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Abstract Let N = p*n where p is a prime, and k, n are positive integers satisfying
gcd(p, n) = 1. We present a canonical form decomposition for every cyclic code over
Zy» of length N, where each subcode is concatenated by a basic irreducible cyclic
code over Z > of length n as the inner code and a constacyclic code over a Galois
extension ring of Z > of length p* as the outer code. By determining their outer codes,
we present a precise description for cyclic codes over Z > when p # 2, give precisely
dual codes and investigate self-duality for cyclic codes over Z ,>. We end by listing
cyclic self-dual codes over Zg of length 33.

Keywords Cyclic code - Concatenated structure - Constacyclic code - Dual code -
Self-dual code
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1 Introduction

Abualrub and Oehmke determined the generators for cyclic codes over Z4 for lengths
of the form 2¥ in [1], and Blackford presented the generators for cyclic codes over
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Zy4 of lengths of the form 2n where n is odd in [2]. The case for odd n follows from
results in [3] and also appears in more detail in [6]. Dougherty and Ling [4] determined
the structure of cyclic codes over Z4 of arbitrary even length by giving the generator
polynomials for these codes, described the number and dual codes of cyclic codes for
a given length and presented the form of cyclic codes that are self-dual. Moreover,
[4] proposed an open problem: study the structure of cyclic codes of arbitrary
lengths over Z e, where p is a prime and e > 2 is a positive integer.

Kiah et al. [5] derived a method of representing cyclic codes of length p* over
GR(p?, m), classified all cyclic codes and analysed the dual codes and self-duality.
Then Sobhani and Esmaeili investigated cyclic and negacyclic codes over the Galois
ring GR(p?, m) in [7], and their main contribution is an expression for each cyclic
code of length p* over GR(p?, m) and an algorithm to find a unique set of gen-
erators for cyclic and negacyclic codes over the Galois ring GR(p?, m). To the
best of our knowledge, the problem of determining precise expressions for cyclic
codes and their dual codes of arbitrary length over GR(p?, m) has not been solved
completely.

A code over aring R of length N is a nonempty subset C of R"V. The code C is said
to be linear if C is an R-submodule. All codes in this paper are assumed to be linear
unless otherwise specified. The ambient space R" is equipped with the usual Euclid-
ean inner product, i.e., [a, b] = Z?’:_Ol ajbj, where a = (ag, ai,...,any—1), b =
(bo, b1, ...,by_1) € RN, and the dual code is defined by C* = {a € R" | [a, b] =
0,Vb € C}. If C+ = C, then C is called a self-dual code over R.C is said to be
¢-constacyclic if (cg, c1,...,cy—1) € C implies (Ccy—1, co, €1, -..,¢cN—2) € C,
where ¢ is an invertible element of R. Especially, C is called a negacyclic code if
¢ = —1, and C is called a cyclic code if ¢ = 1. We use the natural connection of
¢-constacyclic codes to polynomial rings, where ¢ = (cg, c1,...,cn—1) is viewed
as c(x) = Z;V:_Ol c jxj and the ¢-constacyclic code C is an ideal in the polynomial
residue ring R[x]/(x" — ¢).

In this paper, let N = p*n where p is a prime, and n, k are positive integers
satisfying ged(p, n) = 1. Then cyclic codes over Z > of length N are viewed as
ideals of the ring Z 2[x]/ (xN¥' — 1). In this paper, following [7] we attempt to give
a precise description for cyclic codes over Z > of length N by use of concatenated
structure of codes. It is clear that all the conclusions we obtained can be generalized
to GR(p?, m) directly.

The present paper is organized as follows. In Sect. 2, we overview properties for
concatenated structure of codes over rings. In Sect. 3, we present a canonical form
decomposition for every cyclic code over Z > of length N, where each subcode is
concatenated by a basic irreducible cyclic code over Z ;> of length n as the inner code
and a constacyclic code over a Galois extension ring of Z > of length p* as the outer
code, and give a precise description for cyclic codes by determining their outer codes
when p # 2. Using the canonical form decomposition, we present precisely dual
codes and investigate the self-duality of cyclic codes over Z > in Sect. 4. Finally, we
list all cyclic self-dual codes over Zg of length 33.

p
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The concatenated structure of cyclic codes over Z 2 365

2 Preliminaries

In this section, we overview properties for concatenated structure of codes.

Notation 2.1 In this paper, let n be a positive integer satisfying ged(p, n) = 1, and
assume

Y'=1= 1M, L), fr(), ey

where f1(y), f2(3), ..., fr(y) are pairwise coprime monic basic irreducible polyno-
mials in sz [v]. Foreach i, 1 < i < r, we assume deg(f;(y)) = m;, and denote

Ri = Z2[y1/(fi(y)) = Z,2[&i] where & = y + (fi(y)) € R; satistying f; (§;) = 0.

For each integer i, 1 < i < r, Itis known that R; is a GR of characteristic p2 and
cardinality p®"i. The Teichmiiller set of R; is

m;—1 m;—1
j J
T = E iy N to, 1ot € ZLp ¢ = E ¢l o, ty oo tn—1 €Zp g,
j=0 j=0

and every element « of R; has a unique p-adic expression: o« = ro+ pry, ro, r1 € 7;.
Moreover, « is invertible if and only if ro # 0.
Denote F;(y) = r=l e sz[y] in the following. Since F;(y) and f;(y) are

fiy)
coprime, there are polynz)mials ai(y), bi(y) € Z,2[y] such that

ai(MFi () +bi(y) fi(y) = 1.
In the rest of this paper, we set
&(y) =ai(MF;(y) =1—0bi(y)f;(y) (mody" —1). 2)

Then using classical ring theory, we deduce the following lemma.

Lemma 2.2 Denote A = Z,2[yl/(y" — 1). The following hold in A.

Der()+ - +e@) =1, 60)? =e(y) and e (y)ej(y) = 0forall 1 <i #
j=r

i) A=A4&- DA, where A; = ¢;(y)A and its multiplicative identity is
(). Moreover, this decomposition is a direct sum of rings in that A; A; = {0} for
alliand j, 1 <i#j<r.

(i) For each 1 < i < r, define a mapping ¢;: g(y) = &i(y)g(y) (Vg(y) € Ri).
Then ¢; is a ring isomorphism from R; onto A;. Hence | A;| = p*™i.

(iv) For each 1 <i <r, A; is a basic irreducible cyclic code over 7, p2 Of length n
having parity check polynomial f;(y) and generator polynomial F;(y).

For convenience and self-sufficiency of the paper, we restate the concatenated struc-
ture of codes over rings.
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Definition 2.3 Using notations above, let C be a linear code over R; of length /, i.e.,
C is an R;-submodule of R! = {(ro, r1,...,r_1) | r; € R, j =0, 1,...,1 —1}.
The concatenated code of A; and C is defined by

Aildy, C = {(gi (co), @i (c1), ..., i (ci—1)) | (co, c1,...,c1—1) € C},

where the cyclic code A; over Z > of length n is called the inner code and C is called
the outer code.

