  

   \(\cdot x^{s-\alpha p^{k-1}-t}\)

  

   \(\omega _2=(-1)^{p^{p-1}-p^k}\zeta _{\mu (i)}^{e(p^k-p^{k-1})}x^{p^k-p^{k-1}}\)

(14)

\(\langle \pi _i^s+p\pi _i^{t}h(\zeta _i^ex)\rangle \)

\(\langle \pi _{\mu (i)}^{\alpha p^{k-1}}+p(-\widehat{w}(\zeta _{\mu (i)}^{-e}x^{-1})\)

 

   \((p^k+t-s\ne p^{k-1}, \)

   \(+\,\pi _{\mu (i)}^{\alpha p^{k-1}+t-s}(-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega _1)\omega _2,\, p\pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \(p^{k-1}<s\le \alpha p^{k-1}+t,\)

   \(\omega _1=(-1)^{\alpha p^{k-1}+t-s}\zeta _{\mu (i)}^{e(s-\alpha p^{k-1}-t)}\)

 

   \(t>0,\,h(x)\ne 0)\)

   \(\cdot x^{s-\alpha p^{k-1}-t}\)

  

   \(\omega _2=(-1)^{-\alpha p^{k-1}}\zeta _{\mu (i)}^{e\alpha p^{k-1}}x^{\alpha p^{k-1}}\)

(15)

\(\langle \pi _i^s+ph(\zeta _i^ex)\rangle \)

\(\langle \pi _{\mu (i)}^{\alpha p^{k-1}}+p(-\widehat{w}(\zeta _{\mu (i)}^{-e}x^{-1})\)

 

   \((p^{k-1}<s<\alpha p^{k-1},\,h(x)\ne 0)\)

   \(+\,\pi _{\mu (i)}^{\alpha p^{k-1}-s}(-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega _1)\omega _2\rangle \)

  

   \(\omega _1=(-1)^{\alpha p^{k-1}-s}\zeta _{\mu (i)}^{e(s-\alpha p^{k-1})}x^{s-\alpha p^{k-1}}\)

  

   \(\omega _2=(-1)^{-\alpha p^{k-1}}\zeta _{\mu (i)}^{e\alpha p^{k-1}}x^{\alpha p^{k-1}}\)

(16)

\(\langle \pi _i^s+p\pi _i^th(\zeta _i^ex)\rangle \)

\(\langle p(-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1})+\pi _{\mu (i)}^{s-t-\alpha p^{k-1}}\omega _1)\omega _2\)

 

   \((p^k+t-s\ne p^{k-1}, \)

   \(+\,\pi _{\mu (i)}^{s-t},\, p\pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \(s>\alpha p^{k-1}+t,\)

\(\omega _1=(-1)^{s-t-\alpha p^{k-1}}\zeta _{\mu (i)}^{e(\alpha p^{k-1}+t-s)}\)

 

   \(h(x)\ne 0,\, t>0\))

   \(\cdot x^{\alpha p^{k-1}+t-s}\)

  

   \(\omega _2=(-1)^{t-s}\zeta _{\mu (i)}^{e(s-t)}x^{s-t}\)

(17)

\(\langle \pi _i^s+ph(\zeta _i^ex)\rangle \)

\(\langle p(-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1})+\pi _{\mu (i)}^{s-\alpha p^{k-1}}\omega _1)\omega _2\)

 

   \((s>\alpha p^{k-1},\,h(x)\ne 0)\)

   \(+\,\pi _{\mu (i)}^{s}\rangle \)

  

   \(\omega _1=(-1)^{s-\alpha p^{k-1}}\zeta _{\mu (i)}^{e(\alpha p^{k-1}-s)}x^{\alpha p^{k-1}-s}\)

  

   \(\omega _2=(-1)^{-s}\zeta _{\mu (i)}^{es}x^{s}\)

(18)

\(\langle \pi _i^s,\,p\pi _i^l\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-1}+p\pi _{\mu (i)}^{p^{k-1}-l}(-\widehat{w}(\zeta _{\mu (i)}^{-e}x^{-1})),\)

 

   \((1\le s\le p^k-1,\)

   \(p\pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \(0\le l\le \mathrm{min}\{s,\,p^{k-1}\})\)

   \(\omega =(-1)^{p^{p-1}-p^k-l+1}\zeta _{\mu (i)}^{e(p^k-p^{k-1}+l-1)}\)

  

   \(\cdot x^{p^k-p^{k-1}+l-1}\)

(19)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex)),\,p\pi _i^l\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-l},\,p\pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \((\alpha p^{k-1}\le s\le p^k-1,\)

 
 

   \(s-\alpha p^{k-1}<l<s)\)

 

(20)

\(\langle p\pi _i^{s-\alpha p^{k-1}}(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex))\)

\(\langle p\pi _{\mu (i)}^{p^{k-1}+\nu -l}(-\widehat{\widetilde{h}}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega \)

 

   \(+\pi _i^s,\,p\pi _i^l\rangle \)

   \(+\,\pi _{\mu (i)}^{p^k-l},\,p\pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \((\alpha p^{k-1}<s\le p^{k}-1,\,\nu \ge 1,\)

   \(\omega =(-1)^{p^{k-1}+\nu -p^k}\zeta _{\mu (i)}^{-e(p^k-p^{k-1}-\nu )}\)

