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Abstract

Enlightened by Lemma 1.7 in Liang and Luo (J Differ Equ 270:343-389, 2021), we prove a
similar lemma which is based upon oscillatory integrals and Langer’s turning point theory.
From it we show that the Schrodinger equation

10 = —07u + x*u + e(x)"* > (ar(wr) sin(k|x|") + b (wr) cos(k|x|F)) u,
keA
u=u(t,x), xelR, g>1,
can be reduced in H! (R) to an autonomous system for most values of the frequency vector
w, where A C R\{0}, |[A| < oo and (x) := +/1 + xZ2. The functions a;(6) and by (0) are
analytic on T and u > O will be chosen according to the value of . Comparing with

Liang and Luo (J Differ Equ 270:343-389, 2021), the novelty is that the phase functions of
oscillatory integral are more degenerate when 8 > 1.

Keywords Reducibility - 1D quantum harmonic oscillator - Langer’s turning point theory

1 Introduction of the Main Results
1.1 Main Theorem

Following [25] we continue to consider the reducibility for the time dependent Schrodinger
equation
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i10;u = Ho(wt)u, x € R,
H, := —yy +x° + X (x, 1), (1.1

where

X(x,0) = ()" > (ac(0) sin(k|x|?) + bi(0) cos(k|x|P))
keA

with A € R\{0}, |A| < oo and (x) := /1 + x2. The functions ay(0) and by (6) are analytic
onT! ={a+bieC"/2nZ" : |b| < o} witho > 0and 8 > 1 and u > O will be chosen
in the following. We first introduce some functions and spaces.

Hermite Functions The harmonic oscillator T = —d,, 4+ x2 has eigenfunctions () m=>1,
so called the Hermite functions, namely

Thy = @m = Dhy, Nl 2@y =1, m = 1. (1.2)

Linear Spaces For s > 0 denote by H* the domain of T2 endowed by the graph norm.
For s < 0, the space H* is the dual of H™*. Particularly, for s > 0 a integer we have

H ={feL’R):x*dPf e L>(R), Va, B € No, « + B < s}.

We also define the complex weighted-ﬁz—space E? =& = ¢, € Cm =1

D om>1 m*|En|? < oo}. To a function u € H® we associate the sequence & of its Hermite
coefficients by the formula u = D =1 Emhm (x). In the following we will identify the space
H* with Z? by endowing both space the norm

K 2
lullres = 1Els = | D m®l&ml

m>1
Define
}T(g_“)’ 1<p <2,
L=1B, 1) =173 (5—n). B=2 (13)
}—1(4’%%22—“), B> 2.

Then we can state our main theorem.

Theorem 1.1 Assume ai(0) and by (0) are analytic on T/, with o > 0 and 8 > 1 and
satisfies

g, 1<pB <2,
0<u<13 B=2, (1.4)
s B>2

There exists €, > 0 such that for all 0 < € < €, there is a closed set D C Doy = [0, 27]" of
asymptotically full measure such that for all v € D, the linear Schrodinger equation (1.1)
reduces to a linear autonomous equation in H.

More precisely, for any @ € De there exists a linear isomorphism WZ° (0) € S(HS’) with
0 < s’ < 1, analytically dependent on 0 € T§/2 and unitary on L*(R), where wee, —

Id € £(HY, H?) N £(Hs/) and a bounded Hermitian operator Q € £(H') such that
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t e u(t,-) € H satisfies (1.1) if and only if t — v(¢, ) = ‘Ilffeu(t, ) e H! satisfies the
autonomous equation

9,0 = —vyy + X% +€Q(v),

furthermore, there are constants C, K > 0 such that

3l
Meas(Do\D¢) < Ce2@F905FD |
”Q||2(HF,HP+4’*) + ”anHQ(’Hp,’HPJrM*) <K, weDe, peN,
1
195 @) = 1dll g 30 220 WG 0) = 1dll g gy < CeT, (@,6) € De x T 5.