Lemma 2.4 A;00,, C is a linear code over Z p2 of length nl. The number of codewords
in this concatenated code is equal to | A;,,C| = |C| and

dmin (AiD(piC) > dmin (Ai) dmin (C),

where dmin(A;) is the minimal distance of A; as a linear code over sz of length n
and dnin (C) is the minimal distance of C as a linear code over the GR R; of length [.

By the following theorem, we see that a generator matrix of the concatenated
code A; [y, C as a Z ,2-submodule can be constructed from a generator matrix of the
cyclic code A; over Z p2 and a generator matrix of the linear code C over the GR R;
straightforwardly.

Theorem 2.5 Let ¢;(y) = Z'};g) ei,jyj with e; ; € sz, and C be a linear code
over the GR R; of length | with a generator matrix G¢ € M;x(R;), i.e., C is an
R;-submodule of Rl{ generated by the row vectors of G¢. The following hold.

(1) A generator matrix of the cyclic code A; is given by

€i.0 €1 cee €in-2 €in—1

GA _ €in—1 €i.0 cee €in-3 €in-2
.=

€in—mi+1 €in—-mi+2 --- €in—mi—1 €in—m;

(ii) Assume f;(y) = Zr/"’zo fijy! with f;j € Ly and fim, =1, and let My, =

—fio Vi
ordermi—1landV; = (—=fi1, ..., = fim;—1). Foranya = a(y) = 231’261 rjyj € R;
withr; € Z,», denote Ay = a(My,) = Z;"’:Bl rjM']’;-l_ € My, xm; (Z,2) in the rest of
the paper. Then

( 0 Imi—1 ) be the companion matrix of f; (y) where 1,,, 1 is the identity matrix of

aY = A,Y, where Y =
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The concatenated structure of cyclic codes over Z 2 367

(iii) Let G¢ = (ajs)1<j<t, 1<s<i With aj; € R;. Then a generator matrix of the
concatenated code A; [y, C is given by

Adl,lGAi s Ay Gy,
GAI.D%_C:
Aal’1 Gy, oo Ag Gy,

Hence A;0,,C = {wG a0, clwe ZZ’;’}.

Proof (i) Since fi(y) is a monic basic irreducible polynomial in Z 2 [y] of degree
mi, {1, y,....y"~ 1} is a Z »-basis of the GR R; = Z,2[yl/(fi(»)). As ¢; is a
Z>-module isomorphism from R; onto A; by Lemma 2.2(iii), we conclude that
{e:i(y), yvei(y), ..., y””_lei (y)}isasz—basis of A;. Hence G 4, is a generator matrix
of A; as a Z2-submodule of Z’;z.

(ii) It is obvious that yY = MY, which then implies that yiY = M;j Y for all
j=0,1,...,m; — 1. Hence oY = ZT’:B] rj(y/Y) = AyY.
(iii) Let C be the Z ,>-submodule of Z’;lz generated by the row vectors of G 4, 0,

ie,C= {wG o, clwe Z’;’é’}. By Definition 2.3, &£ € A;0,, C if and only if there
exists a unique codeword ¢ = (cy, ..., c;) € C such that & = (¢;(c1), ..., @i(cr)).
Since G¢ is a generator matrix of C, ¢ € C if and only if ¢ is an R;-combination of
the row vectors (aq.1,...,a1,1), ..., (0.1, ..., 0:1) of G, which is equivalent that

there exist B, ..., B; € R; such that

£€= (o (Biari+ -+ Bra1),....0i (Broawg+ -+ Brary))
= (@i (Brar1) + - +oi (Brarn) .- 0 (Brong) + -+ @i (Brews)) s

since ¢; is a Z pz-module isomorphism. For each integer j, 1 < j <1, by B; € R;
there is a unique row vector b j € Z;’é such that 8; = b ;Y. From this and by (ii) we
deduce that Bja;, = Qj(aj,SY) = QjAaj’SY foralls = 1,...,1. Also, since ¢; is a
7 pz—module isomorphism, we have

g: - (l_JlA(xl)lgai(Y) + - +21Aa,.1§0i(y), cee »Qlezl,,(Pi(Y) + - +étAOl,,[§0i(Y))

A1 0i(Y) ... Agy0i(Y)
=w

’

Aoz,‘l(pi (Y) s A(x,_l(pi (Y)

where w = (b, ..., b,) € Z’Ij;’. Then by

@i (1) &i(y)
oy =| ¥ M e | _ ol
@i (y™h Y™l (y) y!
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and the identification of Z 2 [y](y" — 1) with Z’;z, we deduce § = wG 4,0, ¢ € C.
Therefore, A;0,,C =C. O

3 The concatenated structure of cyclic codes over Z 2 of length pkn

From now on, let N = pkn where k is a positive integer. As usual, we will
identify Zgz with Z 2 [x]/ (xN' — 1) under the natural Z2-module isomorphism:
(Co, €1y vy CN_1) > cotCix+- - Fey_xN-1 (Vej € sz, j=0,1,...,N—1).

Using the notations of Lemma 2.2, each element of the ring A can be uniquely
expressed as a(y) = Z;'-;(l) ajy’ witha; € Z,>. Then each element of the quotient

ring A[x]/ (x”k — y) can be uniquely expressed as

1

X
alx, y) = (1, y,...,y"_l) M ,

k_
xP 1
where M is a matrix over Z P2 of size n x pk . Now, define

1

Y(a(x, y) =« (x, x”k) = (1, xpk, .. .,xpk("_l)) M *

xpk_l

It is clear that W is a ring isomorphism from A[x]/(xpk — y)onto Z [x1/xN —1).

In the rest of this paper, we will identify A[x]/ (xpk —y)withZ p2lxl/ (x¥ — 1) under
this isomorphism W.

Theorem 3.1 Using the notations in Notation 2.1 and Lemma 2.2, and let C C
Ly [x1/(xN —1). The following are equivalent:

(i) C is a cyclic code over > of length N.

(ii) C is an ideal of the ring .A[x]/(x/’k —y).

(iii) For each integer i, 1 < i < r, there is a unique {;-constacyclic code C;
over R; of length pk, i.e., an ideal C; of the ring R; [x]/(xpk — &), such that C =
(Alljwl CH®--- @ (Arlz’tprcr)-

Proof We only need to prove (ii)<-(iii). By Lemma 2.2(ii) it follows that A[x]/
k k k
(P —y) = ®_ (Ailx]/(xP" —y)). As Zp[x]/(xN — 1) = Alx]/(xP" —y), we see
that C is an ideal of the ring sz [x1/ (xN —1)ifand only if for eachintegeri, 1 <i <,
there is a unique ideal C; of the ring A; [x]/(x”k — y) such that C = @7_,C;.
By Lemma 2.2(iii), ¢;: g(y) — €i(y)g(y) (Vg(y) € R;) is a ring isomorphism
from R; onto A;. As Ri = Z2[y1/{fi(¥)) = Z,2[8i] where & = y + (fi(y)), the
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The concatenated structure of cyclic codes over Z 2 369

inverse isomorphism ; of ¢; is given by
Vi(h(y)) = h(y) (mod fi(y)) or v;i(h(y)) =h(&). Vh(y) € A.