 

   \(s-\alpha p^{k-1}<l<\mathrm{min}\{s,\,p^{k-1}+\mu \})\)

   \(\cdot x^{p^k-p^{k-1}-\nu }\)

(21)

\(\langle \pi _i^{\alpha p^{k-1}}+p(-w(\zeta _i^ex)+\pi _i^{\nu }\widetilde{h}(\zeta _i^ex)),\)

\(\langle \pi _{\mu (i)}^{p^k-l}+p\pi _{\mu (i)}^{p^{k-1}+\nu -l}(-\widehat{\widetilde{h}}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega \rangle \)

 

   \(p\pi _i^l\rangle \)

   \(\omega =(-1)^{p^{k-1}+\nu -p^k}\zeta _{\mu (i)}^{-e(p^k-p^{k-1}-\nu )}\)

 

   \((0<l<\mathrm{min}\{\alpha p^{k-1},\,p^{k-1}+\nu \}, \)

   \(\cdot x^{p^k-p^{k-1}-\nu }\)

 

   \(\nu \ge 1)\)

 

(22)

\(\langle \pi _i^s+p\pi _i^{s-\alpha p^{k-1}}h(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-l}+p\pi _{\mu (i)}^{p^{k-1}-l}(1-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega ,\)

 

   \((\alpha p^{k-1}<s\le p^k-1, \, h_0\ne 0,\,1,\)

   \(p\pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \(s-\alpha p^{k-1}<l<p^{k-1})\)

   \(\omega =(-1)^{p^{k-1}-p^k}\zeta _{\mu (i)}^{-e(p^k-p^{k-1})}x^{p^k-p^{k-1}}\)

(23)

\(\langle \pi _i^{\alpha p^{k-1}}+ph(x),\,p\pi _i^l\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-l}+p\pi _{\mu (i)}^{p^{k-1}-l}(1-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega \rangle \)

 

   \(( h_0\ne 0,\,1, \, 0<l<p^{k-1})\)

   \(\omega =(-1)^{p^{k-1}-p^k}\zeta _{\mu (i)}^{-e(p^k-p^{k-1})}x^{p^k-p^{k-1}}\)

(24)

\(\langle \pi _i^s+p\pi _i^th(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-l}+p\pi _{\mu (i)}^{p^{k-1}-l}(-\widehat{w}(\zeta _{\mu (i)}^{-e}x^{-1})\)

 

   \((p^k+t-s\ne p^{k-1},\, 1\le s\le \alpha p^{k-1}+t,\)

   \(+\,\pi _{\mu (i)}^{\alpha p^{k-1}+t-s}(-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega _1)\omega _2, \)

 

   \(h(x)\ne 0,\, 0<t<l<\mathrm{min}\{s,\,p^{k-1}\})\)

   \(p\pi _{\mu (i)}^{p^k-s}\rangle \)

  

   \(\omega _1=(-1)^{\alpha p^{k-1}+t-s}\zeta _{\mu (i)}^{-e(\alpha p^{k-1}+t-s)}\)

  

   \(\cdot x^{s-t-\alpha p^{k-1}}\)

  

   \(\omega _2(-1)^{p^{k-1}-p^k}\zeta _{\mu (i)}^{-e(p^k-p^{k-1})}x^{p^k-p^{k-1}}\)

(25)

\(\langle \pi _i^s+ph(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-l}+p\pi _{\mu (i)}^{p^{k-1}-l}(-\widehat{w}(\zeta _{\mu (i)}^{-e}x^{-1})\)

 

   \((1\le s<\alpha p^{k-1},\, h(x)\ne 0,\)

   \(+\,\pi _{\mu (i)}^{\alpha p^{k-1}+t-s}(-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1}))\omega _1)\omega _2\rangle \)

 

   \( 0<l<\mathrm{min}\{s,\,p^{k-1}\})\)

   \(\omega _1=(-1)^{\alpha p^{k-1}+t-s}\zeta _{\mu (i)}^{-e(\alpha p^{k-1}+t-s)}\)

  

   \(\cdot x^{s-t-\alpha p^{k-1}}\)

  

   \(\omega _2(-1)^{p^{k-1}-p^k}\zeta _{\mu (i)}^{-e(p^k-p^{k-1})}x^{p^k-p^{k-1}}\)

(26)

\(\langle \pi _i^s+p\pi _i^th(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-l}+p\pi _{\mu (i)}^{p^{k}+t-s-l}(-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1})\)

 

   \((p^k+t-s\ne p^{k-1},\,h(x)\ne 0,\,t>0\)

   \(+\,\pi _{\mu (i)}^{s-t-\alpha p^{k-1}}\omega _1)\omega _2,\,p\pi _{\mu (i)}^{p^k-s}\rangle \)

 

   \(s>\alpha p^{k-1},\,0<t<l<p^k+t-s)\)

   \(\omega _1=(-1)^{s-t-\alpha p^{k-1}}\zeta _{\mu (i)}^{-e(s-t-\alpha p^{k-1})}\)

  

   \(\cdot x^{\alpha p^{k-1}+t-s}\)

  

   \(\omega _2=(-1)^{t-s}\zeta _{\mu (i)}^{e(s-t)}x^{s-t}\)

(27)

\(\langle \pi _i^s+ph(\zeta _i^ex),\,p\pi _i^l\rangle \)

