1 Introduction of the Main Results

1.1 Main Theorem

Following [25] we continue to consider the reducibility for the time dependent Schrödinger equation

$$\begin{aligned}&\mathrm{i}\partial _t u=H_\epsilon (\omega t)u,\quad x\in {\mathbb {R}},\nonumber \\&H_\epsilon :=-\partial _{xx}+x^2+\epsilon X(x,\omega t), \end{aligned}$$
(1.1)

where

$$\begin{aligned} X(x,\theta )=\langle x\rangle ^\mu \sum _{k\in \Lambda }\left( a_k(\theta )\sin (k|x|^\beta )+b_k(\theta )\cos (k|x|^\beta )\right) \end{aligned}$$

with \(\Lambda \subset {\mathbb {R}}{\setminus }\{0\}\), \(|\Lambda |<\infty \) and \(\langle x\rangle :=\sqrt{1+x^2}\). The functions \(a_k(\theta )\) and \(b_k(\theta )\) are analytic on \(\mathbb T^n_\sigma =\{a+b\mathrm{i}\in {\mathbb {C}}^n/2\pi {\mathbb {Z}}^n:|b|<\sigma \}\) with \(\sigma >0\) and \(\beta >1\) and \(\mu \ge 0\) will be chosen in the following. We first introduce some functions and spaces.

Hermite Functions The harmonic oscillator \(T=-\partial _{xx}+x^2\) has eigenfunctions \((h_m)_{m\ge 1}\), so called the Hermite functions, namely

$$\begin{aligned} Th_m=(2m-1)h_m,\quad \Vert h_m\Vert _{L^2({\mathbb {R}})}=1,\quad m\ge 1. \end{aligned}$$
(1.2)

Linear Spaces For \(s\ge 0\) denote by \({\mathcal {H}}^s\) the domain of \(T^{\frac{s}{2}}\) endowed by the graph norm. For \(s<0\), the space \({\mathcal {H}}^s\) is the dual of \({\mathcal {H}}^{-s}\). Particularly, for \(s\ge 0\) a integer we have

$$\begin{aligned} {\mathcal {H}}^s=\{f\in L^2({\mathbb {R}}):x^\alpha \partial ^\beta f\in L^2({\mathbb {R}}),~\forall ~\alpha ,\beta \in {\mathbb {N}}_0,~\alpha +\beta \le s\}. \end{aligned}$$

We also define the complex weighted-\(\ell ^2\)-space \( \ell _s^2:=\{\xi =(\xi _m\in \mathbb C,m\ge 1):\sum _{m\ge 1}m^s|\xi _m|^2<\infty \}. \) To a function \(u\in {\mathcal {H}}^s\) we associate the sequence \(\xi \) of its Hermite coefficients by the formula \(u=\sum _{m\ge 1}\xi _mh_m(x)\). In the following we will identify the space \({\mathcal {H}}^s\) with \(\ell _s^2\) by endowing both space the norm

$$\begin{aligned} \Vert u\Vert _{\mathcal H^s}=\Vert \xi \Vert _s=\left( \sum _{m\ge 1}m^s|\xi _m|^2\right) ^\frac{1}{2}. \end{aligned}$$

Define

$$\begin{aligned} l_*= l(\beta ,\mu )= {\left\{ \begin{array}{ll} \frac{1}{4}\left( \frac{\beta }{6}-\mu \right) ,&{}\quad 1<\beta <2,\\ \frac{1}{4}\left( \frac{2}{9}-\mu \right) ,&{}\quad \beta =2,\\ \frac{1}{4}\left( \frac{\beta -2}{4\beta -2}-\mu \right) ,&{}\quad \beta > 2. \end{array}\right. } \end{aligned}$$
(1.3)

Then we can state our main theorem.

Theorem 1.1

Assume \(a_k(\theta )\) and \(b_k(\theta )\) are analytic on \(\mathbb T^n_\sigma \) with \(\sigma >0\) and \(\beta >1\) and \(\mu \) satisfies

$$\begin{aligned} 0\le \mu< {\left\{ \begin{array}{ll} \frac{\beta }{6},&{}\quad 1<\beta <2,\\ \frac{2}{9},&{}\quad \beta =2,\\ \frac{\beta -2}{4\beta -2},&{}\quad \beta >2. \end{array}\right. } \end{aligned}$$
(1.4)

There exists \(\epsilon _*>0\) such that for all \(0\le \epsilon <\epsilon _*\) there is a closed set \( D_\epsilon \subset D_0=[0,2\pi ]^n\) of asymptotically full measure such that for all \(\omega \in D_\epsilon \), the linear Schrödinger equation (1.1) reduces to a linear autonomous equation in \({\mathcal H}^{1}\).

More precisely, for any \(\omega \in D_\epsilon \) there exists a linear isomorphism \(\Psi _{\omega ,\epsilon }^{\infty }(\theta )\in {\mathfrak {L}}(\mathcal H^{s'})\) with \(0\le s'\le 1\), analytically dependent on \(\theta \in {\mathbb {T}}^n_{\sigma /2}\) and unitary on \(L^2({\mathbb {R}})\), where \(\Psi _{\omega ,\epsilon }^{\infty }-\mathrm{Id}\in {\mathfrak {L}}(\mathcal H^0,{\mathcal {H}}^{2l_{*}})\cap {\mathfrak {L}}({\mathcal {H}}^{s'})\) and a bounded Hermitian operator \(Q\in {\mathfrak {L}}({\mathcal {H}}^1)\) such that \(t\mapsto u(t,\cdot )\in {\mathcal {H}}^1\) satisfies (1.1) if and only if \(t\mapsto v(t,\cdot )=\Psi _{\omega ,\epsilon }^{\infty }u(t,\cdot )\in {\mathcal {H}}^1\) satisfies the autonomous equation

$$\begin{aligned} \mathrm{i}\partial _t v=-v_{xx}+x^2v+\epsilon Q(v), \end{aligned}$$

furthermore, there are constants \(C,K>0\) such that

$$\begin{aligned}&\mathrm{{Meas}}( D_0{\setminus } D_\epsilon )\le C\epsilon ^\frac{3l_*}{2(2l_*+5)(2l_*+1)},\\&\Vert Q\Vert _{{\mathfrak {L}}({\mathcal {H}}^p,{\mathcal {H}}^{p+4l_*})}+\Vert \partial _\omega Q\Vert _{{\mathfrak {L}}({\mathcal {H}}^p,{\mathcal {H}}^{p+4l_*})}\le K,\quad \omega \in D_\epsilon ,~p\in {\mathbb {N}},\\&\Vert \Psi _{\omega ,\epsilon }^{\infty }(\theta )-\mathrm{Id}\Vert _{{\mathfrak {L}}(\mathcal H^0,\mathcal H^{2l_{*}})},\Vert \Psi _{\omega ,\epsilon }^{\infty }(\theta )-\mathrm{Id}\Vert _{{\mathfrak {L}}(\mathcal H^{s'})}\le C\epsilon ^\frac{1}{3},\quad (\omega ,\theta )\in D_\epsilon \times {\mathbb {T}}^n_{\sigma /2}. \end{aligned}$$

Consequently, Theorem 1.1 follows in the considered range of parameters the \({\mathcal {H}}^1\) norms of the solutions are all bounded forever and the spectrum of the corresponding operator is pure point.

1.2 Related Results and a Critical Lemma

In the following we recall some relevant reducibility results. For 1-D quantum harmonic oscillators(‘QHO’ for short) with periodic or quasi-periodic in time bounded perturbations see [11, 15, 23, 28, 39, 40] .

In [5] Bambusi and Graffi proved the reducibility of 1-D Schrödinger equation with an unbounded time quasiperiodic perturbation in which the potential grows at infinity like \(|x|^{2l}\) with a real \(l>1\) and the perturbation is bounded by \(1+|x|^{\beta }\) with \(\beta <l-1\). The reducibility in the limiting case \(\beta = l-1\) was proved by Liu and Yuan in [30]. Recently, the results in [5, 30] have been improved by Bambusi in [1, 2], in which he firstly obtained the reducibility results for 1-D QHO with unbounded perturbations.

It seems that the reducibility method in [1, 2] is hard to be applied for 1-D Schrödinger equations with the unbounded oscillatory perturbations(see remark 2.7 in [1]). The authors [25, 27] solved this problem by Langer’s turning point and oscillatory integral estimates. We remark that the critical step in [25] is to build up a decay estimate of the integral \(\int _{{\mathbb R}}\langle x\rangle ^{\mu } e^{\mathrm{i} kx} h_m(x) \overline{{h}_n(x)}dx\), in which the phase functions of oscillatory integral are \(\phi _{mn}(x): = \zeta _m(x) -\zeta _n(x)+kx,\) where \(\zeta _m(x) =\int _{X_m}^x\sqrt{\lambda _m-t^2} dt\) with \(X_m=\sqrt{2m-1}=\sqrt{\lambda _m}\).

Comparing with [25], in this paper the phase functions \(\Psi _{mn}(x): = \zeta _m(x) -\zeta _n(x)+kx^{\beta }\) with \(\beta >1\) are more degenerate. For \(1<\beta \le 2\), we use a similar method as [25]. The most difficult part as [25] is the integral \(\int _{X_m^{\frac{2}{3}}}^{X_m-X_m^{\nu _2}}\langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\) where \(\nu _2=1-\frac{\beta }{3}\) for \(1<\beta <2\) and \(\nu _2=\frac{5}{9}\) when \(\beta =2\). We have to discuss different cases in order to obtain a suitable lower bound of the derivatives of the phase function. For \(\beta >2\) we find a new simple proof which follows from Corollary 3.2 in [24], Lemma 6.1 and a straightforward computation. As Lemma 1.7 in [25] we have the following.

Lemma 1.2

Assume \(h_m(x)\) satisfies (1.2). For any \(k\ne 0\),

$$\begin{aligned} \left| \int _{{\mathbb R}}\langle x\rangle ^{\mu } e^{\mathrm{i} k|x|^{\beta }}h_m(x) \overline{{h}_n(x)}dx\right| \le C \cdot C_{k,\beta }(mn)^{-l(\beta ,\mu )},\quad m,n\ge 1 \end{aligned}$$

for some absolute constant \(C>0\), where \(\mu \ge 0, \beta >1\), \(l(\beta ,\mu )\) defined in (1.3) and

$$\begin{aligned} C_{k,\beta }= {\left\{ \begin{array}{ll} |\beta (\beta -1)(\beta -2)k|^{-\frac{1}{3}}\vee |k|^{-1}\vee |k|^\frac{1}{4-2\beta },&{}\quad 1<\beta <2,\\ |k|^{-1}\vee 1,&{}\quad \beta =2,\\ |\beta k|^{-1}\vee 1,&{}\quad \beta > 2. \end{array}\right. } \end{aligned}$$

Remark 1.3

In fact \(l(1,\mu )= \frac{1}{12}-\frac{\mu }{4}\) has been proved in [25].

In the end we review some relative results. Eliasson–Kuksin [13] initiated to prove the reducibility for PDEs in high dimension. See [22, 26] for higher-dimensional QHO with bounded potential. The first reducibility result for n-D QHO was proved in [7] by Bambusi-Grébert-Maspero-Robert. Towards other PDEs with unbounded perturbations see the reducibility results by Montalto [35] for linear wave equations on \({\mathbb {T}}^d\) and Bambusi, Langella and Montalto [3] for transportation equations [18]. Feola and Grébert [19] set up a reducibility result for a linear Schrödinger equation on the sphere \(S^n\) with unbounded potential [20].

The reducibility results usually imply the boundedness of Sobolev norms. Delort [12] constructed a \(t^{s/2}\)- polynomial growth for 1-D QHO with certain time periodic perturbation [32]. Basing on a Mourre estimate, Maspero [33] proved similar results for 1-D QHO and half - wave equation on \({\mathbb T}\) and the instability is stable in some sense. For a polynomial periodic or quasi-periodic perturbations relative with 1-D QHO we refer to [7, 21, 29, 31]. For 2-D QHO with perturbation which is decaying in t, Faou-Raphaël [17] constructed a solution whose \({\mathcal {H}}^1-\)norm presents logarithmic growth with t. For 2-D Schrödinger operator Thomann [38] constructed explicitly a traveling wave whose Sobolev norm presents polynomial growth with t, based on the study in [36] for linear Lowest Landau equations (LLL) with a time-dependent potential. There are also many literatures, e.g. [4, 6, 8,9,10, 16, 34, 41], which are closely relative to the upper growth bound of the solution in Sobolev space.