Then v; induces a ring isomorphism from A;[x]/ (x/’k — y) onto R;[x]/ (x/’k —¢i)in
the natural way:

p-1 pi-1
Vi Z hj(yx! | = Z hj @) x!, Yho(y), hi(y), ... hy_i(y) € Ai.
j=0 j=0

By ¢; = wi_l, @; induces a ring isomorphism from R,-[x]/(xpk — ¢;) onto

Aj [x]/(x”k — y) by the following: ¥go, g1, ..., 8pk_1 € Ri,

k

pr—1 pr-1
gi | D gl | =D eilg)x) < (0i(20). 0i (€. 0i (g0-1)) € Al
j=0 j=0

Therefore, for each integer i, 1 < i < r, and the ideal C; of A;[x]/ (xpk -y,
there is a unique ideal C; of R;[x]/ (xt"k — ;) such that C; = ¢;(C;), which implies
Ci = A;0y, C; by Definition 2.3. It is clear that C; is a ¢;-constacyclic code over R;
of length p*. O

By Theorem 3.1, in order to present all cyclic codes over Z > of length N it is

sufficient to determine all ideals of the ring R;[x]/ (xpk — &), where R; = Z p2[§,-]
and ¢; = y + (fi(y)) satisfies fj(g;) =0, foralli =1,...,r.

Since ged(p, n) = 1, there is a positive integer v, 1 < v < n, such that pkv =1
(mod n). By Eq. (1) it follows that ¢/ = 1. From this we deduce ({;’)Pk = ¢;, which

implies ({f)”k = Ci_l where e = n — v.

Lemma 3.2 Using the notations above, define a mapping o;: R;i[z]/ (Zpk - 1) -
k
Rilx]/(xP" — &) by

oi(a@) =a (¢fx), Va() e Rilzl/ (" ~1).

Then o; is a ring isomorphism from R; [z]/(zpk — 1) onto R; [x]/(xpk — ¢i) preserving
Hamming weight.

e \pk ept pk =1, pk
Proof Tt follows that ((fx)P" —1=¢" xP —1=¢ (P = &). o

Recall that ideals of the ring R;[z]/ (z”k — 1) are in fact cyclic codes over the GR
R; = GR(p?, m;) of length p*. This kind of cyclic codes have been researched in
many literatures, for example Kiah et al. [5] and Sobhani and Esmaeili [7]. For purpose
of application in this paper, we list some conclusions.
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Lemma 3.3 (cf. [7, Theorem 4.3]) The number of ideals of R; [z]/(zpk — 1), where
R, = GR(pz, m;), is equal to

mipk=t _

P
N =4
(p%.mi3k) ( i

pi Pk

1 e
)+ (2(p —2)pkl 4 1) pmirt”!

+(p’”f+3)(

1
-1 B pk—l
(pmi — D2 pmi—1

k—1
af P -1 _
+2(p —2)p* l(w)+ P

Especially, N(,2 .0 = 1 +2p + 2p — 3)p™ whenk = 1.

Lemma 3.4 ([7, Corollary 4.4]) Let p # 2, « = p— 1l and B = p — 2. Then all
distinct cyclic codes L; over the GR R; of length p* and their annihilating ideals

Ann(L;) = {x € R; [z]/(zpk —1)|aB =0, VB € L;} are given by the following:

Cases L; Ann(L;)
M (0) ()
(2) (1) (0)
3) (p) (p) .
@ (pa—1DHU<s<pb-1 (P G= D) .
Q) (=D (1 <s<pkh (z=DP =+ pz = DF" S (~w(2)))
©) (=D (F 1 +1<5<pk—1) (= )" 4 pcw(@), pz — D)
) (= 1% + plz — = Cwy) ((z — )P'=s)
(O{pk_l <5< pk _ 1)
®) (=D + plz = P (—u(z) (2 = DP*= 4 pz = PP ()
+(z — DR()
pF T <s<pF T4+ v=D
©) (= D%+ pz — 1= () ((z = )PV 4 (=2,
+(z — DR() plz— 1PE=s)
P l4v<s<ph—1,
s > ozpki], v>1)
(10) (= 1" 4 p-w(o) (e = DY 4 p(—R))
+(z — DHVh(2)))
pkil +v < apkil, v>1)
an (= D' + pz — 1=y (= )" 4 p = h(2)),
(@pk=l < s < pk =1, hg £0, 1) p(z — P =5)
(12) (= D 4 ph(2) (ho #£0. 1) ((z — 1)0‘2"’1 +p(1 = h())
(13) (2= 1) + plz — D'h(2) (= )P 4 pie = P = )

Pk +1—s#pkl s < k1,
h(z) #0)

+(z = DTS (Chiyy))
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Cases Li Ann(L;)

14 (=D + p— D'h@) (- l)al’k"k+lp(—w<z)

(P +1—s # pkl, +(z = DTS (—h(z))),
Pl <s <aptlay, plz— 1P
t>0, h(z) £ 0)

15 (=D + ph(2) (p(—w(@) + (2 — D" =5 (“h(z)
(P! <5 <apt1, h(z) £0) +— e

16) (2= D + pz — D'h(z) (p(—h(z) + (z — 1s—t=ar’ ™y
(PF 41 —s5#p s > apht 41, =15 pz— P
h(z) #0,t > 0)

a7 (= D* + ph(2) (= 1P + p(=h(z) + ( — D=1y
(s > apf=1, h(z) £0)

a8)  (@—1% pz—1h (= )P 14 pe = )P = cw)),
(I<s<ph-1, p(z — HP*=s)

0 <! < min{s, p¥~1})

19 (-1 Cw) (= )P p(z — P* =)
+@z—D*, pz =D
(@pf=l<s<pr—1,
s—ozpki1 <l <ys)

Q0 (pz— 1T (—w@) + 7R (@ = P 4 p(z = P (),
+@— 1), pe— D p(z — HP*=s)

@l <s<pb—1,v>1,
s — ozpk_1 < [ < min{s, pk_l + u})

@) {pwE + = D) (= )P 4 pz = YT (LR
=D p =)
O<l< min{apkil, pk’1 + v},
v>1)

@) (G- +pi— 10 h), (e = )P 4 p— P = h)).
pz—Dh
(@pk=l <5 < pk—1, hg £0, 1, p(z — HP*=s)

s —ozpk_1 <l < pk_l)

@3 (=D 4 phz), pz— 1)) (= )P 4 pz = P = (o))
(hg #£0, 1,0 <1 < p*k—1

Q4 (=D +pz—D'h@), pz— 1) (@ = D'+ pe = )Pl Cw)
Phtr—s#ph 1ss<apbl4r, +@— )" ' H=s ),

h(z) £0,0 <t <[ < min{s, pk~1}) plz — HP*=s)

25 (- D%+ ph@), pz— D (= )P 4 pz = )P )
(I <5 <aph=!, h(x) #0, +(z = P TS (Cai))

0 <! < min{s, pF~1})

(26) (=D + pz— D'h@), plz—Dh (- P+ PG~ 1>Pk+’*f*’(k—h<z>
P+t —s#pk 1 h@) #£0,1>0 + = DT pz = P I)
s>ozpk_1,0<t<l<pk+t—s)

@) (- D+ ph@), pz— D) ((z = P~ 4 pz — P+ (Zh(z)

(s >ozpk71, h(z) # 0, O<l<pk7s)

+— el
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Then by Theorem 3.1, Lemmas 3.2 and 3.3 we deduce the following corollary.