\(\langle \pi _{\mu (i)}^{p^k-l}+p\pi _{\mu (i)}^{p^k+t-s-l}(-\widehat{h}(\zeta _{\mu (i)}^{-e}x^{-1})\)

 

   \((s>\alpha p^{k-1},\, h(x)\ne 0,\, 0<l<p^k-s)\)

   \(+\,\pi _{\mu (i)}^{s-\alpha p^{k-1}}\omega _1)\omega _2 \rangle \)

  

   \(\omega _1=(-1)^{s-\alpha p^{k-1}}\zeta _{\mu (i)}^{e(\alpha p^{k-1}-s)}x^{\alpha p^{k-1}-s}\)

  

   \(\omega _2=(-1)^{t-s}\zeta _{\mu (i)}^{e(s-t)}x^{s-t}\)

Proof

For any integer \(i,\,1\le i\le r,\) let \(D_{\mu (i)}=\mu (\mathrm{Ann}(C_i)).\) Then \(D_{\mu (i)}\) is an ideal of the ring \(R_{\mu (i)}[x]/\langle x^{p^k}-\zeta _{\mu (i)}\rangle .\) Set \(\mathcal{D}=\oplus _{i=1}^r(\mathcal{A}_{\mu (i)}\Box _{\varphi _{\mu (i)}}D_{\mu (i)}).\) Then \(\mathcal{D}\) is an ideal of \(\mathcal{A}[x]/\langle x^{p^k}-y\rangle \) and satisfies

$$\begin{aligned} \mathcal{C}\cdot \mu (\mathcal{D})= & {} \sum \limits _{i=1}^r\left( \mathcal{A}_i\Box _{\varphi _i}C_i\right) \cdot \mu \left( \mathcal{A}_{\mu (i)}\Box _{\varphi _{\mu (i)}}D_{\mu (i)}\right) \\= & {} \sum \limits _{i=1}^r\left( \mathcal{A}_i\Box _{\varphi _i}C_i\right) \cdot \left( \mathcal{A}_i\Box _{\varphi _{i}}\mathrm{Ann}\left( C_i\right) \right) \\= & {} \sum \limits _{i=1}^r\varepsilon _i(y)\left( C_i\cdot \mathrm{Ann}\left( C_i\right) \right) \\= & {} \{0\}, \end{aligned}$$

by Lemma 4.5. From this and by Lemma 4.1 we deduce \(\mathcal{D}\subseteq \mathcal{C}^{\bot }.\)

On the other hand, by [5, Theorem 3.5] and Lemma 3.2 we see that \(|C_i||D_{\mu (i)}|=|C_i||\mathrm{Ann}(C_i)|=p^{2p^km_i}\) for all \(i=1,\ldots ,r,\) which then implies

$$\begin{aligned} |\mathcal{C}||\mathcal{D}|= & {} \prod \limits _{i=1}^r\left| \mathcal{A}_i\Box _{\varphi _i}C_i\right| \left| \mathcal{A}_{\mu (i)}\Box _{\varphi _{\mu (i)}}D_{\mu (i)}\right| =\prod \limits _{i=1}^r\left| C_i\right| \left| D_{\mu (i)}\right| \\= & {} p^{2p^k\sum \nolimits _{i=1}^rm_i}=p^{2p^kn} =\left| \mathbb {Z}_{p^2}[x]/\left\langle x^{p^kn}-1\right\rangle \right| . \end{aligned}$$

As stated above, we conclude that \(\mathcal{C}^{\bot }=\mathcal{D}\) since \(\mathbb {Z}_{p^2}\) is a finite chain ring. Finally, the conclusions follow from Theorem 3.7 and Corollary 4.4 immediately. \(\square \)

Finally, by Theorem 4.6 and [7, Lemma 4.5] we deduce the following corollary for cyclic self-dual codes over \(\mathbb {Z}_{p^2}.\)

Corollary 4.7

Using the notations in Theorem 4.6 and Lemma 4.2 \((\mathrm{ii}),\) let \(\mathcal{C}\) be a cyclic code over \(\mathbb {Z}_{p^2}\) of length N with \(\mathcal{C}=\oplus _{i=1}^r(\mathcal{A}_i\Box _{\varphi _i}C_i),\) where \(C_i\) is an ideal of \(R_i[x]/\langle x^{p^k}-\zeta _i\rangle .\) Then \(\mathcal{C}\) is self-dual if and only if for each integer \(i,\,1\le i\le r,\,C_i\) satisfies one of the following conditions:

(i) If \(1\le i\le \lambda ,\,C_i\) is given by one of the following six cases:

(i-1) \(C_i=\langle p\rangle .\)

(i-2) \(C_i=\langle \pi _i^{\alpha p^{k-1}}+ph(\zeta _i^ex)\rangle ,\) where h(z) satisfies \(h_0\ne 0,\,1\) and \(h(\zeta _i^ex)-(1-\widehat{h}(\zeta _i^{-e}x^{-1}))(-1)^{-\alpha p^{k-1}}\zeta _i^{e\alpha p^{k-1}}x^{\alpha p^{k-1}}=0.\)