Our article is organized as follows: in Sect. 2 we state the reducibility theorem, i.e. Theorem 2.1. In Sect. 3, through checking all the assumptions in Theorem 2.1 we prove Theorem 1.1. In Sect. 4 we prove Lemma 1.2 for \(1<\beta \le 2\) and the case for \(\beta >2\) is delayed in Sect. 5. Some auxiliary lemmas are presented in the “Appendix”.

Notation We use the notations \({\mathbb N}_0=\{0,1,2,\cdots \}\), \({\mathbb N}=\{1,2,\cdots \}\), \({\mathbb {T}}^n={\mathbb {R}}^n/2\pi {\mathbb {Z}}^n\) and \({\mathbb {T}}^n_\sigma =\{a+b \mathrm{i}\in {\mathbb {C}}^n/2\pi \mathbb Z^n:|b|<\sigma \}\). For Hilbert spaces \({\mathcal {H}}_1,{\mathcal {H}}_2\) we denote by \({\mathfrak {L}}({\mathcal {H}}_1,{\mathcal {H}}_2)\) the space of bounded linear operators from \({\mathcal {H}}_1\) to \({\mathcal {H}}_2\) and write \({\mathfrak {L}}({\mathcal {H}}_1,{\mathcal {H}}_1)\) as \({\mathfrak {L}}({\mathcal {H}}_1)\) for simplicity.

2 A KAM Theorem

Following [14, 23] we introduce the KAM Theorem from [26] especially for 1-D case.

2.1 Setting

Linear spaces. For \(p\ge 0\) we define \(X_p:=\ell _p^2\times \ell _p^2=\{\zeta =(\zeta _a=(\xi _a,\eta _a)\in \mathbb C^2)_{a\in {\mathbb {N}}}, \Vert \zeta \Vert _p<\infty \}\) with \(\Vert \zeta \Vert _p^2=\sum \nolimits _{a\in \mathbb N}a^p(|\xi _a|^2+|\eta _a|^2)\). We equip the space with the symplectic structure \(\mathrm{i}\sum \nolimits _{a\in \mathbb N}d\xi _a\wedge \eta _a\).

Infinite matrices. Denote by \({\mathcal {M}}_\alpha \) the set of infinite matrices \(A:\mathbb N\times {\mathbb {N}}\mapsto {\mathbb {C}}\) with the norm \(|A|_\alpha :=\sup \nolimits _{a,b\in \mathbb N}(ab)^\alpha |A_a^b|<\infty \). We also denote \({\mathcal {M}}_\alpha ^+\) be the subspace of \({\mathcal {M}}_\alpha \) satisfying that an infinite matrix \(A\in {\mathcal {M}}_\alpha ^+\) if \( |A|_{\alpha +}:=\sup \nolimits _{a,b\in \mathbb N}(ab)^\alpha (1+|a-b|)|A_a^b|<\infty \).

In fact one can prove that for all \(\alpha >0\), a matrix in \({\mathcal {M}}_\alpha ^+\) defines a bounded operator on \(\ell _0^2\). However, when \(\alpha \in (0,\frac{1}{2})\), we can’t insure that \(\mathcal M_{\alpha }\subset {\mathfrak {L}}(\ell _0^2,\ell _s^2)\) for any \(s\in {\mathbb {R}}\). This means that Px makes no sense when the perturbation operator \(P\in {\mathcal {M}}_\alpha \) and \(x\in \ell _0^2\). Fortunately, from Lemma 2.1 in [22] or Lemma 2.2 in [26] one can show \({\mathcal {M}}_{\alpha }\subset {\mathfrak {L}}(\ell _1^2,\ell _{-1}^2)\) and thus the reducibility in \({\mathcal {H}}^1\) can be built up in Theorem 1.1 instead of \(L^2\).

Parameters. In this paper \(\omega \) will play the role of a parameter belonging to \(D_0=[0,2\pi ]^n\). All the constructed maps will depend on \(\omega \) with \({\mathcal {C}}^1\) regularity. When a map is only defined on a Cantor subset of \(D_0\) the regularity is understood in Whitney sense.

A class of quadratic Hamiltonians. Let \(D\subset D_0,\alpha >0\) and \(\sigma >0\). We denote by \({{\mathcal {M}}}_\alpha (D,\sigma )\) the set of mappings as \(\mathbb T^n_\sigma \times D\ni (\theta ,\omega )\mapsto Q(\theta ,\omega )\in {\mathcal {M}}_\alpha \) which is real analytic on \(\theta \in {\mathbb {T}}^n_\sigma \) and \({\mathcal {C}}^1\) continuous on \(\omega \in D\). And we endow this space with the norm \([Q]_\alpha ^{D,\sigma }:=\sup \nolimits _{\begin{array}{c} \omega \in D,|\Im \theta |<\sigma |k|=0,1 \end{array}}|\partial _\omega ^kQ(\theta ,\omega )|_\alpha .\)

The subspace of \({\mathcal {M}}_\alpha (D,\sigma )\) formed by \(F(\theta ,\omega )\) such that \(\partial _\omega ^kF(\theta ,\omega )\in \mathcal M_\alpha ^+,|k|=0,1\), is denoted by \({\mathcal {M}}_\alpha ^+(D,\sigma )\) and endowed with the norm \([F]_{\alpha +}^{D,\sigma }:=\sup \nolimits _{\begin{array}{c} \omega \in D,|\Im \theta |<\sigma |k|=0,1 \end{array}}|\partial _\omega ^k F(\theta ,\omega )|_{\alpha +}\). Besides, the subspace of \(M_\alpha (D,\sigma )\) that are independent of \(\theta \) will be denoted by \({\mathcal {M}}_\alpha (D)\) and for \(N\in {\mathcal {M}}_\alpha (D)\),

$$\begin{aligned}{}[N]_\alpha ^D:=\sup \limits _{\omega \in D,|k|=0,1}|\partial _\omega ^kN(\omega )|_\alpha . \end{aligned}$$

2.2 The Reducibility Theorem

In this section we present an abstract reducibility theorem for a quadratic Hamiltonian quasiperiodic in time of the form

$$\begin{aligned} H(t,\xi ,\eta )=\langle \xi ,N\eta \rangle +\epsilon \langle \xi ,P(\omega t)\eta \rangle ,\quad (\xi ,\eta )\in X_1\subset X_0, \end{aligned}$$
(2.1)

and the corresponding Hamiltonian system

$$\begin{aligned} {\left\{ \begin{array}{ll} {{\dot{\xi }}}=-\mathrm{i}N\xi -\mathrm{i}\epsilon P^T(\omega t)\xi ,\\ {{\dot{\eta }}}=\mathrm{i}N\eta +\mathrm{i}\epsilon P(\omega t)\eta , \end{array}\right. } \end{aligned}$$
(2.2)

where \(N=\text {diag}\{\lambda _a,a\in {\mathbb {N}}\}\) satisfies the following spectrum assumptions:

Hypothesis A1-Asymptotics There exist positive constants \(c_0,c_1,c_2\) such that

$$\begin{aligned} c_1a\ge \lambda _a\ge c_2a\text { and }|\lambda _a-\lambda _b|\ge c_0|a-b|,~\forall ~a,b\in {\mathbb {N}}. \end{aligned}$$

Hypothesis A2-Second Melnikov Condition in Measure Estimates There exist positive constants \(\alpha _1,\alpha _2\) and \(c_3\) such that the following holds: for each \(0<\kappa <\frac{1}{4}\) and \(K>0\) there exists a closed subset \(D'=D'(\kappa ,K)\subset D_0\) with \(\text {Meas}(D_0{\setminus } D')\le c_3K^{\alpha _1}\kappa ^{\alpha _2}\) such that for all \(\omega \in D',k\in {\mathbb {Z}}^n\) with \(0<|k|\le K\) and \(a,b\in {\mathbb {N}}\) we have \(|k\cdot \omega +\lambda _a-\lambda _b|\ge \kappa (1+|a-b|)\).

Then we can state our reducibility results.

Theorem 2.1

Given a nonautonomous Hamiltonian (2.1), we assume that \((\lambda _a)_{a\in {\mathbb {N}}}\) satisfies Hypothesis A1–A2 and \(P(\theta )\in {\mathcal {M}}_{\alpha }(D_0,\sigma )\) with \(\alpha ,\sigma >0\). Let \(\gamma _1=\max \{\alpha _1,n+3\}\) and \(\gamma _2=\frac{\alpha \alpha _2}{2\alpha \alpha _2+5}\), then there exists \(\epsilon _*>0\) such that for all \(0\le \epsilon <\epsilon _*\) there are

  1. (i)

    a Cantor set \(D_\epsilon \subset D_0\) with \(\text {Meas}(D_0{\setminus } D_\epsilon )\le C\epsilon ^{\frac{3\delta \alpha }{2\alpha +1}}\) for a \(\delta \in (0,\frac{\gamma _2}{24})\);

  2. (ii)

    a \({\mathcal {C}}^1\) family in \(\omega \in D_\epsilon \)(in Whitney sense), linear, unitary, analytically dependent on \(\theta \in {\mathbb {T}}^n_{\sigma /2}\) and symplectic coordinate transformation \(\Phi _\omega ^\infty (\theta ): X_0\mapsto X_0,(\omega ,\theta )\in D_\epsilon \times \mathbb T^n_{\sigma /2}\), of the form

    $$\begin{aligned} (\xi _+,\eta _+)\mapsto (\xi ,\eta )=\Phi _\omega ^\infty (\theta )(\xi _+,\eta _+)=(\overline{M}_\omega (\theta )\xi _+,M_\omega (\theta )\eta _+), \end{aligned}$$

    where \(\Phi _\omega ^\infty (\theta )-\mathrm{Id}\) satisfies for \(0\le s'\le 1\)

    $$\begin{aligned} \Vert \Phi _\omega ^\infty (\theta )-\mathrm{Id}\Vert _{{\mathfrak {L}}(X_0,X_{2\alpha })},\Vert \Phi _\omega ^\infty (\theta )-\mathrm{Id}\Vert _{{\mathfrak {L}} (X_{s'})}\le C\epsilon ^{\frac{1}{3}}; \end{aligned}$$
  3. (iii)

    a \({\mathcal {C}}^1\) family of autonomous quadratic Hamiltonian in normal forms

    $$\begin{aligned} H_\infty (\xi _+,\eta _+)=\langle \xi _+,N_\infty (\omega )\eta _+\rangle =\sum _{m\ge 1}\lambda _m^\infty \xi _{+,m}\eta _{+,m},\quad \omega \in D_\epsilon , \end{aligned}$$

    where \(N_\infty (\omega )=\text {diag}\{\lambda ^{\infty }_m,m\in \mathbb N \}\) is diagonal and is close to N in the sense of

    $$\begin{aligned}{}[N_\infty (\omega )-N]_\alpha ^{D_\epsilon }\le C\epsilon , \end{aligned}$$

    such that

    $$\begin{aligned} H(t,\Phi _\omega ^\infty (\omega t)(\xi _+,\eta _+))=H_\infty (\xi _+,\eta _+),~t\in \mathbb R,~(\xi _+,\eta _+)\in X_1,~\omega \in D_\epsilon . \end{aligned}$$

3 Application to the Quantum Harmonic Oscillator

In this section we will prove Theorem 1.1 by applying Theorem 2.1 to the original Eq. (1.1). Following the strategies in [13], we expand u on the Hermite basis \((h_m)_{m\ge 1}\) as well as \({\bar{u}}\) by the following formula

$$\begin{aligned} u=\sum _{m\ge 1}\xi _mh_m,\quad \bar{u}=\sum _{m\ge 1}\eta _m\bar{h}_m. \end{aligned}$$

Therefore the Eq. (1.1) is equivalent to a nonautonomous Hamiltonian system

$$\begin{aligned} {\left\{ \begin{array}{ll} {{\dot{\xi }}}_m=-\mathrm{i}\frac{\partial H}{\partial \eta _m}=-\mathrm{i}(2m-1)\xi _m- \mathrm{i}\epsilon \left( P^T(\omega t)\xi \right) _m,\\ {{\dot{\eta }}}_m=\mathrm{i}\frac{\partial H}{\partial \xi _m}=\mathrm{i}(2m-1)\eta _m+\mathrm{i}\epsilon \left( P(\omega t)\eta \right) _m, \end{array}\right. }\quad m\ge 1, \end{aligned}$$
(3.1)

where

$$\begin{aligned} H(t,\xi ,\eta )=\langle \xi ,N\eta \rangle +\epsilon \langle \xi ,P(\omega t)\eta \rangle ,\quad (\xi ,\eta )\in X_1\subset X_0, \end{aligned}$$

and \(N=\text {diag}\{2m-1,m\ge 1\}\) and

$$\begin{aligned} P_m^n(\omega t)= & {} \sum \limits _{k\in \Lambda } a_k(\omega t) \int _{{\mathbb {R}}} \langle x\rangle ^\mu \sin k|x|^\beta h_m(x)\overline{h_n(x)}dx \nonumber \\&+ \sum \limits _{k\in \Lambda } b_k(\omega t) \int _{{\mathbb {R}}} \langle x\rangle ^\mu \cos k |x|^\beta h_m(x)\overline{h_n(x)}dx, \end{aligned}$$
(3.2)

where the frequencies \(\omega \in D_0=[0,2\pi ]^n\) are the external parameters.