Consequently, Theorem 1.1 follows in the considered range of parameters the ' norms of
the solutions are all bounded forever and the spectrum of the corresponding operator is pure
point.

1.2 Related Results and a Critical Lemma

In the following we recall some relevant reducibility results. For 1-D quantum harmonic
oscillators(‘QHO’ for short) with periodic or quasi-periodic in time bounded perturbations
see [11, 15, 23, 28, 39, 40] .

In [5] Bambusi and Graffi proved the reducibility of 1-D Schrodinger equation with an
unbounded time quasiperiodic perturbation in which the potential grows at infinity like |x |%
with areal/ > 1 and the perturbation is bounded by 1+ |x|? with 8 < [ — 1. The reducibility
in the limiting case 8§ = [ — 1 was proved by Liu and Yuan in [30]. Recently, the results in
[5, 30] have been improved by Bambusi in [1, 2], in which he firstly obtained the reducibility
results for 1-D QHO with unbounded perturbations.

It seems that the reducibility method in [1, 2] is hard to be applied for 1-D Schrodinger
equations with the unbounded oscillatory perturbations(see remark 2.7 in [1]). The authors
[25, 27] solved this problem by Langer’s turning point and oscillatory integral estimates.
We remark that the critical step in [25] is to build up a decay estimate of the integral
fR (x)y*ek* p (x)hy (x)dx, in which the phase functions of oscillatory integral are ¢, (x) :=

Im(x) — £ (x) + kx, where &, (x) = f;m VAm — 12dt with X,,, = V2m — 1 = /A,
Comparing with [25], in this paper the phase functions Wy, (x) 1= & (x) — §(x) + kxP
with 8 > 1 are more degenerate. For 1 < 8 < 2, we use a similar method as [25]. The most
v . -
difficult part as [25] is the integral [*7 =" (x)1eik*” b, (x), (x)dx where v2 = 1 — £ for
X3 ’

m

l<B<2andv; = g when 8 = 2. We have to discuss different cases in order to obtain
a suitable lower bound of the derivatives of the phase function. For § > 2 we find a new
simple proof which follows from Corollary 3.2 in [24], Lemma 6.1 and a straightforward
computation. As Lemma 1.7 in [25] we have the following.

Lemma 1.2 Assume h,, (x) satisfies (1.2). For any k # 0,

/ ) ek () (dx | < C - Crp(mn) B0 > 1
R
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for some absolute constant C > 0, where u > 0, 8 > 1, (B, n) defined in (1.3) and

BB — 1)(B — k|3 VIkI‘IVIklﬁ, l<pB <2,
Cep=IkI"" V1, B =2,
1Bk|~' v 1, B> 2.

Remark 1.3 In fact (1, u) = ﬁ — % has been proved in [25].

In the end we review some relative results. Eliasson—Kuksin [13] initiated to prove
the reducibility for PDEs in high dimension. See [22, 26] for higher-dimensional QHO
with bounded potential. The first reducibility result for n-D QHO was proved in [7] by
Bambusi-Grébert-Maspero-Robert. Towards other PDEs with unbounded perturbations see
the reducibility results by Montalto [35] for linear wave equations on T¢ and Bambusi,
Langella and Montalto [3] for transportation equations [18]. Feola and Grébert [19] set up
a reducibility result for a linear Schrodinger equation on the sphere S” with unbounded
potential [20].

The reducibility results usually imply the boundedness of Sobolev norms. Delort [12]
constructed a #°/2- polynomial growth for 1-D QHO with certain time periodic perturbation
[32]. Basing on a Mourre estimate, Maspero [33] proved similar results for 1-D QHO and half
- wave equation on T and the instability is stable in some sense. For a polynomial periodic or
quasi-periodic perturbations relative with 1-D QHO we refer to [7, 21, 29, 31]. For 2-D QHO
with perturbation which is decaying in ¢, Faou-Raphaél [17] constructed a solution whose
H' —norm presents logarithmic growth with t. For 2-D Schrodinger operator Thomann [38]
constructed explicitly a traveling wave whose Sobolev norm presents polynomial growth
with ¢, based on the study in [36] for linear Lowest Landau equations (LLL) with a time-
dependent potential. There are also many literatures, e.g. [4, 6, 8—10, 16, 34, 41], which are
closely relative to the upper growth bound of the solution in Sobolev space.