(i-3) \(C_i=\langle \pi _i^{s}+ph(\zeta _i^ex)\rangle ,\) where \(s>\alpha p^{k-1},\,h(z)\ne 0\) and \(h(\zeta _i^ex)-(\pi _{i}^{s-\alpha p^{k-1}}\omega _1-\widehat{h}(\zeta _{i}^{-e}x^{-1}))\omega _2=0\) with \(\omega _1=(-1)^{s-\alpha p^{k-1}}\zeta _{i}^{e(\alpha p^{k-1}-s)}x^{\alpha p^{k-1}-s}\) and \(\omega _2=(-1)^{-s}\zeta _{i}^{es}x^{s}.\)

(i-4) \(C_i=\langle \pi _i^{s}+p\pi _i^{p^k-s}\rangle ,\) where \(2s\ge \alpha p^{k-1}+p^k.\)

(i-5) \(C_i=\langle \pi _i^{s}+p\pi _i^{s-\alpha p^{k-1}}h(\zeta _i^ex),\,p\pi _i^{p^k-s}\rangle ,\) where \(s\ge \alpha p^{k-1}+p^k,\,h_0\ne 0,\,1\) and \(h(\zeta _i^ex)-(1-\widehat{h}(\zeta _{i}^{-e}x^{-1}))\omega =0\) with \(\omega =(-1)^{p^{k-1}-p^k}\zeta _{i}^{-e(p^k-p^{k-1})}x^{p^k-p^{k-1}}.\)

(i-6) \(C_i=\langle \pi _i^{s}+p\pi _i^{t}h(\zeta _i^ex),\, p\pi _i^{p^k-s}\rangle ,\) where \(0<t<p^k-s,\,s>\alpha p^{k-1}+t,\, h(\zeta _i^ex)-(\pi _{i}^{s-t-\alpha p^{k-1}}\omega _1-\widehat{h}(\zeta _{i}^{-e}x^{-1}))(-1)^{t-s}\zeta _{i}^{e(s-t)}x^{s-t}=0\) with \(\omega _1=(-1)^{s-t-\alpha p^{k-1}}\zeta _{i}^{-e(s-t-\alpha p^{k-1})}x^{\alpha p^{k-1}+t-s}.\)

(ii) If \(i=\lambda +j\) where \(1\le j\le \rho ,\) then \(\mu (i)=i+\rho ,\,C_{\mu (i)}=D_{\mu (i)}\) and \((C_i,\,D_{\mu (i)})\) is given by Theorem 4.6.

5 Cyclic self-dual codes over \(\mathbb {Z}_{9}\) of length 33

In this section, we consider to present all cyclic self-dual codes over \(\mathbb {Z}_{9}\) of length 33. In this case, we have \(N=33=3^kn\) where \(k=1\) and \(n=11.\)

It is known that \(y^{11}-1=f_1(y)f_2(y)f_3(y),\) where \(f_1(y)=y-1,\,f_2(y)= y^5 + 3y^4 + 8y^3 + y^2 + 2y + 8\) and \(f_3(y)=y^5 + 7y^4 + 8y^3 + y^2 + 6y + 8\) are pairwise coprime monic basic irreducible polynomials in \(\mathbb {Z}_{9}[y].\) Obviously, \(\widetilde{f}_1(y)=\delta _1f_1(y)\) and \(\widetilde{f}_2(y)=\delta _2f_3(y)\) where \(\delta _1=\delta _2=-1,\) which implies that \(\mu (1)=1\) and \(\mu (2)=3.\) Hence \(m_1=1,\, m_2=m_3=5,\,r=3\) and \(\lambda =\rho =1.\)

Using the notations in Sect. 2, for each integer \(i,\,1\le i\le 3,\) we denote \(F_i(y)=\frac{y^{11}-1}{f_i(y)},\) and find polynomials \(a_i(y),\,b_i(y)\in \mathbb {Z}_{9}[y]\) satisfying \(a_i(y)F_i(y)+b_i(y)f_i(y)=1.\) Then set \(\varepsilon _i(y)\equiv a_i(y)F_i(y)\) (mod \(y^{11}-1\)). Precisely, we have

$$\begin{aligned} \varepsilon _1(y)= & {} 5y^{10}+5y^9+5y^8+5y^7+5y^6+5y^5+5y^4+5y^3+5y^2+5y+5;\\ \varepsilon _2(y)= & {} 3y^{10}+y^9+3y^8+3y^7+3y^6+y^5+y^4+y^3+3y^2+y+7;\\ \varepsilon _3(y)= & {} y^{10}+3y^9+y^8+y^7+y^6+3y^5+3y^4+3y^3+y^2+3y+7. \end{aligned}$$

Let \(\mathcal{A}=\mathbb {Z}_9[y]/\langle y^{11}-1\rangle \) and \(\mathcal{A}_i=\mathcal{A}\varepsilon _i(y).\) Then \(\mathcal{A}_i\) is a cyclic code over \(\mathbb {Z}_9\) of length 11 with parity check polynomial \(f_i(y)\) for \(i=1,\,2,\,3.\) Therefore,

\(\diamond \) \(\mathcal{A}_1\) is a free \(\mathbb {Z}_9\)-submodule of \(\mathbb {Z}_9^{11}\) with \(\mathrm{rank}_{\mathbb {Z}_9}(\mathcal{A}_1)=1.\)