Corollary 3.5 Using the notations of Lemma 3.3, the number of all cyclic codes over
L, of length prn is equal to I, Np2 micko)-

Example 3.6 We calculate the number of cyclic codes over Zg of length 33. In this
case, wehave p =3, k=1landn = 11.

Since {0, 1, 3,9, 5, 4} and {2, 6, 7, 10, 8} are all distinct 3-cyclotomic cosets
modulo 11, we have y!' — 1 = fi(y) 2(0) f3(y), where fi(y), f2(y), f3(y) are
monic basic irreducible polynomials in Zg[y] satisfying m; = deg(f1(y)) = 1 and
m; = deg(fi1(y)) = 5 fori =2, 3. By Corollary 3.5 and Lemma 3.3, the number of
cyclic codes over Zg of length 33 is equal to

3 3
TN mn =[] +2p+ @p—3)p™) =16-736> = 8,667, 136.
i=1 i=1

For any ideal C; of the ring R;[x]/ (xpk — i), the annihilating ideal of C; is defined
as Ann(C;) = {x € R; [x]/(x”k‘ —¢&i) | af =0, VB € C;}. In the rest of this paper,
we denote w(z) = Z;:g [(_jl}rjlﬂ]l (z— l)j”k_l, where [a]; denotes a (mod p) (cf.
[7]), and

i =g;’x—1eR,-[x]/<x1’k —;,~>, where Ri =7, (4]

Now, by Lemmas 3.2 and 3.3, we can list all distinct ¢;-constacyclic codes over the
GR R; of length p* by the following theorem.

Theorem 3.7 Let p #2, « = p—1and B = p —2. Then all distinct ¢;-constacyclic
codes C; over the GR R; of length p* and their annihilating ideals are given by the
following:

Cases C; Ann(C;)
(1) ) 0
@) (1) 0)
®) (p) A
@ (prf) A <s<pk -1 (p, 7
k—1 ks PRl
(5) <JT,S> (I1<s<p ) (ni l+ pr (7w(§iex]3)>
©) w1 =s < pt - D) (TP p—w(ct), prl )
™ (mf +pr 7 (—w(gfx)) (=’
(pFl<s<pk-1
_apk-1 _ ‘. e, -
® (rf o+ pm T (w(efa) R ) "l T R )

1
(apF T <s<pFT+v,v=D
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Cases C; Ann(C;)
s -Y—Oll?kil e Ve apkil—v Tire Pk—5
) (; ;rzlmi (—ZJ({,» x) + 7 h(57x))) (m; + p(=h(fx)), pr; ")
(P +v=s<p—1,
s > ozpk_l, v>1)
—1 ~ k—1_ ~
(10) (" + p(—w(fx) + m)h(Efx)) T T p(=h(gf)
Prl+v<aptlv=
k=1 k—1 k_
(11) (w8 4+ pr} " h(gfx) @+ p(l = h(gfx)), pr] T
(ozpk_l <s< pk —1,hg#0,1)
apk—l e apk’l _ e
(12) (P 4 ph(gfx)) (ho #0. 1) @ 4 p(1 = h(fx)
k k—1
(13) () + prfh(fn) A AN Gl E)
(4t —s # pFL s = phL heo) £ 0) + 2% TS o)
k—1
(14) (] + prlh(cfx)) (TP 4+ p(—w(gfx)
k—1_, k_ ¢
(Phai—s £l ptlcs<apbtr, 41 VTS Chloy, prf
t>0, h(x) #0)
s e e apk_lfs e
(15) (m$ + ph(zfx)) (pweix) + (—h(zfx)))
-1
(P! <s <aph~l h0o) #£0) +a )
. k=1
(16)  (x) + pr/h(cf0) (7} 7" 4 p(=h(gfx) + T,
ko, k-1 k-1 pk—s
Pr+r—s#p" T s>ap" 41, pr; )
h(x) #0,t>0)
k=1
7 (= + ph(/f"elx)) (mf + p(=h@fx) + 7))
(s > ap*=1 h(x) #£0)
s / pr-1 Pl
(18) (7}, pm;) (; + pr; (—w(¢fx)),
1=s=<ph-1, pn,.”k‘%
0 <! <minfs, p¥~1}
k=1 k_ k_
19 (@ +pr P (—w(fn), prl) (w7t pal )
(ocpk_1 <s < pk -1, s —ozpk_l <l<ys)
o« yk—1 ~ k_ k—1 _ ~
Q0) (x4 (—w(eln) + 7 R, A A GV ACLI9))
pr!) pni”k_“>
(ogpk_l <S§pk—1, v>1,
s — apk_l < [ < min{s, pk_1 + u})
—1 ~ k__ k—1 _ ~
@y @ 4wt + 7R ). pl) A A G 1(329))
(0 <! <minfapk=!, pF=140), v>1)
k=1 k_ k—1_
@) e hn, pr) A A (R 1(s 39}
k
(p¥ ' <s<pf—1,hy#0,1, pnip !
s 7apk_l <l < pk_l)
ap~! e ! ph—l prl e
(23) "+t pr) (!~ + pm] (1= h(gfx)))
(hg #0, 1,0 <l < p*™h)
k_ —1_
@4 () + prlh(ta), prl) /el T weta)
k—1_ ,_ k_
(Phar—s#p 1=s aptl 41, +al T Cnt o, prl T

h(x) #£0, 0 <1 < <minfs, p¥~1})
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Cases Ci Ann(Cj)
s e ! Pk—l )4 1 e
(25) (7 + ph(cfx). prl) (!~ + pn] (—w(zfx)
(<5 <apt=1, h(x) £0, + @ TS o)
0 <! < min{s, p¥~1})
k_ ko o
(26) (xf + pr!h(¢tx), prl) (T pr? T et
I k_
(K +t—s#p- 1 h(x) #0,t>0 T, prl Y
s>apk71,0<t<l<pk+t—s)
s e l pk-1 PRt—s—1 e
27 (i + ph(g{x), pm;) (; +1137Tf‘ (_h({i x)
(s > ap*=1 n(x) £0,0 <1 < pk —s) +7] )

Finally, by Theorems 3.1 and 3.7 we deduce the following corollary.

Corollary 3.8 Every cyclic code C over Z, of length p¥n can be constructed by the
following two steps:

(i) For eachi = 1,...,r, choose a ¢j-constacyclic code C; over R; of length pk
listed in Theorem 3.7.

(ii) Set C = @{zlci with C; = A,'Dq;i C;.