The spectrum assumptions can be easily checked by the following two lemmas.

Lemma 3.1

When \(\lambda _a=2a-1,a\in {\mathbb {N}}\), Hypothesis A1 holds true with \(c_0=c_2=1\) and \(c_1=2\).

Lemma 3.2

When \(\lambda _a=2a-1,a\in {\mathbb {N}}\), Hypothesis A2 holds true with \(\alpha _1=n+1,\alpha _2=1,c_3=c(n)\) and \( D_0=[0,2\pi ]^n\),

$$\begin{aligned} D'=\{\omega \in [0,2\pi ]^n:|k\cdot \omega +j|\ge \kappa (1+|j|),~\forall ~j\in \mathbb Z,~k\in {\mathbb {Z}}^n{\setminus }\{0\}\}. \end{aligned}$$

The following lemma is a direct corollary of Lemma 1.2.

Lemma 3.3

Assume that \(a_k(\theta )\) and \(b_k(\theta )\) are analytic on \({\mathbb {T}}^n_\sigma \) for any nonzero \(k\in \Lambda \) with \(\sigma >0\) and \(\beta >1\) and \(\mu \) satisfies (1.4), then there exists \(\alpha =l(\beta ,\mu )>0\) such that the matrix function \(P(\theta )\) defined by (3.2) is analytic from \({\mathbb {T}}^n_\sigma \) into \({\mathcal {M}}_\alpha \).

Proof of Theorem 1.1

Expanding the Hermite basis \((h_m)_{m\ge 1}\), the Schrödinger equation (1.1) becomes Hamiltonian system (3.1), which is the form of Eq. (2.2) with \(\lambda _a=2a-1\). By lemmas above, we can apply Theorem 2.1 to (3.1) with \(\gamma _1=n+3,\gamma _2=\frac{\alpha }{2\alpha +5}\) and \(\delta =\frac{\gamma _2}{48}\). This follows Theorem 1.1.

More precisely, in new variables given in Theorem 2.1, \((\xi ,\eta )=({\overline{M}}_\omega \xi _+,M_\omega \eta _+)\), system (3.1) is conjugated into an autonomous system of the form:

$$\begin{aligned} {\left\{ \begin{array}{ll} {{\dot{\xi }}}_{+,a}=-\mathrm{i}\lambda _a^\infty (\omega )\xi _{+,a},\\ {{\dot{\eta }}}_{+,a}=\mathrm{i}\lambda _a^\infty (\omega )\eta _{+,a}, \end{array}\right. }\quad a\in {\mathbb {N}}. \end{aligned}$$

Therefore the solution subject to the initial datum \((\xi _+(0),\eta _+(0))\) reads

$$\begin{aligned} (\xi _+(t),\eta _+(t))=(e^{-\mathrm{i}tN_\infty }\xi _+(0),e^{\mathrm{i}tN_\infty }\eta _+(0)),\quad t\in {\mathbb {R}}, \end{aligned}$$

where \(N_\infty =\text {diag}\{\lambda ^{\infty }_a, \ a\ge 1\}\). Then the solution of (1.1) with the initial datum \(u_0(x)=\sum _{a\ge 1}\xi _a(0)h_a(x)\in {\mathcal {H}}^1\) is formulated by \(u(t,x)=\sum _{a\ge 1}\xi _a(t)h_a(x)\) with \(\xi (t)=\overline{M}_\omega (\omega t)e^{-\mathrm{i}tN_\infty }M_\omega ^T(0)\xi (0)\), where we use the fact \(\left( {\overline{M}}_\omega \right) ^{-1}=M_\omega ^T\) since M is unitary. Now we define the coordinate transformation \(\Psi _\omega ^{\infty }(\theta )\) by

$$\begin{aligned} \Psi _\omega ^{\infty }(\theta )\left( \sum _{a\ge 1}\xi _ah_a(x)\right) :=\sum _{a\ge 1}\left( M_\omega ^T(\theta )\xi \right) _ah_a(x)=\sum _{a\ge 1}\xi _{+,a}h_a(x). \end{aligned}$$

Then we have u(tx) satisfies (1.1) if and only if \(v(t,x)=\Psi _\omega ^{\infty }(\omega t)u(t,x)\) satisfies the autonomous equation \(\mathrm{i}\partial _tv=-v_{xx}+x^2v+\epsilon Q(v)\), where

$$\begin{aligned} \epsilon Q\left( \sum _{a\ge 1}\xi _ah_a(x)\right) =\sum _{a\ge 1}((N_\infty -N_0)\xi )_ah_a(x)=\sum _{a\ge 1}(\lambda _a^\infty -\lambda _a)\xi _ah_a(x). \end{aligned}$$

The rest estimates are standard (see Lemma 3.4 in [25] for the details). \(\square \)

4 Proof of Lemma 1.2 When \(1<\beta \le 2\)

For reader’s convenience, we will use the notations in [25]. In the whole section we will always suppose \(\mu \ge 0\) and don’t point it out in the following lemmas.

The eigenfunction of the quantum oscillator operator T is \(h_n(x)={(n! 2^n \pi ^{\frac{1}{2}})^{-\frac{1}{2}}}{e^{-\frac{1}{2} x^2} H_n(x)}\), where \(H_n(x)\) is the nth Hermite polynomial. Since \(h_n(x)\) is an even (or odd) function when n is odd (or even), we only need to estimate

$$\begin{aligned} \int _0^{+\infty } \langle x\rangle ^{\mu } e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx,\quad 1\le m\le n. \end{aligned}$$
(4.1)

By Lemma 4.4 and Remarks 4.5, 4.6 in [25], when \(m>m_0\),

$$\begin{aligned} h_m(x)= & {} (\lambda _m-x^2)^{-\frac{1}{4}}\left( \frac{\pi \zeta _m}{2}\right) ^{\frac{1}{2}}H_{\frac{1}{3}}^{(1)}(\zeta _m)\\&+(\lambda _m-x^2)^{-\frac{1}{4}}\left( \frac{\pi \zeta _m}{2}\right) ^{\frac{1}{2}}H_{\frac{1}{3}}^{(1)}(\zeta _m)O \left( \frac{1}{\lambda _m}\right) \nonumber \\:= & {} \psi ^{(m)}_1(x) +\psi ^{(m)}_2(x), \end{aligned}$$

where \(\zeta _m(x)=\displaystyle \int _{X_{m}}^x\sqrt{\lambda _m-t^2}dt\) with \(X_m^2=\lambda _m(X_m>0)\). Otherwise, when \(m\le m_0\), then \(h_m(x)=\psi _1^{(m)}(x)+\psi _2^{(m)}(x)\) for \(x>2X_{m_0}\), where \(\psi _1^{(m)}(x)=(\lambda _m-x^2)^{-\frac{1}{4}}(\frac{\pi \zeta _m}{2})^\frac{1}{2} H_\frac{1}{3}^{(1)}(\zeta _m)\) and \(|\psi _2^{(m)}(x)|\le \frac{C}{x^2}|\psi _1^{(m)}(x)|\). Following the same strategies in [25] we distinguish 3 cases to estimate (4.1):

  1. I.

    \(m,n< C_0: = 2^8m_0^3\);

  2. II.

    \(m\le m_0\) and \(n\ge C_0\);

  3. III.

    \(m,n>m_0\).

4.1 The Estimates for Case I and Case II

Lemma 4.1

When \(n, m<C_0\),

$$\begin{aligned} \left| \int _0^{+\infty } \langle x\rangle ^{\mu } e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{(mn)^{\frac{1}{4}(\frac{\beta }{6}-\mu )}}. \end{aligned}$$

Proof

When \(x\le X_0\), from Hölder inequality and \(n,m<C_0\), we have

$$\begin{aligned} \left| \int _0^{X_0} \langle x\rangle ^{\mu } e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le X_0^\mu \le \frac{C}{(mn)^{\frac{1}{4}(\frac{\beta }{6}-\mu )}}. \end{aligned}$$

where \(X_0\) is a positive constant depending on \(C_0\) only. When \(x>X_0\), \(|X_m^2-x^2|^{-\frac{1}{4}}<1\), we have \(\left| \sqrt{\frac{\pi \zeta _m}{2}}H^{(1)}_\frac{1}{3}(\zeta _m)\right| \le e^{-\left| \zeta _m\right| }\) by Lemma 5.4 in [25]. By Lemma 5.5 in [25] we have \(\left| \zeta _m\right| \ge \frac{2\sqrt{2}}{3}X_m^\frac{1}{2}(x-X_m)^\frac{3}{2}\ge x-X_0\) for \(x> X_0\). Thus

$$\begin{aligned} \left| \int _{X_0}^{+\infty } \langle x\rangle ^{\mu } e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \int _{X_0}^{+\infty } \langle x\rangle ^{\mu }e^{-2(x-X_0)}dx\le Ce^{2X_0} \le \frac{C}{(mn)^{\frac{1}{4}(\frac{\beta }{6}-\mu )}}. \end{aligned}$$

\(\square \)

Lemma 4.2

For \(m\le m_0\) and \(n\ge C_0\) and \(\mu \ge 0\),

$$\begin{aligned} \left| \int _0^{+\infty } \langle x\rangle ^{\mu } e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{(mn)^{\frac{1}{4}(\frac{\beta }{6}-\mu )}}. \end{aligned}$$

Proof

We divide the integral into two parts.

$$\begin{aligned} \int _0^{+\infty } \langle x\rangle ^{\mu } e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx=\int _0^{X_n^\frac{1}{3}}+\int _{X_n^\frac{1}{3}}^{+\infty }. \end{aligned}$$

Since \(x>2X_{m_0}\), we have

$$\begin{aligned} |h_m(x)|\le 2(x^2-X_m^2)^{-\frac{1}{4}}|\sqrt{\frac{\pi \zeta _m}{2}}H^{(1)}_\frac{1}{3}(\zeta _m)|\le 2 e^{-|\zeta _m|}. \end{aligned}$$

On the other hand, for \(x\in [0,X_n^\frac{1}{3}]\), one has \(|h_n(x)|\le C(X_n^2-x^2)^{-\frac{1}{4}}\). Note \(1<\beta <2\), it follows

$$\begin{aligned} \left| \int _0^{X_n^\frac{1}{3}}\langle x\rangle ^{\mu } e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right|\le & {} C\int _0^{X_n^\frac{1}{3}}\langle x\rangle ^{\mu }(X_n^2-x^2)^{-\frac{1}{4}}dx \le CX_n^{-\frac{1}{6}+\frac{\mu }{3}}\\\le & {} \frac{C}{(mn)^{\frac{1}{4}(\frac{\beta }{6}-\mu )}}. \end{aligned}$$

When \(x\ge X_n^\frac{1}{3}\ge 2X_{m_0}\), from Lemma 5.5 in [25], \(e^{-|\zeta _m|}\le e^{-C(x-X_m)}\). Note \(\Vert h_n(x)\Vert _{L^2}=1\), from Hölder inequality,

$$\begin{aligned} \left| \int _{X_n^\frac{1}{3}}^{+\infty }\langle x\rangle ^{\mu } e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le C\left( \int _{X_n^\frac{1}{3}}^{+\infty }\langle x\rangle ^{2\mu }e^{-Cx}dx\right) ^\frac{1}{2}\le e^{-CX_n^\frac{1}{3}}. \end{aligned}$$

\(\square \)

4.2 The Estimate for Case III

In the following we will turn to the complicated case when \(m,n>m_0\). We divide the integral into two parts \(\int _0^{+\infty } \langle x\rangle ^{\mu } e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx=\int _0^{X_n}+\int _{X_n}^{+\infty }\). We first go to the latter case \(\int _{X_n}^{+\infty }\).