\(\diamond \) \(\mathcal{A}_i\) is a free \(\mathbb {Z}_9\)-submodule of \(\mathbb {Z}_9^{11}\) with \(\mathrm{rank}_{\mathbb {Z}_9}(\mathcal{A}_i)=5\) for \(i=2,\,3.\)

Precisely, a generator matrix \(G_{\mathcal{A}_i}\) of the cyclic code \(\mathcal{A}_i\) over \(\mathbb {Z}_9\) is given by: \(G_{\mathcal{A}_1}=(5,\,5,\,5,\,5,\,5,\,5,\,5,\,5,\,5,\,5,\,5),\)

$$\begin{aligned} G_{\mathcal{A}_2}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 7 &{} 1 &{} 3 &{} 1 &{}1 &{} 1 &{}3 &{} 3 &{} 3 &{} 1 &{}3\\ 3 &{} 7 &{} 1 &{} 3 &{} 1 &{}1 &{} 1 &{}3 &{} 3 &{} 3 &{} 1\\ 1 &{} 3 &{} 7 &{} 1 &{} 3 &{} 1 &{}1 &{} 1 &{}3 &{} 3 &{} 3\\ 3 &{} 1 &{} 3 &{} 7 &{} 1 &{} 3 &{} 1 &{}1 &{} 1 &{}3 &{} 3\\ 3 &{} 3 &{} 1 &{} 3 &{} 7 &{} 1 &{} 3 &{} 1 &{}1 &{} 1 &{}3\end{array}\right) \quad \mathrm{and} \quad \nonumber \\ G_{\mathcal{A}_3}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 7 &{} 3 &{} 1 &{} 3 &{}3 &{} 3 &{} 1 &{}1 &{}1 &{} 3 &{} 1 \\ 1 &{} 7 &{} 3 &{} 1 &{} 3 &{}3 &{} 3 &{} 1 &{}1 &{}1 &{} 3\\ 3 &{} 1 &{} 7 &{} 3 &{} 1 &{} 3 &{}3 &{} 3 &{} 1 &{}1 &{}1 \\ 1 &{} 3 &{} 1 &{} 7 &{} 3 &{} 1 &{} 3 &{}3 &{} 3 &{} 1 &{}1 \\ 1 &{} 1 &{} 3 &{} 1 &{} 7 &{} 3 &{} 1 &{} 3 &{}3 &{} 3 &{} 1\end{array}\right) , \end{aligned}$$

respectively. Hence \(\mathcal{A}_1=\{(a,\,a,\,a,\,a,\,a,\,a,\,a,\,a,\,a,\,a,\,a)\mid a\in \mathbb {Z}_9\}\) with \(d_{\mathrm{min}}(\mathcal{A}_1)=11,\) and \(\mathcal{A}_i=\{wG_{\mathcal{A}_i}\mid w\in \mathbb {Z}_9^5\}\) with \(d_{\mathrm{min}}(\mathcal{A}_i)=6\) for \(i=2,\,3.\)

Denote \(\zeta _i=y+\langle f_i(y)\rangle \in R_i\) where \(R_i=\mathbb {Z}_9[y]/\langle f_i(y)\rangle \) for \(i=1,\,2,\,3.\) Obviously, \(3^k\cdot 7\equiv -1\) (mod 11), which implies \((\zeta _i^7)^3=\zeta _i^{-1}\) by \(\zeta _i^{11}=1,\) for all \(i=1,\,2,\,3.\) Using the notations in Sect. 3, we have \(e=7.\) Therefore,

\(\diamondsuit \) \(\pi _1=\zeta _1^7x-1=x-1\in R_1[x]/\langle x^3-1\rangle \) where \(R_1=\mathbb {Z}_9[y]/\langle f_1(y)\rangle =\mathbb {Z}_9.\)

\(\diamondsuit \) \(\pi _2=\zeta _2^7x-1=(2y^4+2y^3+6y^2+4y+1)x-1\in R_2[x]/\langle x^3-y\rangle \) where \(R_2=\mathbb {Z}_9[y]/\langle f_2(y)\rangle ,\) since \(y^7\equiv 2y^4+2y^3+6y^2+4y+1\) (mod \(f_2(y)\)).

\(\diamondsuit \) \(\pi _3=\zeta _3^7x-1=(2y^4+6y^3+2y^2+8y+5)x-1\in R_3[x]/\langle x^3-y\rangle \) where \(R_3=\mathbb {Z}_9[y]/\langle f_3(y)\rangle ,\) since \(y^7\equiv 2y^4+6y^3+2y^2+8y+5\) (mod \(f_3(y)\)).

Moreover, by \(\zeta _3^{11}=1,\,x^{33}=1\) and \(x^3=\zeta _3=y\) in \(R_3[x]/\langle x^3-\zeta _3\rangle \) we have \(\zeta _3^{-7}x^{-1}=\zeta _3^4x^{32}=y^4y^{10}x^2=y^3x^2\) and \(\zeta _3^{14}x^{2}=y^3x^2.\)

Now, by Corollary 4.7 we conclude that all distinct cyclic self-dual codes over \(\mathbb {Z}_{9}\) of length 33 are given by

$$\begin{aligned} \mathcal{C}=\left( \mathcal{A}_1\Box _{\varphi _1}C_1\right) \oplus \left( \mathcal{A}_2\Box _{\varphi _2}C_2\right) \oplus \left( \mathcal{A}_3\Box _{\varphi _3}C_3\right) , \end{aligned}$$

where \(\varphi _i{\text {:}}\,R_i\rightarrow \mathcal{A}_i\) is given by the following