The number of codewords in C is equal to |C| = [];_, |Ci| and the minimal Ham-
ming distance of C satisfies dmin(C) < min{dnin(A)dmin(C;) | i = 1,...,1},
where dumin(A;) is the minimal Z,»-Hamming weight of A; and dmin(C;) is the
minimal R;-Hamming weight of C;. Moreover, a generator matrix of C is given by

G.Al Dfﬂl Ci
Ge = .
Ga0,c

Using the notations of Corollary 3.8(ii), C = @®;_,C; with C; = A;[Jy, C; is called
the canonical form decomposition of the cyclic code C over Z .

4 Dual codes of cyclic codes over Z . of length pkn

In this section, we give the dual code of each cyclic code over Z > of length N and
investigate the self-duality of these codes.
As usual, we will identify a = (ao, a1,...,an—1) € Zgz with a(x) =

N-Vaix) € Z »[x]/(xN — 1). In this paper, we define
j=0 “J p pap

N—1
ulax)) =a (xil) =ay+ Z aijfj, Ya(x) € sz[x]/<xN — l>.
j=1

Then (4 is aring automorphism of Z > [x1/(x" —1) satisfying ;!

forall ¢ € Z . The following lemma is well known.

=pand u(c) =c
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The concatenated structure of cyclic codes over Z 2 375

Lemmad4.1 Let a, b € Zgz. Then [a, b] = 0 if a(x)u(b(x)) = 0 in the ring

Zplxl/(xN —1).

Using the notations of Sect. 3, we have Z > x1/(xN —1) = .A[x]/(xl’k — y) under
the substitution y = xpk, where A = Z ,2[y]/{y" — 1). Hence

2 1 . k
u) = (x71)" =y i A (- y).
Therefore, the restriction of i to A is given by

n(ron = £ (y") vF) e,

which is a ring automorphism of .A. For notations simplicity, we still denote this
restriction by . From this and by Notation 2.1, we deduce

wem=a (RO =1-6 (") A0 )nA  ®

Let f(y) = 27'1:0 Cj y/ be a polynomial in Z p2[y] of degree m > 1. Recall that the

reciprocal polynomial of f(y) is defined by f(y) = y"f (%) = Z;’LO cjy'”fj.
Especially, f(y) is said to be self-reciprocal if f (y) = 8f(y) for some invertible
element§inZ ., i.e., 8 € Z;‘Q. Then by Eq. (1) in Sect. 2, we have

Y= l==A0), L), ().

Since f1(y), f2(3),..., fr(y) are pairwise coprime monic basic polynomials in
Zlyl, for each 1 < i < r there is a unique integer i’, 1 < i < r, such that

ﬁ(y) = §; fi(y) where §; € Z:2- Then by (3) and y" = 1 in A, we have

[ (8i (y)) = 1 — yn—deg®iG))—m; (ydegw,-(y))bi (y—l)) (yml- f; (y—l))
= 1 — y"deebiOD=mip (y) fi (y)
=1-hiy)fir ),

where h;(y) = & y"deebit)-mip (yy e A. Similarly, by (3) it follows that
u(&i (y)) = gi(y)Fy(y) for some g;(y) € A. Then from these and by Eq. (2) we
deduce that w(e; (y)) = &/ (y).

As stated above, we see that for each 1 < i < r there is a unique integer i/, 1 <
i’ < r, such that u(g;(y)) = &;(y). We still use u to denote this map i — i’; i.e.,
(& (v)) = €ua)(y). Whether p denotes the automorphism of .4 or this map on the
set {1, ..., r} is determined by context. The next lemma shows the compatibility of

the two uses of .
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Lemma 4.2 With the notations above, the following hold.

() w is a permutation on {1, . .., r} satisfying u=' = p.

(ii) After a rearrangement of €1(y), ..., &-(y) there are integers X\, p such that
w@)=iforalli=1,...,.handuA+j)=r+p-+jforalj=1,...,p, where
A>1, p>0and )+ 2p =r.

(iii) For each integer i, 1 < i < r, there is a unique invertible element &; of 7. 2
such that fi(y) = & fui)(y)-

(iv) For any integeri, 1 <i <r, u(&;(y)) = €, (y) in the ring A, and u(A;) =
A,y Then w induces a ring isomorphism from A; onto A .

Proof (1)—(iii) follow from the definition of the map w, and (iv) follows from that
A; = & (y)A immediately. O

Lemma 4.3 Using the notations above, the following hold for any 1 <i <'r.
(i) p induces a ring isomorphism ¢;" l;upi Sfrom R; onto R,,(;). We still denote this
isomorphism by | for notations simplicity. Then the following diagram commutes

Ri = Z2 31/ (i) = Ruiy = Ze )/ {fuir»)
vi | J o
A AN Ay

Specifically, (a(y)) = a(y™1) e Ry for any a(y) € R;.
(i1) Using the notations in (1), u(¢) = ;‘M(l) and | induces a ring isomorphism

from Ri[x1/(x?" — &) onto R iy[x]/¢ (x?' — Cu@) given by

ph—1

a) = > apd > @ () —u(ao)ﬂw)z (e 5?7,

j=1

k__ .
where d(x) = Zf:ol plaj)x’, Yoo, ai, ...,k € R;.
Proof (i) It follows from Lemma 2.2(iii) and Lemma 4.2(iii) and (iv).
(i) From¢; = y+(fi(y)) € Riand {iy = y+(fu@(¥)) € Ru@y, by (i) we deduce
that u(g;) = ;;(i) € R, ;). Since x and ¢, ;) are invertible elements of Rﬂ(i)[x]/(pr —

ko _ k .
Sut)), from (x~ 1)1’ — g“ﬂ(l) = _f p {u(;)(x/’ — Cuay) wke deduce that u induces a
ring isomorphism from R;[x]/(x?" —¢;) onto RM(,)[x]/(xP —Cu()) givenby a(x) =
k .
S il o ope) = e = S
Finally, by X = CuGy in Ru(i)[x]/(xl’k — ;M(,)) it follows that @(x ") = u(ag) +

k_ i )
Q:(i) Zf:ll M(Olj)xpk’f as required. 0

—0 ;,L(Olj)x Y , Yag, ...,ax_1 € R;.

Corollary 4.4 Foreachintegeri, 1 <i <r, denote JT,- =¢x—1€eR; [x]/(xpk—g‘i),

k
where Ri = Z,2[¢;]. Then u(rr}) = (=1t ;S x 7wl o) € Ruy [x1/(xP" =iy, for
any integerl, 1 <1 < p — 1.
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Proof By the proof of Lemma 4.3(ii), we have u(n) = (u(fx — ) =
(@) >~ = D' = DG (G — D = (- 1)%(% Ty o

Lemmad4.5 Let a(x) = > ._jai(x), b(x) = > i_, bi(x) € .A[x]/(xpk — ), with
a;(x), bi(x) € Ai[x]/<xpk — ). Then a(x)p(b(x)) = > iy ai (x) (b (x)).