4.2.1 The Integral on \([X_n, +\infty )\)

Lemma 4.3

For \(m_0<m\le n\),

$$\begin{aligned} \displaystyle \left| \int _{X_n}^{+\infty }\langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{1}{12}-\frac{\mu }{4}} n^{\frac{1}{12}-\frac{\mu }{4}}}\le \frac{C}{(mn)^{\frac{1}{4}(\frac{\beta }{6}-\mu )}}. \end{aligned}$$

We first estimate the integral on \([2X_n, +\infty ]\). The following result is clear from [25].

Lemma 4.4

For \(m_0<m\le n\),

$$\begin{aligned} \displaystyle \left| \int _{2X_n}^{+\infty }\langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x) \overline{h_n(x)}dx\right| \le e^{-C n}. \end{aligned}$$

For the integral on \([X_n,2X_n]\), we prove that

Lemma 4.5

For \(m_0<m\le n\),

$$\begin{aligned} \displaystyle \left| \int ^{2X_n}_{X_n}\langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x) \overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{1}{12}-\frac{\mu }{4}} n^{\frac{1}{12}-\frac{\mu }{4}}}. \end{aligned}$$

Proof

As [25], we only need to estimate the following integral \(I: = \int ^{2X_n}_{X_n}\langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\) since the rest three ones are higher order. I can be divided into two parts as

$$\begin{aligned} |I|&=\displaystyle \left| \Bigg (\int ^{2X_n}_{X_n+X_n^{\frac{1}{3}}}+\int ^{X_n+X_n^{\frac{1}{3}}}_{X_n}\Bigg )\langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\right| \\&\le CX_n^\mu \Big (\int ^{2X_n}_{X_n+X_n^{\frac{1}{3}}}+\int ^{X_n+X_n^{\frac{1}{3}}}_{X_n}\Big )\left| \psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}\right| dx. \end{aligned}$$

From Lemma 5.5 in [25], when \(x\ge X_n+X_n^{\frac{1}{3}}\), \(\left| \zeta _n\right| \ge \frac{2\sqrt{2}}{3}X_n^\frac{1}{2}(x-X_n)^\frac{3}{2}\ge \frac{2\sqrt{2}}{3}X_n.\) Thus

$$\begin{aligned}&\int ^{2X_n}_{X_n+X_n^{\frac{1}{3}}}\left| \psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}\right| dx \le C\int ^{2X_n}_{X_n+X_n^{\frac{1}{3}}}(x^2-\lambda _m)^{-\frac{1}{4}}(x^2-\lambda _n)^{-\frac{1}{4}} e^{-\left| \zeta _n\right| }dx \\&\quad \le Ce^{-\frac{2\sqrt{2}}{3}X_n} \int ^{2X_n}_{X_n+X_n^{\frac{1}{3}}}(x^2-\lambda _n)^{-\frac{1}{2}}dx\le Ce^{-\frac{2\sqrt{2}}{3}X_n}. \end{aligned}$$

For the second part,

$$\begin{aligned}&\int ^{X_n+X_n^{\frac{1}{3}}}_{X_n}\left| \psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}\right| dx\\&\le C\int ^{X_n+X_n^{\frac{1}{3}}}_{X_n}(x^2-\lambda _m)^{-\frac{1}{4}}(x^2-\lambda _n)^{-\frac{1}{4}}dx \le C\int ^{X_n+X_n^{\frac{1}{3}}}_{X_n} (x^2-\lambda _n)^{-\frac{1}{2}}dx \\&\quad \le CX_n^{-\frac{1}{2}} \int ^{X_n+X_n^{\frac{1}{3}}}_{X_n}(x-X_n)^{-\frac{1}{2}}dx \le CX_n^{-\frac{1}{3}}. \end{aligned}$$

It follows \(|I|\le CX_n^{\mu -\frac{1}{3}} \le \frac{C}{m^{\frac{1}{12}-\frac{\mu }{4}}n^{\frac{1}{12}-\frac{\mu }{4}}}\). \(\square \)

Combining with the above two lemmas we finish Lemma 4.3.

In the following we will estimate the integral on \([0,X_n]\), which is the most complicated case. Note \(m_0< m\le n\), the following two cases have to be considered respectively: I. \(X_n> 2X_m\); II. \(X_m\le X_n \le 2X_m\).

4.2.2 The Integral Estimate on \([0, X_n]\) When \(X_n> 2X_m\)

Our aim in this part is to build the following

Lemma 4.6

For \(k \ne 0\), if \(X_n> 2X_m\) and \(1<\beta \le 2\), then

$$\begin{aligned} \displaystyle \left| \int ^{X_n}_0 \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C (|k|^\iota \vee 1)}{m^{\frac{1}{8}-\frac{\mu }{4}} n^{\frac{1}{12}-\frac{\mu }{4}}}, \end{aligned}$$

where \(m_0< m\le n\) and \(\iota ={\left\{ \begin{array}{ll} \frac{1}{4-2\beta },&{}\quad 1<\beta <2,\\ 0,&{}\quad \beta =2. \end{array}\right. }\)

As [25] we will use the following notation in the remained parts. We denote \(f_m(x)=\int _0^{\infty }e^{-t}t^{-\frac{1}{6}}\left( 1+\frac{\mathrm{i}t}{2\zeta _m}\right) ^{-\frac{1}{6}}dt\) and \(f_n(x)=\int _0^{\infty }e^{-t}t^{-\frac{1}{6}}\left( 1+\frac{\mathrm{i}t}{2\zeta _n}\right) ^{-\frac{1}{6}}dt\). When \(x\in [0,X_{m}]\), from a straightforward computation we have

$$\begin{aligned} \psi _1^{(m)}(x)&= (X_m^2-x^2)^{-\frac{1}{4}}\sqrt{\frac{\pi \zeta _m}{2}} H_\frac{1}{3}^{(1)}(\zeta _m)\\&= (X_m^2-x^2)^{-\frac{1}{4}} \frac{e^{\mathrm{i}\left( \zeta _m-\frac{\pi }{6}-\frac{\pi }{4}\right) }}{\Gamma {\left( \frac{5}{6}\right) }} \int _0^{\infty }e^{-t}t^{-\frac{1}{6}}\left( 1+\frac{\mathrm{i}t}{2\zeta _m}\right) ^{-\frac{1}{6}}dt\\&=C(X_m^2-x^2)^{-\frac{1}{4}}e^{\mathrm{i}\zeta _m(x)}f_m(x). \end{aligned}$$

Similarly, \( \overline{\psi _1^{(n)}(x)} =C(X_n^2-x^2)^{-\frac{1}{4}}e^{-\mathrm{i}\zeta _n(x)}\overline{f_n(x)}. \) For \(x\in [0,X_m]\), denote \(\Psi (x)=(X_m^2-x^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}\cdot f_m(x)\overline{f_n(x)}\) and \(g(x)=(\zeta _n(x)-\zeta _m(x)-kx^{\beta })^\prime =\sqrt{X_n^2-x^2}-\sqrt{X_m^2-x^2}-k\beta x^{\beta -1}\),then

$$\begin{aligned} \Psi ^\prime (x)&=\frac{1}{2}x(X_m^2-x^2)^{-\frac{5}{4}} (X_n^2-x^2)^{-\frac{1}{4}}\cdot f_m(x)\overline{f_n(x)}\\&\quad +\frac{1}{2}x(X_m^2-x^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{5}{4}}\cdot f_m(x)\overline{f_n(x)}\\&\quad +(X_m^2-x^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}\cdot \left( f_m^\prime (x)\overline{f_n(x)}+f_m(x)\overline{f_n^\prime (x)}\right) . \end{aligned}$$

When \(x\in [0, X_m]\), \(\left| f_m(x)\right| \le \Gamma (\frac{5}{6})\) and \(\left| f_n(x)\right| \le \Gamma (\frac{5}{6})\). Thus,

Corollary 4.7

For \(x\in [0,X_m)\) and \(m\le n\),

$$\begin{aligned} \left| \Psi ^\prime (x)\right|&\le C\Big (x(X_m^2-x^2)^{-\frac{5}{4}}(X_n^2-x^2)^{-\frac{1}{4}} +x(X_m^2-x^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{5}{4}}\\&\quad +\frac{(X_m^2-x^2)^{\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}}{X_m(X_m-x)^3} + \frac{(X_m^2-x^2)^{-\frac{1}{4}} (X_n^2-x^2)^{\frac{1}{4}}}{X_n (X_n-x)^3}\Big )\\&=C\big (J_1+J_2+J_3+J_4\big )\le C(J_1+J_3). \end{aligned}$$

We first estimate the integral on \([0, X_m-X_m^{-\frac{1}{3}}]\).

Lemma 4.8

For \(k\ne 0,1<\beta <2\), if \(X_n> 2X_m\), then

$$\begin{aligned} \left| \int _0^{X_m-X_m^{-\frac{1}{3}}} \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C(|k|^\frac{1}{4-2\beta }\vee 1)}{m^{\frac{1}{8}-\frac{\mu }{4}} n^{\frac{1}{8}-\frac{\mu }{4}}}, \end{aligned}$$

where \(m_0< m\le n\).

Proof

First we estimate the main term of the integral

$$\begin{aligned} \int ^{X_m-X_m^{-\frac{1}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}\psi _1^{(m)}(x)\overline{\psi _1^{(n)}(x)}dx = C\int ^{X_m-X_m^{-\frac{1}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}(\zeta _m-\zeta _n+kx^{\beta })}\Psi (x)dx, \end{aligned}$$

by method of oscillating integral estimate, where \(\Psi (x)=(X_m^2-x^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}\cdot f_m(x)\overline{f_n(x)}.\) We discuss two different cases.

Case 1: \(k\le \frac{X_n^{2-\beta }}{8}\). In this case, we have

$$\begin{aligned} g(x)\ge \sqrt{X_n^2-x^2}-\sqrt{\frac{X_n^2}{4}-x^2}-\beta kX_n^{\beta -1} \ge \frac{X_n}{2}-2\cdot \frac{X_n^{2-\beta }}{8}X_n^{\beta -1}\ge \frac{X_n}{4}. \end{aligned}$$

Thus, by Lemma 6.1,

$$\begin{aligned}&\left| \int ^{X_m-X_m^{-\frac{1}{3}}}_{0}e^{\mathrm{i}\frac{\zeta _m-\zeta _n+kx^\beta }{X_n}X_n}\langle x\rangle ^\mu \Psi (x)dx\right| \\&\quad \le CX_n^{-1}\left( \left| \left( \langle x\rangle ^\mu \Psi \right) (X_m-X_m^{-\frac{1}{3}})\right| +\int _0^{X_m-X_m^{-\frac{1}{3}}}\left| \left( \langle x\rangle ^\mu \Psi \right) ^\prime (x)\right| dx\right) \\&\quad \le CX_n^{-1}\left( X_m^\mu \left| \Psi (X_m-X_m^{-\frac{1}{3}})\right| +\int _0^{X_m-X_m^{-\frac{1}{3}}}\left( 2\langle x\rangle ^\mu \left( J_1+J_3\right) +\mu \langle x\rangle ^{\mu -1}\frac{ x}{\langle x\rangle }\left| \Psi (x)\right| \right) dx\right) \\&\quad \le CX_n^{-1}X_m^\mu \left( \left| \Psi (X_m-X_m^{-\frac{1}{3}})\right| +\int _0^{X_m-X_m^{-\frac{1}{3}}}\left( J_1+J_3\right) dx\right) \\&\qquad +C\mu X_n^{-1}\int _0^{X_m-X_m^{-\frac{1}{3}}}\langle x\rangle ^{\mu -1}\left| \Psi (x)\right| dx. \end{aligned}$$