\(\diamond \) \(\varphi _1(a)=a\varepsilon _1(y)\) for all \(a\in R_1;\)

\(\diamond \) \(\varphi _i(a(y))=a(y)\varepsilon _i(y)\) for all \(a(y)\in R_i,\,i=2,\,3,\)

and \(C_i\) is a \(\zeta _i\)-constacyclic code over \(R_i\) of length 3, i.e., an ideal of the ring \(R_i[x]/\langle x^3-y\rangle ,\) satisfying the following conditions:

\(\bullet \) \(C_1\) is an ideal of \(\mathbb {Z}_9/\langle x^3-1\rangle \) given by one of the following two cases:

$$\begin{aligned} \langle 3\rangle ; \, \left\langle (x-1)^2+6,\,3(x-1)\right\rangle . \end{aligned}$$

\(\bullet \) \((C_2,\,C_3)\) is given by one of the following 736 cases:

Cases

\(C_2\)

\(C_3\)

(1)

\(\langle 0\rangle \)

\(\langle 1\rangle \)

(2)

\(\langle 1\rangle \)

\(\langle 0\rangle \)

(3)

\(\langle 3\rangle \)

\(\langle 3\rangle \)

(4)

\(\langle 3\pi _2\rangle \)

\(\langle \pi _3^2,\,3\rangle \)

(5)

\(\langle 3\pi _2^2\rangle \)

\(\langle \pi _3,3\rangle \)

(6)

\(\langle \pi _2+3h\rangle \) (\(h\in \mathcal{T}_2\))

\(\langle \pi _3^2+3(1+\pi _3(\widehat{h}-1)y^3x^2)y^3x^2\rangle \)

(7)

\(\langle \pi _2^2+3(1+\pi _2h)\rangle \) (\(h\in \mathcal{T}_2\))

\(\langle \pi _3+3(\widehat{h}-1)y^3x^2\rangle \)

(8)

\(\langle \pi _2,\,3\rangle \)

\(\langle 3\pi _3^2\rangle \)

(9)

\(\langle \pi _2^2,\,3\rangle \)

\(\langle 3\pi _3\rangle \)

(10)

\(\langle \pi _2^2+3h,\,3\pi _2\rangle \) (\(h\in \mathcal{T}_2\))

\(\langle \pi _3^2+3(1-\widehat{h})y^3x^2,\,3\pi _3\rangle \)

in which \(\mathcal{T}_2=\{\sum \nolimits _{j=0}^4t_jy^j\mid t_j\in \{0,\,1,\,2\}, \, 0\le j\le 4\}\) and \(\hat{h}=t_0+t_1y^{10}+t_2y^9+t_3y^8+t_4y^7\) (mod \(f_3(y)\)) for any \(h=\sum \nolimits _{j=0}^{4}t_jy^{j}\in \mathcal{T}_2.\) Hence the number of cyclic self-dual codes over \(\mathbb {Z}_{9}\) of length 33 is equal to \(2\times 736=1472.\)

Finally, we consider how to give an encode for each self-dual code listed above. For \(i=2,\,3,\) we have \(R_i[x]/\langle x^3-y\rangle =\{b_0(y)+b_1(y)x+b_2(y)x^2\mid b_0(y),\,b_1(y),\,b_2(y)\in R_i\}.\) If \(\beta (x)=b_0(y)+b_1(y)x+b_2(y)x^2\in R_i[x]/\langle x^3-y\rangle ,\) the ideal \(\langle \beta (x)\rangle \) of \(R_i[x]/\langle x^3-y\rangle \) is a y-constacyclic code over \(R_i\) of length 3 having an \(R_i\)-generator matrix given by \(\left( \begin{array}{c@{\quad }c@{\quad }c}b_0(y) &{} b_1(y)&{} b_2(y) \\ yb_2(y) &{} b_0(y) &{} b_1(y)\\ yb_1(y) &{}yb_2(y) &{} b_0(y) \end{array}\right) .\)

For example, we choose \(\mathcal{C}=(\mathcal{A}_1\Box _{\varphi _1}C_1)\oplus (\mathcal{A}_2\Box _{\varphi _2}C_2)\oplus (\mathcal{A}_3\Box _{\varphi _3}C_3),\) where \(C_1=\langle (x-1)^2+6,\,3(x-1)\rangle ,\,C_2=\langle \pi _2+3h\rangle \) and \(C_3=\langle \pi _3^2+3(1+\pi _3(\widehat{h}-1)y^3x^2)y^3x^2\rangle \) with \(h=1+2y^2.\)