Our articleis organized as follows: in Sect. 2 we state the reducibility theorem, i.e. Theorem
2.1.In Sect. 3, through checking all the assumptions in Theorem 2.1 we prove Theorem 1.1.
In Sect. 4 we prove Lemma 1.2 for 1 < 8 < 2 and the case for 8 > 2 is delayed in Sect. 5.
Some auxiliary lemmas are presented in the “Appendix”.

Notation We use the notations No = {0, 1,2, ---}, N={1,2,---}, T" = R"/2xZ" and
T2 ={a+bi e C"/2nZ" : |b| < o}. For Hilbert spaces H;, H> we denote by £(H1, H2)
the space of bounded linear operators from H; to H; and write £(H1, H) as £(H;) for
simplicity.

2 A KAM Theorem

Following [14, 23] we introduce the KAM Theorem from [26] especially for 1-D case.

2.1 Setting

Linear spaces. For p > 0 we define X, := Ef, X Ei ={¢ = & = i.ng) €
CHaens 121l < oo} with 215 = Y ey a? (&a]* + 1a]?). We equip the space with the
symplectic structure 1),y d€a A 1.

Infinite matrices. Denote by M, the set of infinite matrices A : N x N + C with the norm
|Alg = supa,heN(ab)ﬂAZl < 00. We also denote M;’ be the subspace of M, satisfying
that an infinite matrix A € Mj[' if [Alg+ = sup, pen(@h)* (1 + la — b|)|AZ| < o0.
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In fact one can prove that for all @ > 0, a matrix in Mof defines a bounded operator on Z%.
However, when @ € (0, %), we can’t insure that M, C 2(5%, Z?) for any s € R. This means
that Px makes no sense when the perturbation operator P € M, and x € E%. Fortunately,
from Lemma 2.1 in [22] or Lemma 2.2 in [26] one can show M, C E(Zz, Ez_l) and thus the
reducibility in ! can be built up in Theorem 1.1 instead of L2.

Parameters. In this paper o will play the role of a parameter belonging to Dy = [0, 27 ]".
All the constructed maps will depend on @ with C! regularity. When a map is only defined
on a Cantor subset of Dy the regularity is understood in Whitney sense.

A class of quadratic Hamiltonians. Let D C Dg,« > 0 and ¢ > 0. We denote by
My (D, o) the set of mappings as Th x D 3 (0, w) — Q(6,w) € M, which is real
analytic on 6 € T? and ' continuous on @ € D. And we endow this space with the norm
(0187 = SUPyep 30)<ok/=0.1 |9 Q (6, @)a-

The subspace of My (D, o) formed by F (6, w) such that Bf)F(G, w) € M;r k| = 0,1,
is denoted by M} (D, o) and endowed with the norm [F]2;° := SUP e . 130 <o k=0.1 |00
F (0, ®)|q+. Besides, the subspace of M, (D, o) that are independent of # will be denoted
by My (D) and for N € My (D),

[NI? == sup |95 N(@)la-
weD,|k|=0,1

2.2 The Reducibility Theorem

In this section we present an abstract reducibility theorem for a quadratic Hamiltonian
quasiperiodic in time of the form

H(t, &, n) = (& Nn)+ e, Plwn)n), (§,1) € X1 C Xo, 2.1

and the corresponding Hamiltonian system

£ = —iNg —ie PT(wr)g,

. . (2.2)
n =1Nn +ie P(wt)n,

where N = diag{},, a € N} satisfies the following spectrum assumptions:
Hypothesis Al-Asymptotics There exist positive constants c, ¢, ¢z such that

cia > Ay > cpa and |Ag — Ap| > cola — b|, Ya,b e N.