Proof By Lemma 4.2 we have (b, ;)(x)) € M(Au(i)[x]/(x”k —y)) and (A, [x]
[P = y)) = Ailx)/ (P — y). Hence a; ()b (1)) € Ailx)/(x?" — y) for all
i. If j # (@), theni # w(j), which implies a; (x)u(b;(x)) € (Ai[x]/(xpk —
YD (A lxl/( xP —y)) = {0} by Lemma 2.2(ii). Therefore, a(x)u(b(x)) =
Do 2im @i Opb; () = 3y ai ()b (x)). O

Now, we can determine the dual code of each cyclic code over Z 2

Theorem 4.6 Let C be a cyclic code over Z,,» of length N with concatenated structure

C = &;_ (A0, Ci), where C; is an ideal of the ring Ri[x]/(xpk — ;) for all
i =1,...,r. Using the notations of Theorem 3.7 and Lemma 4.3(ii), the dual code
Ct is given by

1
C = @le (Aﬂ(i)D%(i)DlL(i)) ’

where D, ;) is an ideal of the ring R, ;) [x]/(xpk —Cu(i)) given by one of the following
cases (1 <i <vr):

Cases C; Du(i)
o) (0) (1)
@) (1) (0)
©) (p) (p)
N k pk—s
“) (prf)y(1<s<pk—1) (p, 71“([) )
) (m$)y (1 <5 < pkh) (why +pﬂu(l) (- uﬁ(gl;(l) 1))
—1_pk e =1y k_ k-1
w_(l 1)p {;(lp) o ! kl
(6) (T P T+1<s < pk -1 (m ,‘jﬁ’,) +p(— w(;w.) Mo, prli?)
—apk—1 eapk=l k-1
k-1 wk_(_l) TG
™ (f + p; = <—w<<fx>>> (mhiy ™)
(ap~! <v<p )
~ k_ k—
®) s+ prs " Cue) + i) <n,’j(,-)3+pn,’j(,) T (heg N " H)w)
@t <s <Pt v vz w= (-t et
.xpk_pk—l_v
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Cases C; Dy
9 K S_D‘Pkil e vﬁ e 1y ’ﬁ —e _—1 Pk_“'
©) (7] +pm; (—w(fx) + P h(Efx))) (nﬂ(l) + p(=h(G, 6w, prl )
(Pl +v<s<pb-1,
- k—1 -
s>apFl v>1) = (_])V—Dlpk 1{;((7),, ) apkl—y

k—1 _
A0) (7"t p(—w(gfx) + alR(EE X))

l

pk_l +v< ocpk_l, v>1)
a0+ pri = i)

(ozpk_1 <5< pk —1,hg#0, 1)
12 7 4 pheen) tho £ 0, 1
13)  (xf + prlh(EEn)

(P 1 —s#pk!

W) #0)

(14) (7} + prfh(fx)
(PF 1 —s#pHl,
Pl <s <aptl 4o,

t >0, h(x) #0)

(15) (7] 4 ph(zfx))
P <s <apf=l, hx) £ 0)

(16)  (x} + pr/h(gfx)
Pk +1—s#pkl,
s > (xpk_l +1,
h(x) #0,t>0)

(A7) (7w + ph(gfx)
(s > apk=1, h(x) #0)

k—1_ =~
(PG x T w)
_ v—aph—1 e(aph~
“= ( DI 86
@ p( - =~ Do P P
-1
o= (- e 1{;?) cork!

0‘[7 Tre—e —1
( N«(l) +p(1 h(gﬂ(w ))(1))

k—1 - k=1
w_( 1)—or g;‘z‘lp) o
e’ j””u(z) D6
+apl TR G T D eDe)
w1 :(_1)apk T sf;i((j) apt=1-n)
xs—apkfl—l
— k—1
@ = (- O A A
ap
<”M(,) +1P( w(fﬂ(l) ) .
ap +t—s -1 pr—
+7,0) . (l h({u(l) ))(i)l1)a)2, pr
o) = (=P - s;ﬁ(é) ap"= =)
.xs—ozpkfl—t

k—1 k=1 k-1
wy = ()~ g e
ozpk’ -1
<ﬂ/,,(i) + [)( w(gu(l) )
1 e
+myl TR G o) 1

k=1_ e(x—otpk D) s—ap—
ap s p
w] —( 1) . ; (iz ] kxl
—apk—1 _eap’ -
wy = (=D~ ¢ 0 x*P
(p( ”({M(?)x l) + (il) w])w)

s—t pr—s
Ty Py ) .
w] = (71)s—t—apk*l{€(ap T tt—s)

(@)
Dlpk_l+t7s
wy = (71)[7_?;6(»?*’)/{37{
<P(_il\(§l:((;) _1) + ﬂu(l)p wl)wz
s
TGy L
w] = (— 1)s—ap ;e((‘l")p *S)xap —s
0 = (=175

u(@*
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Cases C; Dy
e
as)  (x}. pr)) (nu(l) +prly T ),
(<s<pb-1, P <z>s>
k—1
0 <! < minfs, pF=1}) w= (=P’ == 1+1§e(p) —pF -1
pk Pl
19 s—apl™ e ! P s
(19) (7 + pr; (—w({i X)), pm;) <”u<:> ’Imu(i) )
(apk lssszakfl,
s—otpki1 <l<ys)
20 sfapk— e Ufl e k : _1
(20) (pm; (—w(fx) +mh(gfx) (pnﬂ(l) - k@“(') N
s 1 —s
+7;, pm;) +nﬂ(l) , in’f(l) ) =
@rt<s<p-1v=1, o= (-t €<P -1
s 7apk_1 < [ < min{s, pk_1 + u}) Pk pk=t—v
k—1 _ el =,
@) "+ pw(f ) + R ), <u(z) +p”u(z) R 6 T e)
! v ekt 1)
;) 0= (_1)17 P {//v(l)
O0<l< min{apk’l, pk’] + v}, .xpk*pk_lfv
v>1)
ki k=g o~ e _
@)+ e, prl) <n5(,.)k+pn5(i) (=R 6 o,
(pft=t <s<pk—1,np £0, 1, prl)
k=1 k—1 —(_ pk_lfpk *E(Pk*.”kil) pkfpk_]
s—op <l<p™) wk_z( 1] e fﬂ<i)
@) "+ ph(x). px]) (mh +pn“(,) ‘a h(cu(,)l—‘»w)
(hg #0, 1,0 <1< pk1 w_( Hrt- kffﬁp P pk—ph
— Pl o
@) )+ prfhfn). pr) <7fu(i) ffﬂum EC
Prar—s#pisssoptlpr, 4l TR G oD e,
h(x) #£0,0 <1 <[ <minfs, pk=1}) 5(1)_ )
_ _ k—1_ ,_
w1 = (—nyer 1+t7s§ﬂ(5;§0¢.0 +1—5)
‘xs—t—ozpk’l
wp ()P e D
25 s h(ce 1 ph—1 pk=1- —e 1
@) b phEE, pm) A AT (_“’@u(nx )
(1 =s <apt=l @) #£0. il +I_S(*h(§;(f)x’1))w1)w2)
_ k—1
0 <! < min{s, p*~1}) oy = (—1yert 1+z—s§l:(i§ap 1)
.x57t*0tpkil
_pk —e(pk—pk=) k=1
wz( 1)” Pt i) PE=p
-1, . — _
@6) (@} + prfh(cfx). pr)) (nl !+ pnp(%jf h g
(P +t—s#p h) £0,1>0 +m A7 enwy, prl )

u() (i)
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Cases C; Dy
_ o pk—1
s>apfFl o<t<l<pftr—y) W] = (—1)“'_’_0‘1’]( 1{/:55“ 1=ap™)
_xapl"_|+t7s
= e
! pr—l prtt—s—1, 7~ — 1
(27) <7T,S + Ph(é“l-ex), P7T,'> <7T/J.(i) +P7j (i) (—h(fﬂé)x )
(s >ap* 1 h(x)#£0,0 <1< pk—s) +n;zi‘;‘p w])wr)

k—1 k=1_ k—1
o= e géi‘i’)” 9 ok~ =
(s et s—t
wy = (=1) 4-/4(0 X

Proof For any integeri, 1 <i <r, let D;;) = ;t(Ann(C;)). Then D, ;) is an ideal
. k .