\(\diamond \) Since the companion matrix of \(f_1(y)=y-1\) is \(M_{f_1}=(1)\) and \(C_1=\langle 7+7x+x^2\rangle \oplus \langle 6+3x\rangle ,\) a generator matrix of the cyclic code \(C_1\) over \(R_1\) is \(G_{C_1}=\left( \begin{array}{c}P\\ Q\end{array}\right) \) where \(P=\left( \begin{array}{c@{\quad }c@{\quad }c} 7 &{} 7 &{} 1\\ 1 &{} 7 &{} 7\\ 7 &{} 1 &{} 7\end{array}\right) \) and \(Q=\left( \begin{array}{c@{\quad }c@{\quad }c} 6 &{} 3 &{} 0\\ 0 &{} 6 &{} 3\\ 3 &{} 0 &{}6\end{array}\right) .\) Then by Theorem 2.5, a generator matrix of \(\mathcal{A}_1\Box _{\varphi _1}C_1\) is given by

$$\begin{aligned} G_{\mathcal{A}_1\Box _{\varphi _1}C_1}=\left( \begin{array}{c@{\quad }c@{\quad }c} 7G_{\mathcal{A}_1} &{} 7G_{\mathcal{A}_1} &{} G_{\mathcal{A}_1}\\ G_{\mathcal{A}_1} &{} 7G_{\mathcal{A}_1} &{} 7G_{\mathcal{A}_1}\\ 7G_{\mathcal{A}_1} &{} G_{\mathcal{A}_1} &{} 7G_{\mathcal{A}_1}\\ 6G_{\mathcal{A}_1} &{} 3G_{\mathcal{A}_1} &{} 0\\ 0 &{} 6G_{\mathcal{A}_1} &{} 3G_{\mathcal{A}_1}\\ 3G_{\mathcal{A}_1} &{} 0 &{}6G_{\mathcal{A}_1}\end{array}\right) . \end{aligned}$$

\(\diamond \) Since the companion matrix of \(f_2(y)\) is \(M_{f_2}=\left( \begin{array}{cc} 0 &{} I_4 \\ 1 &{} V_2\end{array}\right) ,\) where \(V_2=(7,\,8,\,1,\,6),\) and \(C_2=\langle (2+6y^2)+(1+4y+6y^2+2y^3+2y^4)x\rangle ,\) a generator matrix of the y-constacyclic code \(C_2\) over \(R_2\) is \(G_{C_2}=\left( \begin{array}{c@{\quad }c@{\quad }c}\alpha _2 &{} \beta _2 &{} 0\\ 0 &{} \alpha _2 &{} \beta _2\\ y\beta _2 &{}0 &{} \alpha _2\end{array}\right) ,\) where \(\alpha _2=2+6y^2,\,\beta _2=1+4y+6y^2+2y^3+2y^4\) and \(y\beta _2=2+6y+2y^2+8y^3+5y^4.\) Using the notations of Theorem 2.5, we have \(A_{\alpha _2}=2I_5+6M_{f_2}^2,\, A_{\beta _2}=I_5+4M_{f_2}+6M_{f_2}^2+2M_{f_2}^3+2M_{f_2}^4\) and \(A_{y\beta _2}=2I_5+6M_{f_2}+2M_{f_2}^2+8M_{f_2}^3+5M_{f_2}^4.\) Specifically, we obtain

$$\begin{aligned} A_{\alpha _2}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c}2 &{} 0&{} 6 &{} 0 &{} 0 \\ 0 &{} 2 &{} 0&{} 6 &{} 0 \\ 0 &{} 0 &{} 2 &{} 0&{} 6 \\ 6 &{} 6 &{} 3 &{} 8 &{} 0\\ 0 &{} 6 &{} 6 &{} 3&{} 8 \end{array}\right) ,\quad \!\! A_{\beta _2}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c}1 &{} 4&{} 6 &{} 2 &{} 2 \\ 2 &{} 6 &{} 2&{} 8 &{} 5 \\ 5 &{} 1 &{} 1 &{} 7&{} 2 \\ 2 &{} 1 &{} 8 &{} 3 &{} 1\\ 1 &{} 0 &{} 0 &{} 0&{} 0 \end{array}\right) ,\quad \!\! A_{y\beta _2}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c}2 &{} 6&{} 2 &{} 8 &{} 5 \\ 5 &{} 1 &{} 1&{} 7 &{} 2 \\ 2 &{} 1 &{} 8 &{} 3&{} 1 \\ 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 1 &{} 0 &{} 0&{} 0 \end{array}\right) . \end{aligned}$$

Then by Theorem 2.5, a generator matrix of \(\mathcal{A}_2\Box _{\varphi _2}C_2\) is given by

$$\begin{aligned} G_{\mathcal{A}_2\Box _{\varphi _2}C_2}=\left( \begin{array}{c@{\quad }c@{\quad }c}A_{\alpha _2}G_{\mathcal{A}_2} &{} \quad A_{\beta _2}G_{\mathcal{A}_2} &{} \quad 0\\ 0 &{} \quad A_{\alpha _2}G_{\mathcal{A}_2} &{} \quad A_{\beta _2}G_{\mathcal{A}_2} \\ A_{y\beta _2}G_{\mathcal{A}_2} &{}\quad 0 &{} \quad A_{\alpha _2}G_{\mathcal{A}_2}\end{array}\right) . \end{aligned}$$