Clearly,

$$\begin{aligned} X_m^\mu \left| \Psi (X_m-X_m^{-\frac{1}{3}})\right|&\le CX_m^\mu \left( X_m^2-(X_m-X_m^{-\frac{1}{3}})^2\right) ^{-\frac{1}{4}} \left( X_n^2-(X_m-X_m^{-\frac{1}{3}})^2\right) ^{-\frac{1}{4}}\\&\le C X_m^{-\frac{1}{3}+\mu }, \end{aligned}$$

and

$$\begin{aligned}&\int _0^{X_m-X_m^{-\frac{1}{3}}}\mu \langle x\rangle ^{\mu -1}\left| \Psi (x)\right| dx \le C\left( X_m^2-(X_m-X_m^{-\frac{1}{3}})^2\right) ^{-\frac{1}{4}}\\&\quad \left( X_n^2-(X_m-X_m^{-\frac{1}{3}})^2\right) ^{-\frac{1}{4}}\int _0^{X_m}\mu x^{\mu -1}dx\\&\quad \le C\left( X_m^2-(X_m-X_m^{-\frac{1}{3}})^2\right) ^{-\frac{1}{4}} \left( X_n^2-(X_m-X_m^{-\frac{1}{3}})^2\right) ^{-\frac{1}{4}}X_m^{\mu }\le CX_m^{-\frac{1}{3}+\mu }, \end{aligned}$$

together with

$$\begin{aligned} \int _0^{X_m-X_m^{-\frac{1}{3}}}J_1dx&\le C \int _0^{X_m-X_m^{-\frac{1}{3}}} x(X_m^2-x^2)^{-\frac{5}{4}}(X_m^2-x^2)^{-\frac{1}{4}}dx \le C X_m^{-\frac{1}{3}}, \end{aligned}$$

and

$$\begin{aligned} \int _0^{X_m-X_m^{-\frac{1}{3}}}J_3dx&\le CX_m^{-1}\int _0^{X_m-X_m^{-\frac{1}{3}}}(X_m-x)^{-3}dx \le C X_m^{-\frac{1}{3}}. \end{aligned}$$

So we obtain \(\left| \int ^{X_m-X_m^{-\frac{1}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x)\overline{\psi _1^{(n)}(x)}dx\right| \le CX_m^{-\frac{1}{3}+\mu }X_n^{-1}.\) Now we turn to remained three terms. Since \(m_0< m\le n\),

$$\begin{aligned} \left| \int ^{X_m-X_m^{-\frac{1}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _2^{(m)}(x)\overline{\psi _1^{(n)}(x)}dx\right|&\le C\int _0^{X_m-X_m^{-\frac{1}{3}}}X_m^{-2+\mu }(X_m^2-x^2)^{-\frac{1}{4}}(X_n^2-x^2)^{-\frac{1}{4}}dx\\&\le CX_m^{-\frac{3}{2}+\mu }X_n^{-\frac{1}{2}}\le Cn^{-\frac{1}{4}+\frac{\mu }{2}}. \end{aligned}$$

Similarly, when \(m_0< m\le n\), we have

$$\begin{aligned} \left| \int ^{X_m-X_m^{-\frac{1}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x)\overline{\psi _2^{(n)}(x)}dx\right| \le Cn^{-1+\frac{\mu }{2}} \end{aligned}$$

and

$$\begin{aligned} \left| \int ^{X_m-X_m^{-\frac{1}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _2^{(m)}(x)\overline{\psi _2^{(n)}(x)}dx\right| \le Cn^{-1+\frac{\mu }{2}}. \end{aligned}$$

Thus,

$$\begin{aligned} \left| \int ^{X_m-X_m^{-\frac{1}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{n^{\frac{1}{4}-\frac{\mu }{2}}}\le \frac{C}{m^{\frac{1}{8}-\frac{\mu }{4}}n^{\frac{1}{8}-\frac{\mu }{4}}},\quad m_0<m\le n. \end{aligned}$$

Case 2: \(k>\frac{X_n^{2-\beta }}{8}>0\).

Since \(m\le n\), we have \(2n\le (8k)^{\frac{2}{2-\beta }}+1\). It follows that

$$\begin{aligned} \left| \int _0^{X_m-X_m^{-\frac{1}{3}}} \langle x\rangle ^\mu e^{ \mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\right| \le CX_m^\mu \le CX_m^\mu \frac{m^{\frac{1}{8}} n^{\frac{1}{8}}}{m^{\frac{1}{8}}n^{\frac{1}{8}}}\le \frac{Ck^\frac{1}{4-2\beta }}{m^{\frac{1}{8}-\frac{\mu }{4}} n^{\frac{1}{8}-\frac{\mu }{4}}}. \end{aligned}$$

Combining with these two cases we finish the proof. \(\square \)

Lemma 4.9

For \(k\ne 0\), if \(X_n>2X_m\), then

$$\begin{aligned} \left| \int _0^{X_m-X_m^{\frac{2}{3}}} \langle x\rangle ^\mu e^{\mathrm{i}kx^{2}}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{1}{8}-\frac{\mu }{4}} n^{\frac{1}{8}-\frac{\mu }{4}}}, \end{aligned}$$

where \(m_0< m\le n\).

Proof

We first estimate the main part of the integral. By the oscillating integral estimate,

$$\begin{aligned} \int ^{X_m-X_m^{\frac{2}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}kx^{2}}\psi _1^{(m)}(x)\overline{\psi _1^{(n)}(x)}dx = C\int ^{X_m-X_m^{\frac{2}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}(\zeta _m-\zeta _n+kx^{2})}\Psi (x)dx, \end{aligned}$$

where \(\Psi (x)=(X_m^2-x^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}\cdot f_m(x)\overline{f_n(x)}.\) Since \( g''(x)\ge g''(0)=\frac{1}{X_m}-\frac{1}{X_n}\ge \frac{1}{2}X_m^{-1}, \) by Lemma 6.1,

$$\begin{aligned}&\left| \int ^{X_m-X_m^{\frac{2}{3}}}_{0}e^{\mathrm{i}\frac{\zeta _m-\zeta _n+kx^2}{X_n}X_n}\langle x\rangle ^\mu \Psi (x)dx\right| \\&\quad \le C{X_m^\frac{1}{3}}\left( \left| \left( \langle x\rangle ^\mu \Psi \right) (X_m-X_m^{\frac{2}{3}})\right| +\int _0^{X_m-X_m^{\frac{2}{3}}}\left| \left( \langle x\rangle ^\mu \Psi \right) ^\prime (x)\right| dx\right) \\&\quad \le C{X_m^{\frac{1}{3}}}\left( X_m^\mu \left| \Psi (X_m-X_m^{\frac{2}{3}})\right| +\int _0^{X_m-X_m^{\frac{2}{3}}}\left( 2\langle x\rangle ^\mu \left( J_1+J_3\right) +\mu \langle x\rangle ^{\mu -1}\frac{ x}{\langle x\rangle }\left| \Psi (x)\right| \right) dx\right) \\&\quad \le C{X_m^{\frac{1}{3}}}X_m^\mu \left( \left| \Psi (X_m-X_m^{\frac{2}{3}})\right| +\int _0^{X_m-X_m^{\frac{2}{3}}}\left( J_1+J_3\right) dx\right) \\&\qquad +C\mu {X_m^\frac{1}{3}}\int _0^{X_m-X_m^{\frac{2}{3}}}\langle x\rangle ^{\mu -1}\left| \Psi (x)\right| dx. \end{aligned}$$

The estimate comes from three terms. Clearly, for \(x\in [0,X_m-X_m^\frac{2}{3}]\) we have

$$\begin{aligned} |\Psi (x)|\le & {} C(X_m^2-x^2)^{-\frac{1}{4}}(X_n^2-x^2)^{-\frac{1}{4}}\\\le & {} C(X_mX_n)^{-\frac{1}{4}}(X_m-x)^{-\frac{1}{4}}(X_n-x)^{-\frac{1}{4}}\le CX_m^{-\frac{5}{12}}X_n^{-\frac{1}{2}}. \end{aligned}$$

It follows that

$$\begin{aligned} X_m^\mu \left| \Psi (X_m-X_m^{\frac{2}{3}})\right| \le CX_m^{\mu -\frac{5}{12}}X_n^{-\frac{1}{2}}, \end{aligned}$$

and

$$\begin{aligned} \int _0^{X_m-X_m^{\frac{2}{3}}}\mu \langle x\rangle ^{\mu -1}\left| \Psi (x)\right| dx \le CX_m^{-\frac{5}{12}}X_n^{-\frac{1}{2}}\int _0^{X_m}\langle x\rangle ^{\mu -1}dx\le CX_m^{\mu -\frac{5}{12}}X_n^{-\frac{1}{2}}, \end{aligned}$$

together with

$$\begin{aligned} \int _0^{X_m-X_m^{\frac{2}{3}}}J_1dx \le C \int _0^{X_m-X_m^{\frac{2}{3}}} x(X_m^2-x^2)^{-\frac{5}{4}}(X_n^2-x^2)^{-\frac{1}{4}}dx \le C X_m^{-\frac{5}{12}}X_n^{-\frac{1}{2}}, \end{aligned}$$

and

$$\begin{aligned} \int _0^{X_m-X_m^{\frac{2}{3}}}J_3dx\le CX_m^{-\frac{3}{4}}X_n^{-\frac{1}{2}}\int _0^{X_m-X_m^{\frac{2}{3}}}(X_m-x)^{-\frac{11}{4}}dx \le C X_m^{-\frac{5}{12}}X_n^{-\frac{1}{2}}, \end{aligned}$$

we obtain \( \left| \int ^{X_m-X_m^{\frac{2}{3}}}_{0} \langle x\rangle ^\mu e^{\mathrm{i}kx^2}\psi _1^{(m)}(x)\overline{\psi _1^{(n)}(x)}dx\right| \le CX_m^{-\frac{1}{12}+\mu }X_n^{-\frac{1}{2}}\le C(X_mX_n)^{\frac{\mu }{2}-\frac{1}{4}}.\) The estimate of rest parts of the integral is similar with Lemma 4.8. Thus,

$$\begin{aligned} \left| \int ^{X_m-X_m^{\frac{2}{3}}}_{0} \langle x\rangle ^\mu e^{ \mathrm{i}kx^2}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{1}{8}-\frac{\mu }{4}}n^{\frac{1}{8}-\frac{\mu }{4}}},\quad m_0<m\le n. \end{aligned}$$

\(\square \)

Lemma 4.10

If \(X_n>2X_m\) and \(1<\beta \le 2\), then

$$\begin{aligned} \left| \int _{X_m-X_m^{\nu _1}}^{X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x) \overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{3}{16}-\frac{3}{16}\nu _1-\frac{\mu }{4}} n^{\frac{3}{16}-\frac{3}{16}\nu _1-\frac{\mu }{4}}}, \end{aligned}$$

where \(m_0<m\le n\) and

$$\begin{aligned} \nu _1= {\left\{ \begin{array}{ll} -1/3,&{}\quad 1<\beta <2,\\ 2/3, &{}\quad \beta =2. \end{array}\right. } \end{aligned}$$

Proof

First,

$$\begin{aligned}&\left| \int _{X_m-X_m^{\nu _1}}^{X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\right| \le C\int _{X_m-X_m^{\nu _1}}^{X_m} \langle x\rangle ^\mu (X_m^2-x^2)^{-\frac{1}{4}}(X_n^2-x^2)^{-\frac{1}{4}}dx\\&\quad \le C X_m^{-\frac{1}{4}+\mu } (X_n^2-X_m^2)^{-\frac{1}{4}}\int _{X_m-X_m^{\nu _1}}^{X_m}(X_m-x)^{-\frac{1}{4}}dx\\&\quad \le C X_m^{-\frac{1}{4}+\mu } (X_n^2-\frac{X_n^2}{4})^{-\frac{1}{4}}X_m^{\frac{3}{4}\nu _1}\le C X_m^{-\frac{3}{8}+\frac{3}{8}\nu _1+\frac{\mu }{2}} X_n^{-\frac{3}{8}+\frac{3}{8}\nu _1+\frac{\mu }{2}}. \end{aligned}$$

Similarly,

$$\begin{aligned} \left| \int _{X_m-X_m^{\nu _1}}^{X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _{j_1}^{(m)}(x) \overline{\psi _{j_2}^{(n)}(x)}dx\right| \le C X_m^{-\frac{3}{8}+\frac{3}{8}\nu _1+\frac{\mu }{2}} X_n^{-\frac{3}{8}+\frac{3}{8}\nu _1+\frac{\mu }{2}},\ \ j_1,j_2\in \{1,2\}. \end{aligned}$$

Thus we finish the proof. \(\square \)

Lemma 4.11

When \(X_n > 2X_m\) and \(1<\beta \le 2\),

$$\begin{aligned} \left| \int _{X_m}^{X_n}\langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{1}{8}-\frac{\mu }{4}}n^{\frac{1}{12}-\frac{\mu }{4}}}, \end{aligned}$$

where \(m_0<m\le n\).