of the ring Ry [x1/(x” — ¢ua))- Set D = &_; (Au@yTg, i) Dueiy)- Then D is an

ideal of A[x]/ (x/’k — y) and satisfies

r

C-u(D) = Z (AiD@- Ci) e (A/L(i)lj(ﬂu(i)DM(i))

i=1

= > (A0, C) - (A, Ann (C)))
i=1

= Zsi (») (C; - Ann (C}))
i=1
= {0},

by Lemma 4.5. From this and by Lemma 4.1 we deduce D C C*.
On the other hand, by [5, Theorem 3.5] and Lemma 3.2 we see that |C;[|D,,;)| =

|Ci||Ann(C;)| = pzl’k’"i foralli =1, ..., r, which then implies

r r

Dl = [ [ [AiDy Ci| | Ao Dg,, Puir| = [ [ 1€l |Du]

i=1 i=l

_ AP Ximi a0t ’sz[x]/<xpk" - 1>‘

As stated above, we conclude that C+ = D since Z 2 is a finite chain ring. Finally,
the conclusions follow from Theorem 3.7 and Corollary 4.4 immediately. O

Finally, by Theorem 4.6 and [7, Lemma 4.5] we deduce the following corollary for
cyclic self-dual codes over Z .

Corollary 4.7 Using the notations in Theorem 4.6 and Lemma 4.2(ii), let C be a
cyclic code over sz of length N with C = ®'_,(A;Uy, Ci), where C; is an ideal of

R; [x]/(x”k — ¢&i). Then C is self-dual if and only if for each integeri, 1 <i <r, C;
satisfies one of the following conditions:
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1) If 1 <i < A, Cj is given by one of the following six cases:
(-1 Ci = (p).
f—
(-2) C; = (n7P 1 + ph(¢fx)), where h(z) satisfies ho # 0, 1 and h(¢fx) — (1 —

il\(é-i*ffx—l))(_1)—05[)]‘71 é_ieﬂtpk_lx()[pk—l —0.
(i-3) Ci = (xf + ph(¢fx)), where s > ap*=', h(z) # 0 and h(¢fx) —

1 o~ _ k—1_ _
(7 w1 — h( x ) wr = 0 with w = (—1)—or lg“l.e(ap 9 xer* =5 gnd

Wy = (_l)fsé-iesxs'

k
(i-4) C; = (77 + pnip =%y, where 2s > ap*~1 4+ pk.
NP s—ap*=l, e pr—s k=1 Kk
(i-5) Ci = (7} + pm h(¢fx), p; ), where s > ap"~" + p*, hg #0, 1

i
o~ _ _ k_ k—1 —
and h(£¢x) — (1 = h(& x o = O with @ = (=1)P" =P ¢ W =P o pt=ph
k_
(i-6) Ci = (7 + prlh(gfx), pzrip Y, where 0 < t < pf —s,5 >

—f—apk—1 ~ _
ap Tl it @) — T o) = R ) (=D T = 0 with

l

s—ozpk’
i

k=1 —e(s—t—apkT! k=1,
W] = (_1)s t—ap é‘i e(s op )x(xp +t s

() Ifi = A+ j where 1 < j < p, then u(i) =i+ p, Cui) = Dy and
(Ci, D) is given by Theorem 4.6.

5 Cyclic self-dual codes over Zg of length 33

In this section, we consider to present all cyclic self-dual codes over Zg of length 33.
In this case, we have N = 33 = 3*n where k = 1 and n = 11.

It is known that y'' — 1 = f1(y) 2(») 3(3). where fi(y) = y — 1, fa(y) =
Y 4+3y4 48y  +y2 +2y+8and f3(y) = y> +7y* +8y> +y? +6y + 8 are pairwise
coprime monic basic irreducible polynomials in Zg[y]. Obviously, fi1(y) = 81 f1(y)
and ﬁ(y) = 87 f3(y) where §; = 8, = —1, which implies that ©(1) = 1 and
u2)=3.Hencem; =1, my=m3=5,r=3and A =p = 1.

Using the notations in Sect. 2, for each integer i, 1 < i < 3, we denote

11 . . .
Fi(y) = ==, and find polynomials a; (y), bi(y) € Zoly] satisfying a; () F; (y) +
b;i(y) fi(y) = 1. Then set ¢; (y) = a; (y) F; (y) (mod y11 — 1). Precisely, we have

e1(y) = 5"+ 55" +5y° + 5y +5y° +5° + 55" + 557 + 55> + 5y +5;
() =30+ +3y  + 3y  + 30+ +y + 7 + 3y +y + T
e3(0) =y 43y 8 T 4y 13y + 3yt 13y 2 43y + 7.
Let A = Zo[y]/(y'' — 1) and A; = Ag;(y). Then 4; is a cyclic code over Zg of
length 11 with parity check polynomial f;(y) fori = 1, 2, 3. Therefore,

o Ay is a free Zo-submodule of Z1! with rankz, (A1) = 1.
o A; is a free Zg-submodule of Zgl with rankz, (A4;) =5 fori =2, 3.

Precisely, a generator matrix G 4, of the cyclic code A; over Zg is given by: G 4, =
(5,5,5,5,5,5,5,5,5, 5, 5),

@ Springer



382 Y. Cao et al.

71311133313
37131113331
Ggp=113713111333 and
31371311133
33137131113
73133311131
17313331113

Gy =131731333111],
13173133311
11317313331
respectively. Hence A, = {(a, a, a, a, a, a, a, a, a, a, a) | a € Zg} with

dmin(A1) = 11, and A; = {wG 4, | w € Z3} with dmin(A;) = 6 fori =2, 3.

Denote ¢; = y + (fi(y)) € R; where R; = Zolyl/(fi(y)) fori = 1,2, 3.
Obviously, 3¢ - 7 = —1 (mod 11), which implies (¢/)> = ¢! by ¢!! = 1, for all
i =1, 2, 3. Using the notations in Sect. 3, we have ¢ = 7. Therefore,

Om=¢lx—1=x—1¢ Rilxl/(x’ = 1) where Ri = Zo[yl/(f1()) =

Om o =¢lx—1=@y*"+2y° +6y? + 4y + Dx — 1 € Rylx]/(x* — y) where
= Zolyl/(f2(»), since y” = 2y* + 2y3 + 6y* + 4y + 1 (mod f2()).