\(\diamond \) Since the companion matrix of \(f_3(y)\) is \(M_{f_3}=\left( \begin{array}{cc} 0 &{} I_4 \\ 1 &{} V_3\end{array}\right) ,\) where \(V_3=(3,\,8,\,1,\,2),\) and \(C_3=\langle 1+(2+2y+2y^2+2y^4)x+(6y+4y^3)x^2\rangle ,\) a generator matrix of the y-constacyclic code \(C_3\) over \(R_3\) is \(G_{C_3}=\left( \begin{array}{c@{\quad }c@{\quad }c}\alpha _3 &{} \beta _3 &{} \gamma _3\\ y\gamma _3 &{} \alpha _3 &{} \beta _3\\ y\beta _3 &{}y\gamma _3 &{} \alpha _3\end{array}\right) ,\) where \(\alpha _3=1,\, \beta _3=2+2y+2y^2+2y^4,\,\gamma _3=6y+4y^3,\, y\beta _3=2+8y+4y^3+4y^4\) and \(y\gamma _3=6y^2+4y^4.\) Using the notations of Theorem 2.5, we have \(A_{\alpha _3}=I_5,\, A_{\beta _3}=2I_5+2M_{f_3}+2M_{f_3}^2+2M_{f_3}^4,\, A_{\gamma _3}=6M_{f_3}+4M_{f_3}^3,\, A_{y\beta _3}=2I_5+8M_{f_3}+4M_{f_3}^3+4M_{f_3}^4\) and \(A_{y\gamma _3}=6M_{f_3}^2+4M_{f_3}^4.\) Specifically, we obtain

$$\begin{aligned}&A_{\beta _3}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c}2 &{} 2&{} 2 &{} 0 &{} 2 \\ 2 &{} 8 &{} 0&{} 4 &{} 4 \\ 4 &{} 5 &{} 4 &{} 4&{} 3 \\ 3 &{} 4 &{} 2 &{} 7 &{} 1\\ 1 &{} 6 &{} 3 &{} 3&{} 0 \end{array}\right) , \quad \!\! A_{\gamma _3}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c}0 &{} 6&{} 0 &{} 4 &{} 0 \\ 0 &{} 0 &{} 6&{} 0 &{} 4 \\ 4 &{} 3 &{}5 &{} 1&{} 8 \\ 8 &{} 1 &{} 4 &{} 4 &{} 8\\ 8 &{} 5 &{} 2 &{} 3&{} 2 \end{array}\right) , \quad \!\! A_{y\beta _3}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c}2 &{} 8&{} 0 &{} 4 &{} 4 \\ 4 &{} 5 &{} 5&{} 4 &{} 3 \\ 3 &{} 4 &{} 2 &{} 7&{} 1 \\ 1 &{} 6 &{} 3 &{} 3 &{} 0\\ 0 &{} 1 &{} 6 &{} 3&{} 3 \end{array}\right) , \\&\quad A_{y\gamma _3}=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c}0 &{} 0&{} 6 &{} 0 &{} 4 \\ 4 &{} 3 &{} 5&{} 1 &{} 8 \\ 8 &{} 1 &{} 4 &{} 4&{} 8 \\ 8 &{} 5 &{} 2 &{} 3 &{} 2\\ 2 &{} 5 &{} 3 &{} 4&{} 7 \end{array}\right) . \end{aligned}$$

Then by Theorem 2.5 a generator matrix of \(\mathcal{A}_3\Box _{\varphi _3}C_3\) is given by

$$\begin{aligned} G_{\mathcal{A}_3\Box _{\varphi _3}C_3}=\left( \begin{array}{c@{\quad }c@{\quad }c}G_{\mathcal{A}_3} &{} A_{\beta _3}G_{\mathcal{A}_3} &{} A_{\gamma _3}G_{\mathcal{A}_3}\\ A_{y\gamma _3}G_{\mathcal{A}_3} &{} G_{\mathcal{A}_3} &{} A_{\beta _3}G_{\mathcal{A}_3} \\ A_{y\beta _3}G_{\mathcal{A}_3} &{}A_{y\gamma _3}G_{\mathcal{A}_3} &{} G_{\mathcal{A}_3}\end{array}\right) . \end{aligned}$$

Now, by Corollary 3.8 a generator matrix of the self-dual cyclic code \(\mathcal{C}\) over \(\mathbb {Z}_9\) of length 33 is given by \(G_{\mathcal{C}}=\left( \begin{array}{c}G_{\mathcal{A}_1\Box _{\varphi _1}C_1}\\ G_{\mathcal{A}_2\Box _{\varphi _2}C_2} \\ G_{\mathcal{A}_3\Box _{\varphi _3}C_3}\end{array}\right) .\) Hence \(\mathcal{C}=\{uG_{\mathcal{C}}\mid u\in \mathbb {Z}_9^{36}\}.\)

6 Conclusions

We present a canonical form decomposition for every cyclic code over \(\mathbb {Z}_{p^2}\) of length \(p^kn\,(k\ge 1\) and \(\mathrm{gcd}(p,\,n)=1\)), where each subcode is concatenated by a basic irreducible cyclic code over \(\mathbb {Z}_{p^2}\) of length n as the inner code and a constacyclic code over a Galois extension ring of \(\mathbb {Z}_{p^2}\) of length \(p^k\) as the outer code. By determining their outer codes, we present a precise description for cyclic codes over \(\mathbb {Z}_{p^2}\) when \(p\ne 2,\) give precisely dual codes and investigate self-duality for cyclic codes over \(\mathbb {Z}_{p^2}.\) These codes enjoy a rich algebraic structure compared to arbitrary linear codes (which makes the search process much simpler). Obtaining some bounds for minimal distance such as BCH-like of a cyclic code over the ring \(\mathbb {Z}_{p^2}\) by just looking at the concatenated structure would be rather interesting.