Proof

When \(X_n>2X_{m_0}\) , \(X_m+X_m^{-\frac{1}{3}}\le \frac{X_n}{2}+1\le \frac{3}{4}X_n\). It follows

$$\begin{aligned}&\left| \int ^{X_m+X_m^{-\frac{1}{3}}}_{X_m}\langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x)\overline{\psi _1^{(n)}(x)}dx\right| \\&\quad \le CX_m^\mu \int ^{X_m+X_m^{-\frac{1}{3}}}_{X_m}(x^2-X_m^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}dx\\&\quad \le CX_m^{-\frac{1}{4}+\mu }\left( X_n^2-(X_m+X_m^{-\frac{1}{3}})^2\right) ^{-\frac{1}{4}} \int _{X_m}^{X_m+X_m^{-\frac{1}{3}}}(x-X_m)^{-\frac{1}{4}}dx\\&\quad \le CX_m^{-\frac{1}{2}+\frac{\mu }{2}}X_n^{-\frac{1}{2}+\frac{\mu }{2}}. \end{aligned}$$

From \(X_n> 2X_m\), we have \(X_n-X_n^{-\frac{1}{3}}\ge \frac{3}{2}X_m\), together with Lemma 5.5 in [25], thus

$$\begin{aligned}&\left| \int _{X_m+X_m^{-\frac{1}{3}}}^{\frac{3}{2}X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\right| \\&\quad \le CX_m^\mu \int _{X_m+X_m^{-\frac{1}{3}}}^{\frac{3}{2}X_m} (x^2-X_m^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}e^{\mathrm{i}\zeta _m}dx\\&\quad \le C X_m^{-\frac{1}{4}+\mu }\left( X_n^2-(X_n-X_n^{-\frac{1}{3}})^2\right) ^{-\frac{1}{4}} \int _{X_m+X_m^{-\frac{1}{3}}}^{\frac{3}{2}X_m} (x-X_m)^{-\frac{1}{4}} e^{-(x-X_m)}dx\\&\quad \le C X_m^{-\frac{1}{4}+\mu }X_n^{-\frac{1}{6}}\int _0^\infty t^{-\frac{1}{4}}e^{-t}dt\le C X_m^{-\frac{1}{4}+\frac{\mu }{2}}X_n^{-\frac{1}{6}+\frac{\mu }{2}}. \end{aligned}$$

When \(x\ge \frac{3}{2}X_m\), \(x-X_m\ge \frac{1}{3}x\), it follows

$$\begin{aligned}&\left| \int _{\frac{3}{2}X_m}^{X_n-X_n^{-\frac{1}{3}}} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\right| \\&\quad \le C\int _{\frac{3}{2}X_m}^{X_n-X_n^{-\frac{1}{3}}} \langle x\rangle ^\mu (x^2-X_m^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}e^{\mathrm{i}\zeta _m}dx\\&\quad \le C X_m^{-\frac{1}{4}}\left( X_n^2-(X_n-X_n^{-\frac{1}{3}})^2\right) ^{-\frac{1}{4}} \int _{\frac{3}{2}X_m}^{X_n-X_n^{-\frac{1}{3}}} (x-X_m)^{-\frac{1}{4}+\mu } e^{-(x-X_m)}dx\\&\quad \le C X_m^{-\frac{1}{4}}X_n^{-\frac{1}{6}}\int _0^\infty t^{-\frac{1}{4}+\mu }e^{-t}dt\le C X_m^{-\frac{1}{4}}X_n^{-\frac{1}{6}}. \end{aligned}$$

Thus,

$$\begin{aligned}&\left| \int _{X_n-X_n^{-\frac{1}{3}}}^{X_n}\langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\right| \\&\quad \le C\int _{X_n-X_n^{-\frac{1}{3}}}^{X_n}x^\mu (x^2-X_m^2)^{-\frac{1}{4}}(X_n^2-x^2)^{-\frac{1}{4}}e^{\mathrm{i}\zeta _m}dx\\&\quad \le C \left( (X_n-X_n^{-\frac{1}{3}})^2-X_m^2\right) ^{-\frac{1}{4}}X_n^{-\frac{1}{4}} \int _{X_n-X_n^{-\frac{1}{3}}}^{X_n} (X_n-x)^{-\frac{1}{4}}x^\mu e^{-\frac{1}{3}x}dx\\&\quad \le C X_m^{-\frac{1}{2}}X_n^{-\frac{1}{4}} \int _{X_n-X_n^{-\frac{1}{3}}}^{X_n} (X_n-x)^{-\frac{1}{4}}dx\\&\quad \le CX_m^{-\frac{1}{2}}X_n^{-\frac{1}{2}} \le C(X_mX_n)^{-\frac{1}{2}+\frac{\mu }{2}}. \end{aligned}$$

Combining with all the above, we have \(\left| \int _{X_m}^{X_n}\langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)} dx \right| \le \frac{C}{m^{\frac{1}{8}-\frac{\mu }{4}}n^{\frac{1}{12}-\frac{\mu }{4}}}\). The rest estimates are similar as above. \(\square \)

Combining with Lemmas 4.8, 4.9, 4.10, 4.11, we finish the proof of Lemma 4.6.

4.2.3 The Integral Estimate on \([0, X_n]\) When \(X_m\le X_n\le 2X_m\)

One can split the integral into

$$\begin{aligned} \int ^{X_n}_0 \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx =\left( \int ^{X_m^\frac{2}{3}}_0+\int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}}+ \int _{X_m-X_m^{\nu _2}}^{X_n}\right) \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx, \end{aligned}$$

and estimate them respectively, where

$$\begin{aligned} \nu _2= {\left\{ \begin{array}{ll} 1-\frac{\beta }{3},&{}\quad 1<\beta <2,\\ \frac{5}{9}, &{}\quad \beta =2. \end{array}\right. } \end{aligned}$$

Our main aim in this part is to build the following two lemmas.

Lemma 4.12

For \(X_m \le X_n \le 2X_m\) and \(k\ne 0\),

$$\begin{aligned} \displaystyle \left| \int _0^{X_n} \langle x\rangle ^\mu e^{\mathrm{i}kx^2}h_m(x)\overline{h_n(x)}dx\right| \le \frac{ C(|k|^{-1}\vee 1)}{m^{\frac{1}{18}-\frac{\mu }{4}} n^{\frac{1}{18}-\frac{\mu }{4}}}, \end{aligned}$$

where \(C>0\), \(m_0< m\le n\).

Lemma 4.13

For \(X_m \le X_n \le 2X_m\), \(k\ne 0\) and \(1<\beta <2\),

$$\begin{aligned} \displaystyle \left| \int _0^{X_n} \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C(|k|^{-1}\vee |\beta (\beta -1)(\beta -2)k|^{-\frac{1}{3}}\vee 1)}{m^{\frac{\beta }{24}-\frac{\mu }{4}} n^{\frac{\beta }{24}-\frac{\mu }{4}}}, \end{aligned}$$

where \(C>0\), \(m_0< m\le n\).

From a straightforward computation we have

Lemma 4.14

For \(X_m \le X_n \le 2X_m\) and \(1<\beta \le 2\),

$$\begin{aligned} \displaystyle \left| \int _0^{X_m^\frac{2}{3}} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{1}{12}-\frac{\mu }{4}} n^{\frac{1}{12}-\frac{\mu }{4}}}, \end{aligned}$$

where \(C>0\), \(m_0< m\le n\).

Next we estimate the integral on \([X_m^\frac{2}{3},X_m-X_m^{\frac{5}{9}}]\), for which we discuss different cases as the following.

Lemma 4.15

If \(X_m\le X_n\le 2X_m\), when \(k>0\) and \(0\le X_n^2-X_m^2\le kX_m^\frac{4}{3}\), then

$$\begin{aligned} \displaystyle \left| \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \langle x\rangle ^\mu e^{\mathrm{i}kx^2}h_m(x)\overline{h_n(x)}dx\right| \le \frac{Ck^{-\frac{1}{2} }}{m^{\frac{7}{36}-\frac{\mu }{4}}n^{\frac{7}{36}-\frac{\mu }{4}}}, \end{aligned}$$

where \(m_0< m\le n\).

Proof

We first estimate

$$\begin{aligned} \left| \displaystyle \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \langle x\rangle ^\mu e^{\mathrm{i}kx^2}\psi ^{(m)}_1(x)\overline{\psi ^{(n)}_1(x)}dx\right| = \left| C\displaystyle \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \langle x\rangle ^\mu e^{\mathrm{i}(\zeta _m-\zeta _n+kx^2)}\Psi (x)dx\right| . \end{aligned}$$

Notice that

$$\begin{aligned} g'(x)&\le \frac{kX_m^\frac{4}{3}X_m}{\sqrt{2X_m^{\frac{14}{9}}-X_m^{\frac{10}{9}}}\sqrt{2X_m^{\frac{14}{9}}-X_m^{\frac{10}{9}}}(\sqrt{2X_m^{\frac{14}{9}}-X_m^{\frac{10}{9}}}+\sqrt{2X_m^{\frac{14}{9}}-X_m^{\frac{10}{9}}})}-2k\\&\le \frac{k X_m^\frac{7}{3}}{2X_m^\frac{7}{3}}-2k= -\frac{3}{2}k, \end{aligned}$$

and by straightforward computation, \(g''(x)\ge 0\). It follows \(|g'(x)|\ge \frac{3}{2}k\) on \(x\in [X_m^\frac{2}{3}, X_m-X_m^\frac{5}{9}]\). By Lemma 6.1,

$$\begin{aligned}&\left| \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \langle x\rangle ^\mu e^{\mathrm{i}\frac{2}{3k}(\zeta _m-\zeta _n+kx^2)\cdot \frac{3k}{2}} (X_m^2-x^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}\cdot f_m(x)\overline{f_n(x)}dx\right| \\&\quad \le Ck^{-\frac{1}{2}}\left[ \left| (\langle x\rangle ^\mu \Psi )(X_m-X_m^{\frac{5}{9}})\right| + \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \left| (\langle x\rangle ^\mu \Psi )^\prime (x)\right| dx\right] \\&\quad \le Ck^{-\frac{1}{2}}\left[ X_m^{\mu }\left| \Psi (X_m-X_m^{\frac{5}{9}})\right| + \langle X_m\rangle ^\mu \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \left| \Psi ^\prime (x)\right| dx\right. \\&\qquad \left. +\mu \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \langle x\rangle ^{\mu -1}\left| \Psi (x)\right| dx \right] . \end{aligned}$$

We estimate the above terms one by one. Clearly,

$$\begin{aligned} \left| \Psi (X_m-X_m^{\frac{5}{9}})\right|&\le C\left( X_m^2-(X_m-X_m^{\frac{5}{9}})^2\right) ^{-\frac{1}{4}} \left( X_n^2-(X_m-X_m^{\frac{5}{9}})^2\right) ^{-\frac{1}{4}} \le C X_m^{-\frac{7}{9}}, \end{aligned}$$

and \(\int _{X_m^\frac{2}{3}}^{X_m-X_m^{\frac{5}{9}}} \langle x\rangle ^{\mu -1}\left| \Psi (x)\right| dx\le CX_m^{-\frac{7}{9}+\mu }\). Besides, we have \(|\Psi ^\prime (x)|\le C(J_1+J_3)\) and

$$\begin{aligned} \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}}J_1dx&\le C \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} x(X_m^2-x^2)^{-\frac{5}{4}}(X_n^2-x^2)^{-\frac{1}{4}}dx \le C X_m^{-\frac{7}{9}}, \end{aligned}$$

also, \(\int _{X_m^\frac{2}{3}}^{X_m-X_m^{\frac{5}{9}}}J_3dx\le C X_m^{-\frac{7}{9}}\). Combining with all the estimates, we obtain

$$\begin{aligned} \left| \displaystyle \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \langle x\rangle ^\mu e^{\mathrm{i}kx^{2}}\psi ^{(m)}_1(x)\overline{\psi ^{(n)}_1(x)}dx\right| \le Ck^{-\frac{1}{2}} X_m^{-\frac{7}{9}+\mu }. \end{aligned}$$