Oy = §37x —1 = @2y*4+6y>+2y2+8y +5x —1 € R3[x]/(x> — y) where
= Zo[y1/{f3(»)), since y7 =2y* +6y3 +2y? + 8y + 5 (mod f3(»)).

Moreover, by ; =1,x 1 and X =4 = y in R3[x]/(x*> — ¢3) we have

;—7 -1 _ §4 32 _ y4y10x2 — y x and §-14x2 _ y x

Now, by Corollary 4.7 we conclude that all distinct cycllc self-dual codes over Zg
of length 33 are given by

C= (A1DWC1) (&) (AzD(poz) &) (A3|:|¢3 C3) ,

where ¢;: R; — A; is given by the following

o p1(a) = aey(y) foralla € Ry;
o pi(a(y)) = a(y)ei(y) foralla(y) € R;, i =2, 3,

and C; is a ¢;j-constacyclic code over R; of length 3, i.e., an ideal of the ring R;[x]/
(x3 — y), satisfying the following conditions:
e C is an ideal of Zg /(x> — 1) given by one of the following two cases:

3); <(x — 1246, 3(x — 1)>.

e (C3, C3) is given by one of the following 736 cases:
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Cases Cr C3

Y] (0) (1)

2) (1) (0)

3) (3) (3)

“) (373) (w3, 3)

) (373) (m3,3)

©) (2 +3h) (h € Tp) (2 4301 +m3(h — 1)y3x?)y3x?)
%) (2 +3(1 + m2h)) (h € Tp) (3 +3(h — 1)y3x2)

®) (m2, 3) (373)

© (73, 3) (373)

(10) (73 +3h, 3m) (h € Tp) (2 +3(1 — h)y*x2, 373)

inwhich 7o = {33137 | 1; € {0, 1,2}, 0 < j <4}and h = 19+ 1,y'0 + 1% +
1398 + 1497 (mod f3(y)) for any h = Zé}zo tjy-/ € 7,. Hence the number of cyclic
self-dual codes over Zg of length 33 is equal to 2 x 736 = 1472.

Finally, we consider how to give an encode for each self-dual code listed
above. For i = 2, 3, we have R;[x]/(x> — y) = {bo(y) + b1(y)x + ba(y)x? |
bo(y), b1(y), ba(y) € Ri}. If B(x) = bo(y) + b1(y)x +ba(y)x* € Ri[x]/ (x> — y),
the ideal (8(x)) of R;[x]/(x> — y) is a y-constacyclic code over R; of length 3 having

bo(y)  bi(y) ba(y)
an R;-generator matrix given by | yba(y) bo(y) bi1(y)
ybi(y) yb2(y) bo(y)

For example, we choose C = (A1, C1) ® (A2, C2) B (A30,,C3), where C =
(x=1)246, 3(x—1)), C2 = (ma+3h) and C3 = (7 +3(1+m3(h—1)y*x?)y3x?)
with h = 1 4 2y2.

¢ Since the companion matrix of fi(y) =y —1lisMy = (1) and C; = (7+7x +

P
(o

x2) @ (6 + 3x), a generator matrix of the cyclic code C; over Rj is Gc, =

77 1 6 30
where P= |1 7 7])and Q = |0 6 3 |.Then by Theorem 2.5, a generator
717 306

matrix of A0y, Cy is given by

1G4, TG4, Gy,
Ga, TGy, TGy,
7G4, Guay 7G4,
Cathe = | 664 3G4 O
0 6Gy, 3Gy,
3G 4, 0  6Gy,

0 14
1V
(7,8, 1,6), and C2 = (2 + 6y*) + (1 + 4y + 6y*> + 2y> + 2y*)x), a genera-

¢ Since the companion matrix of f>(y) is My, = ( ), where Vo, =
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a B2 O
tor matrix of the y-constacyclic code C; over Ry is G¢, = 0 a2 B2 |, where
B2 0
oy =246y%, B = 14+4y+6y>+2y> +2y*and yBy = 2+ 6y +2y% +8y3 +5y*.
Using the notations of Theorem 2.5, we have Ay, = 2/5+ 6M;2, Ap, = Is+4My, +
2 3 4 2 3 4 :
OMy +2My +2My and Ayg, =215 +6Mp, +2M7 +8M7y +5M . Specifically,

R
we obtain
206 00 1 46 22 2 6 285
020460 2 6 285 5117 2
Ap,=10 02 0 6], Ag,=|5 117 2|, Apg=]2128 31
6 6 380 218 31 100 00
06 6 3 8 100 00 01000

Then by Theorem 2.5, a generator matrix of 4,1, C, is given by

Au, G 4, Ap,G 4, 0
Guan,0 = 0 A Ga,  ApGa,
Ayp, G 4, 0 A, G A,

¢ Since the companion matrix of f3(y) is My = (O 14), where V3 =

1V
(3,8, 1,2), and C3 = (1 + (2 + 2y + 2y + 2yHx + (6y + 4y*)x?), a genera-
a3 B3 »3
tor matrix of the y-constacyclic code C3 over R3is Gc; = | yy3 a3 B3 |, where
B3 yy3 a3

a3 =1, B3 =2+2y+2y" + 2y, y3 = 6y +4y°, yB3 =2+ 8y +4y’ +4y* and
yys3 = 6y + 4y*. Using the notations of Theorem 2.5, we have Agy =I5, Agy =
2UsH2M f +2M7 A2MY,, Ay = M +4M7}, Aygy = 215+8M p+4M 3 +4M 7,
and Ay, = 6M%3 + 4M;}. Specifically, we obtain

22202 06040 28044
280 4 4 0060 4 45543
App=14 5443, A,=[43518], Aap=[34271
34271 8 1 4 4 8 16330
16330 85232 01633
0060 4
43518
Ay,=|8 14 43
85232
25347
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Then by Theorem 2.5 a generator matrix of A3y, C3 is given by

G a; Ap,Ga; Ay G gy
Guas0,0 = | AmGas Gay ApGu
AypsGay; AyyGay,  Ga,

Now, by Corollary 3.8 a generator matrix of the self-dual cyclic code C over Zg of

G.A] D‘Pl C
length 33 is given by G¢ = GAqu)zCz .Hence C = {uGe |u € 286}.
Gas0,,0;

6 Conclusions

We present a canonical form decomposition for every cyclic code over Z > of length

pkn(k = 1 and ged(p, n) = 1), where each subcode is concatenated by a basic
irreducible cyclic code over Z > of length n as the inner code and a constacyclic code

over a Galois extension ring of Z > of length p* as the outer code. By determining
their outer codes, we present a precise description for cyclic codes over Z,> when
p # 2, give precisely dual codes and investigate self-duality for cyclic codes over

Z . These codes enjoy a rich algebraic structure compared to arbitrary linear codes

(which makes the search process much simpler). Obtaining some bounds for minimal
distance such as BCH-like of a cyclic code over the ring Z > by just looking at the
concatenated structure would be rather interesting.
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