The estimates for the rest three terms are easier. In fact, by \(m > m_0\),

$$\begin{aligned} \left| \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \langle x\rangle ^\mu e^{\mathrm{i}kx^2}\psi ^{(m)}_2(x)\overline{\psi ^{(n)}_1(x)}dx\right|&\le CX_m^{-2+\mu }\int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}}(X_m^2-x^2)^{-\frac{1}{2}}dx\\&\le CX_m^{-\frac{5}{2}+\mu } \int _{0}^{X_m-X_m^\frac{5}{9}}(X_m-x)^{-\frac{1}{2}}dx \le CX_m^{-\frac{7}{9}+\mu }. \end{aligned}$$

The estimates for the other two are similar. Thus,

$$\begin{aligned} \left| \displaystyle \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}}\langle x\rangle ^\mu e^{\mathrm{i}kx^2}h_m(x)\overline{h_n(x)}dx\right| \le&\frac{Ck^{-\frac{1}{2} }}{m^{\frac{7}{36}-\frac{\mu }{4}}n^{\frac{7}{36}-\frac{\mu }{4}}}. \end{aligned}$$

\(\square \)

Lemma 4.16

For \(k>0\), \(X_m\le X_n\le 2X_m\), if \(kX_m^\frac{4}{3}\le X_n^2-X_m^2\), then

$$\begin{aligned} \displaystyle \left| \int _{X_m^\frac{2}{3}}^{X_m-X_m^\frac{5}{9}} \langle x\rangle ^\mu e^{\mathrm{i}kx^2}h_m(x)\overline{h_n(x)}dx\right| \le \frac{Ck^{-\frac{1}{3}}}{m^{\frac{1}{18}-\frac{\mu }{4}} n^{\frac{1}{18}-\frac{\mu }{4}}}, \end{aligned}$$

where \(m_0< m\le n\).

Proof

For \(kX_m^\frac{4}{3}\le X_n^2-X_m^2\), straightforward computation shows that \(g'''(x)\ge 0\). So

$$\begin{aligned} g''(x)\ge g''(0)=\frac{1}{X_m}-\frac{1}{X_n} =\frac{X_n^2-X_m^2}{X_mX_n(X_m+X_n)}\ge \frac{kX_m^\frac{4}{3}}{3X_mX_mX_n}\ge \frac{k}{6}X_m^{-\frac{5}{3}}. \end{aligned}$$

Then by Lemma 6.1,

$$\begin{aligned}&\Big |\int _{X_m^\frac{2}{3}}^{X_m-X_m^{\frac{5}{9}}}\langle x\rangle ^\mu e^{\mathrm{i}\frac{\zeta _m-\zeta _n+kx^2}{kX_m^{-\frac{5}{3}}} kX_m^{-\frac{5}{3}}}(X_n^2-x^2)^{-\frac{1}{4}}(X_m^2-x^2)^{-\frac{1}{4}}f_m(x)\overline{f_n(x)}dx\Big | \nonumber \\&\quad \le Ck^{-\frac{1}{3}}X_m^{\frac{5}{9}}\left[ \left| (\langle x\rangle ^\mu \Psi )(X_m-X_m^{\frac{5}{9}})\right| + \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\frac{5}{9}}} \left| (\langle x\rangle ^\mu \Psi )^\prime (x)\right| dx\right] \nonumber \\&\quad \le Ck^{-\frac{1}{3}}X_m^{\frac{5}{9}}\bigg [X_m^\mu \left| \Psi (X_m-X_m^{\frac{5}{9}})\right| + X_m^\mu \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\frac{5}{9}}}\left| \Psi ^\prime (x)\right| dx \nonumber \\&\qquad +\mu \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\frac{5}{9}}} \langle x\rangle ^{\mu -1}\left| \Psi (x)\right| dx\bigg ]. \end{aligned}$$

The rest part of the proof is similar with Lemma 4.15. \(\square \)

Lemma 4.17

For \(\forall k < 0, X_m\le X_n\le 2X_m\), we have

$$\begin{aligned} \displaystyle \left| \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\right| \le \frac{C(|k|^{-1}\vee 1)}{m^{\frac{1}{6}\beta -\frac{1}{24}+\frac{\nu _2}{8}-\frac{\mu }{4} } n^{\frac{1}{6}\beta -\frac{1}{24}+\frac{\nu _2}{8}-\frac{\mu }{4}}}, \end{aligned}$$

where \(m_0<m\le n\).

Proof

We first estimate

$$\begin{aligned} \left| \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}} \langle x\rangle ^\mu e^{\mathrm{i} kx^\beta }\psi _1^{(m)}(x)\overline{\psi _1^{(n)}(x)}dx\right| =\left| C\int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}}\langle x\rangle ^\mu e^{\mathrm{i}(\zeta _m-\zeta _n+kx^\beta )}\Psi (x)dx\right| . \end{aligned}$$

Notice that \(g(x)=\sqrt{X_n^2-x^2}-\sqrt{X_m^2-x^2}-\beta kx^{\beta -1} \ge - kX_m^{\frac{2}{3}(\beta -1)} \) and \(g^\prime (x)>0\), then by Lemma 6.1,

$$\begin{aligned}&\left| \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}}\langle x\rangle ^\mu e^{\mathrm{i}\frac{\zeta _m-\zeta _n+kx^\beta }{|k|X_m^{\frac{2}{3}(\beta -1)}}|k|X_m^{\frac{2}{3}(\beta -1)}} (X_m^2-x^2)^{-\frac{1}{4}}(X_n^2-x^2)^{-\frac{1}{4}}f_m(x)\overline{f_n(x)}dx\right| \\&\quad \le \frac{C}{|k|}X_m^{-\frac{2}{3}(\beta -1)}\left[ \left| (\langle x\rangle ^\mu \Psi )(X_m-X_m^{\nu _2})\right| +\int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}}|(\langle x\rangle ^\mu \Psi )^\prime (x)|dx\right] \\&\quad \le C|k|^{-1}X_m^{-\frac{2}{3}(\beta -1)}\bigg [X_m^\mu \left| \Psi (X_m-X_m^{\nu _2})\right| +X_m^\mu \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}}|\Psi ^\prime (x)|dx \\&\qquad +\mu \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}}\langle x\rangle ^{\mu -1}|\Psi (x)|dx\bigg ]. \end{aligned}$$

The rest part of the proof is similar with Lemma 4.15. \(\square \)

Finally, we have

Lemma 4.18

For \(k>0, 1<\beta <2, X_m\le X_n\le 2X_m\), we have

$$\begin{aligned} \displaystyle \left| \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\right| \le \frac{C|\beta (\beta -1)(\beta -2)k|^{-\frac{1}{3}} }{m^{\frac{\beta }{24}-\frac{\mu }{4}} n^{\frac{\beta }{24}-\frac{\mu }{4}}}, \end{aligned}$$

where \(m_0<m\le n\).

Proof

First we estimate

$$\begin{aligned} \left| \displaystyle \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi ^{(m)}_1(x)\overline{\psi ^{(n)}_1(x)}dx\right| = \left| C\displaystyle \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}} \langle x\rangle ^\mu e^{\mathrm{i}(\zeta _m-\zeta _n+kx^\beta )}\Psi (x)dx\right| . \end{aligned}$$

Since

$$\begin{aligned} g''(x)\ge -\beta (\beta -1)(\beta -2)kx^{\beta -3}\ge -\beta (\beta -1)(\beta -2)kX_m^{\beta -3}, \end{aligned}$$

then by Lemma 6.1,

$$\begin{aligned}&\left| \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}} \langle x\rangle ^\mu e^{\mathrm{i}(\zeta _m-\zeta _n+kx^\beta )} (X_m^2-x^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}\cdot f_m(x)\overline{f_n(x)}dx\right| \\&\quad \le C|\beta (\beta -1)(\beta -2)k|^{-\frac{1}{3}}X_m^{1-\frac{\beta }{3}}\left[ \left| (\langle x\rangle ^\mu \Psi )(X_m-X_m^{\nu _2})\right| + \int _{X_m^\frac{2}{3}}^{X_m-X_m^\nu } \left| (\langle x\rangle ^\mu \Psi )^\prime (x)\right| dx\right] \\&\quad \le C|\beta (\beta -1)(\beta -2)k|^{-\frac{1}{3}}X_m^{1-\frac{\beta }{3}}\bigg [X_m^\mu \left| \Psi (X_m-X_m^{\nu _2})\right| + X_m^\mu \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu }}\left| \Psi ^\prime (x)\right| dx\\&\qquad + \mu \int _{X_m^\frac{2}{3}}^{X_m-X_m^{\nu _2}} \langle x\rangle ^{\mu -1}\left| \Psi (x)\right| dx\bigg ]. \end{aligned}$$

The rest part of the proof is similar with Lemma 4.15. \(\square \)

For the last part of the integral, we have

Lemma 4.19

For \(\forall k \ne 0, X_m\le X_n\le 2X_m\), \(1<\beta \le 2\),

$$\begin{aligned} \displaystyle \left| \int _{X_m-X_m^{\nu _2}}^{X_m}\langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{1}{8}-\frac{\nu _2}{8}-\frac{\mu }{4}} n^{\frac{1}{8}-\frac{\nu _2}{8}-\frac{\mu }{4}}}. \end{aligned}$$

Here \(m_0< m\le n\).

Proof

First,

$$\begin{aligned} \left| \int _{X_m-X_m^{\nu _2}}^{X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x)\overline{\psi _1^{(n)}(x)}dx\right|&\le C\int _{X_m-X_m^{\nu _2}}^{X_m}\langle x\rangle ^\mu (X_m^2-x^2)^{-\frac{1}{4}}(X_n^2-x^2)^{-\frac{1}{4}}dx\\&\le CX_m^\mu \int _{X_m-X_m^{\nu _2}}^{X_m}(X_m^2-x^2)^{-\frac{1}{2}}dx\\&\le CX_m^{-\frac{1}{2}+\mu }\int _{X_m-X_m^{\nu _2}}^{X_m}(X_m-x)^{-\frac{1}{2}}dx\\&\le CX_m^{-\frac{1}{2}+\mu }X_m^{\frac{\nu _2}{2}}\le \frac{C}{m^{\frac{1}{8}-\frac{\mu }{4}-\frac{\nu _2}{8}}n^{\frac{1}{8}-\frac{\mu }{4}-\frac{\nu _2}{8}}}. \end{aligned}$$

It follows \(\displaystyle \left| \int _{X_m-X_m^{\nu _2}}^{X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{1}{8}-\frac{\mu }{4}-\frac{\nu _2}{8}}n^{\frac{1}{8}-\frac{\mu }{4}-\frac{\nu _2}{8}}}\). \(\square \)

Lemma 4.20

For \(k\ne 0,\ X_m\le X_n\le 2X_m\) and \(1<\beta \le 2\), we have

$$\begin{aligned} \Big |\int _{X_m}^{X_n} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\Big |\le \frac{C}{m^{-\frac{\nu _2}{16}+\frac{1}{8}-\frac{\mu }{4}} n^{-\frac{\nu _2}{16}+\frac{1}{8}-\frac{\mu }{4}}}. \end{aligned}$$

Proof

For the integral on \([X_m,X_n]\), we discuss two different cases:

Case 1.\(X_n - X_n^{-\nu _2} \ge X_m + X_m^{-\nu _2}\). We split the integral into three parts. First,

$$\begin{aligned}&\left| \int ^{X_m+X_m^{-\nu _2}}_{X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\right| \\&\quad \le \int ^{X_m+X_m^{-\nu _2}}_{X_m} \langle x\rangle ^\mu (x^2-X_m^2)^{-\frac{1}{4}}(X_n^2-x^2)^{-\frac{1}{4}}dx\\&\quad \le C X_m^\mu X_m^{-\frac{1}{4}} X_n^{-\frac{1}{4}} (X_n-X_m-X_m^{-\nu _2})^{-\frac{1}{4}}\int ^{X_m+X_m^{-\nu _2}}_{X_m}(x-X_m)^{-\frac{1}{4}}dx\\&\quad \le C X_m^\mu X_m^{-\frac{1}{4}} X_n^{-\frac{1}{4}} X_n^{\frac{\nu _2}{4}}X_m^{-\frac{3}{4}\nu _2} \le C n^{-\frac{1}{8}-\frac{\nu _2}{8}+\frac{\mu }{4}}m^{-\frac{1}{8}-\frac{\nu _2}{8}+\frac{\mu }{4}}. \end{aligned}$$

When \(x \ge X_m+X_m^{-\nu _2}\), we have \(\mathrm{i}\zeta _m \le -(x-X_m)\). It follows

$$\begin{aligned}&\left| \int _{X_m+X_m^{-\nu _2}}^{X_n-X_n^{-\nu _2}} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\right| \\&\quad \le C\int _{X_m+X_m^{-\nu _2}}^{X_n-X_n^{-\nu _2}} \langle x\rangle ^\mu (x^2-X_m^2)^{-\frac{1}{4}} (X_n^2-x^2)^{-\frac{1}{4}}e^{ \mathrm{i}\zeta _m}dx\\&\quad \le C (2X_m)^\mu X_m^{-\frac{1}{4}}\left( X_n^2-(X_n-X_n^{-\nu _2})^2\right) ^{-\frac{1}{4}} \int _{X_m+X_m^{-\nu _2}}^{X_n-X_n^{-\nu _2}} (x-X_m)^{-\frac{1}{4}} e^{ \mathrm{i}\zeta _m}dx\\&\quad \le C (2X_m)^\mu X_m^{-\frac{1}{4}}X_n^{\frac{\nu _2-1}{4}}\int _0^\infty t^{-\frac{1}{4}}e^{-t}dt\le C n^{-\frac{1}{8}+\frac{\nu _2}{16}+\frac{\mu }{4}}m^{-\frac{1}{8}+\frac{\nu _2}{16}+\frac{\mu }{4}}. \end{aligned}$$

Finally, from

$$\begin{aligned}&\left| \int _{X_n-X_n^{-\nu _2}}^{X_n}\langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\right| \\&\quad \le \int _{X_n-X_n^{-\nu _2}}^{X_n} \langle x\rangle ^\mu (x^2-X_m^2)^{-\frac{1}{4}}(X_n^2-x^2)^{-\frac{1}{4}}dx\\&\quad \le C (2X_m)^\mu \left( (X_n-X_n^{-\nu _2})^2-X_m^2\right) ^{-\frac{1}{4}}X_n^{-\frac{1}{4}} \int _{X_n-X_n^{-\nu _2}}^{X_n} (X_n-x)^{-\frac{1}{4}}dx\\&\quad \le C n^{-\frac{1}{8}-\frac{\nu _2}{8}+\frac{\mu }{4}}m^{-\frac{1}{8}-\frac{\nu _2}{8}+\frac{\mu }{4}}, \end{aligned}$$

it follows \(\Big |\int _{X_m}^{X_n} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\Big |\le \frac{C}{(nm)^{\frac{1}{8}-\frac{\mu }{4}-\frac{\nu _2}{16}}}.\)

Case 2. \(X_n - X_n^{-\nu _2} < X_m + X_m^{-\nu _2}\). In fact, notice that the function \((x-X_m)^{-\frac{1}{4}}(X_n-x)^{-\frac{1}{4}}\) is symmetric on \([X_m,X_n]\), we obtain

$$\begin{aligned}&\left| \int _{X_m}^{X_n} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }\psi _1^{(m)}(x) \overline{\psi _1^{(n)}(x)}dx\right| \\&\quad \le \int _{X_m}^{X_n} \langle x\rangle ^\mu (x^2-X_m^2)^{-\frac{1}{4}}(X_n^2-x^2)^{-\frac{1}{4}}dx\\&\quad \le C (2X_m^\mu )X_m^{-\frac{1}{4}}X_n^{-\frac{1}{4}}\int _{X_m}^{X_n} (x-X_m)^{-\frac{1}{4}}(X_n-x)^{-\frac{1}{4}}dx\\&\quad \le C (2X_m^\mu )X_m^{-\frac{1}{4}}X_n^{-\frac{1}{4}}\int _{X_m}^{X_n} (x-X_m)^{-\frac{1}{2}}dx\\&\quad \le C X_m^\mu X_m^{-\frac{1}{4}}X_n^{-\frac{1}{4}}(X_n-X_m)^\frac{1}{2}\le (nm)^{\frac{1}{4} \mu -\frac{1}{8}-\frac{1}{4}\nu _2}. \end{aligned}$$

Thus, \(\displaystyle \left| \int _{X_m}^{X_n} \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{m^{\frac{1}{8}+\frac{\nu _2}{8}-\frac{\mu }{4}}n^{\frac{1}{8}+\frac{\nu _2}{8}-\frac{\mu }{4}}}.\) Combining with the above two cases, we finish the proof. \(\square \)

Lemmas 4.12 and 4.13 follow directly by the lemmas in Sect. 4.2.3. Combining with all the lemmas in this section we finish the proof of Lemma 1.2 for \(1<\beta \le 2\).

5 Proof of Lemma 1.2 When \(\beta >2\)

In the following we will suppose that \(m\le n\) without losing the generality. As the case \(1<\beta \le 2\) we only need to estimate the integral on \([0,\infty ]\). We first apply Theorem 3.1 in [24] to obtain the integral estimates on \([2X_m,\infty )\) as follows.

Lemma 5.1

For \(\mu \ge 0\), then we have

$$\begin{aligned} \left| \int _{2X_m}^\infty \langle x\rangle ^\mu e^{\mathrm{i}kx^\beta }h_m(x)\overline{{h}_n(x)}dx\right| \le \frac{C}{(mn)^{\frac{1}{4}\left( \frac{1}{3}-\mu \right) }}. \end{aligned}$$

Proof

By Theorem 3.1 in [24] we have

$$\begin{aligned}&\left| \int _{2X_m}^\infty \langle x\rangle ^\mu e^{\mathrm{i kx^\beta }}h_m(x)\overline{{h}_n(x)}dx\right| \\&\quad \le C\int _{2X_m}^\infty \langle x\rangle ^{-1} \langle x\rangle ^{\mu +1}|h_m(x)||h_n(x)|dx\\&\quad \le C\Vert \langle x\rangle ^{-1}\Vert _{L^2({\mathbb {R}})}^\frac{1}{2}\cdot \Vert \langle x\rangle ^{\mu +1} h_m(x)\Vert _{L^2(\{x:|x|\ge 2X_m\})}^\frac{1}{2}\cdot \Vert h_n\Vert _{L^\infty ({\mathbb {R}})}\\&\quad \le CX_m^{-\frac{1}{6}}X_n^{-\frac{1}{6}}\le C(mn)^{\frac{1}{4}\left( \mu -\frac{1}{3}\right) }. \end{aligned}$$

\(\square \)

Next we consider the integral on \([0,2X_m]\). Define \(\nu _3=\frac{5\beta -4}{2(\beta -1)(2\beta -1)}\in (0,1)\) when \(\beta >2\). In the following we will discuss two different cases depending on whether \(X_n^{\nu _3}\ge 2X_m\) or not.

The Case \(X_n^{\nu _3}\ge 2X_m\) In this case we directly estimate the rest integral on \([0,2X_m]\).

Lemma 5.2

For \(X_n^{\nu _3}\ge 2X_m\) and \(\beta >2\), then

$$\begin{aligned} \displaystyle \left| \int _{0}^{2X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{(mn)^{\frac{1}{4}\left( \frac{\beta -2}{4\beta -2}-\mu \right) }}. \end{aligned}$$

Proof

From Lemma 6.2,

$$\begin{aligned}&\left| \int _{0}^{2X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x) \overline{h_n(x)}dx\right| \\&\quad \le \int _{0}^{2X_m} \langle x\rangle ^\mu |h_m(x)||h_n(x)|dx \le C X_m^\mu \int _{0}^{X_n^{\nu _3}} |h_m(x)||h_n(x)|dx\\&\quad \le C X_m^\mu \Vert h_m(x)\Vert _{L^2}\Vert h_n(x)\Vert _{L^p}\left( \int _0^{X_n^{\nu _3}}dx\right) ^{\frac{1}{q}}\\&\quad \le C X_m^{\mu }X_n^{-\left( \frac{1}{2}-\frac{1}{p}\right) }X_n^{\frac{\nu _3}{q}} \le C (mn)^{\frac{1}{4}\left( \mu -\frac{\beta -2}{4\beta -2}\right) }, \end{aligned}$$

where \(\frac{1}{p}+\frac{1}{q}=\frac{1}{2},q=\frac{4\beta -3}{\beta -1}>4.\) \(\square \)

The Case \(X_n^{\nu _3}<2X_m\) In this case we split the rest integral into two parts as follows.

Lemma 5.3

For \(k\ne 0, X_n^{\nu _3}< 2X_m\) and \(\beta >2\), then

$$\begin{aligned} \displaystyle \left| \int _{X_n^{\nu _3}}^{2X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C(|k\beta |^{-1}\vee 1)}{(mn)^{\frac{1}{4}\left( \frac{\beta -2}{4\beta -2}-\mu \right) }}. \end{aligned}$$

Proof

Denote \(\psi (x)=\langle x\rangle ^{\mu }h_m(x)h_n(x),\phi (x)=x^\beta \). Notice that when \(x\in [X_n^{\nu _3},2X_m]\), \(|\phi '(x)|\ge \beta X_n^{\nu _3(\beta -1)}\). So by Lemma 6.1,

$$\begin{aligned} \left| \int _{X_n^{\nu _3}}^{2X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x) \overline{h_n(x)}dx\right| \le C|k\beta |^{-1}X_n^{-\nu _3(\beta -1)}\left[ \left| \psi (2X_m)\right| + \int _{X_n^{\nu _3}}^{2X_m} \left| \psi ^\prime (x)\right| dx\right] , \end{aligned}$$

where \( \left| \psi (2X_m)\right| \le C X_m^{\mu }\), and \(|\int _{X_n^{\nu _3}}^{2X_m} \langle x\rangle ^{\mu -1}h_m(x)\overline{h_n(x)}dx|\le CX_m^{\mu -1}\). By Lemma 6.2, \(\Vert h_m'(x)\Vert _{L^2}\le CX_m\). Thus,

$$\begin{aligned} \left| \int _{X_n^{\nu _3}}^{2X_m} \langle x\rangle ^{\mu }h_m'(x)\overline{h_n(x)}dx\right| \le CX_m^{\mu }X_m=CX_m^{\mu +1},\\ \left| \int _{X_n^{\nu _3}}^{2X_m} \langle x\rangle ^{\mu }h_m(x)\overline{h_n'(x)}dx\right| \le CX_m^{\mu }X_n\le CX_m^{\mu }X_n. \end{aligned}$$

Combining with all the conclusions we have

$$\begin{aligned} \left| \int _{X_n^{\nu _3}}^{2X_m} \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x) \overline{h_n(x)}dx\right|&\le C|k\beta |^{-1}X_n^{-\nu _3(\beta -1)+1} X_m^{\mu }\le C |k\beta |^{-1} (X_mX_n)^\frac{\mu }{2}X_n^{-\frac{\beta -2}{4\beta -2}}\\&\le C |k\beta |^{-1}(mn)^{\frac{1}{4}\left( \mu -\frac{\beta -2}{4\beta -2}\right) }. \end{aligned}$$

\(\square \)

Lemma 5.4

For \(X_n^{\nu _3}< 2X_m\) and \(\beta >2\), then

$$\begin{aligned} \left| \int _{0}^{X_n^{\nu _3}} \langle x\rangle ^\mu e^{\mathrm{i}kx^{\beta }}h_m(x)\overline{h_n(x)}dx\right| \le \frac{C}{(mn)^{\frac{1}{4}\left( \frac{\beta -2}{4\beta -2}-\mu \right) }}. \end{aligned}$$

Proof

The proof is similar as Lemma 5.2, we omit it. \(\square \)

Hence, combining the above four Lemmas we obtain Lemma 1.2 when \(\beta >2\).