Hypothesis A2-Second Melnikov Condition in Measure Estimates There exist positive
constants o1, a2 and c3 such that the following holds: for each 0 < x < % and K > O there
exists a closed subset D' = D’(k, K) C Do with Meas(Do\D') < ¢3K* «“ such that for
allw € D', k € Z" withO < |k| < K anda, b € Nwehave |k-wo+is—Ap| > k(1+]a—b]).

Then we can state our reducibility results.

Theorem 2.1 Given a nonautonomous Hamiltonian (2.1), we assume that (,Ly)qeN Satisfies
Hypothesis A1-A2 and P(0) € My(Dy, o) with «,c > 0. Let y; = max{ay,n + 3} and
V) = %, then there exists €, > 0 such that for all 0 < € < ¢, there are

(1) a Cantor set D, C Do with Meas(Dy\D¢) < Ce% forad € (0, %);
(ii) a C! family in w € D.(in Whitney sense), linear, unitary, analytically dependent on 6 €

Tgn and symplectic coordinate transformation ®5°(0) : Xo — Xo, (@, 60) € D X'H‘Z/z,
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of the form

Eronp) > E ) =X O)Ev, ne) = (Mo (0)E4, My (0)n4),
where ®5°(0) — Id satisfies for 0 < s’ < 1

1
@5 (0) = 1dll £(xo, X505 1P (@) — Idllg(x,) < Ce3;
(iii) a C! family of autonomous quadratic Hamiltonian in normal forms

Hoo (61, 14) = (s Noo(@)n4) = D A& mllem, @ € De,

m>1
where Noo () = diag{iy, m € N} is diagonal and is close to N in the sense of
[Noo(@) = N17* < Ce,
such that

H(t, @3 (wt) (51, n4)) = Hoo(§4.n4), t € R, (§4,14) € X1, @ € De.

3 Application to the Quantum Harmonic Oscillator

In this section we will prove Theorem 1.1 by applying Theorem 2.1 to the original Eq. (1.1).
Following the strategies in [13], we expand u on the Hermite basis (h,,),>1 as well as u by

the following formula
u= nghms u= Z nm};m-

m>1 m>1

Therefore the Eq. (1.1) is equivalent to a nonautonomous Hamiltonian system
bn = —igt = —i@m — D —ie (PT (@), .

. CoH . . m>1, 3.1

NMm = 1yg, = i2m — Dy + i€ (P(@0)n),,

where
H(,&,n) = (5 Nn)+ e, Plw)n), (§,n) € X C Xo,

and N = diag{2m — 1, m > 1} and

P (wt) = Zak(wt)f(x)“ sin k|x|® i () (X)dx
keA R

+ Z by (wt) / (x)H cosklxlﬁhm (xX)h,(x)dx, 3.2)
keA R

where the frequencies w € Dy = [0, 27r]" are the external parameters.
The spectrum assumptions can be easily checked by the following two lemmas.

Lemma 3.1 When A, = 2a — 1,a € N, Hypothesis Al holds true with co = ¢ = 1 and
c1 =2

Lemma3.2 When A, = 2a — 1,a € N, Hypothesis A2 holds true withay = n+ 1,07 =
1,c3 = c(n) and Dy = [0, 271",

D ={wel0,2x]": |k-w+jl >« +|j]), Vje€Z, keZ"\{0}).
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The following lemma is a direct corollary of Lemma 1.2.

Lemma 3.3 Assume that ai(0) and by () are analytic on T, for any nonzero k € A with
o > 0and B > 1 and n satisfies (1.4), then there exists « = [(B, u) > 0 such that the
matrix function P (0) defined by (3.2) is analytic from T7. into M.

Proof of Theorem 1.1. Expanding the Hermite basis (%,,)>1, the Schrédinger equation (1.1)
becomes Hamiltonian system (3.1), which is the form of Eq. (2.2) with A, = 2a — 1. By
lemmas above, we can apply Theorem 2.1 to (3.1) with y; =n+3, y» = 20{"’? and § = 31/723'
This follows Theorem 1.1.

More precisely, in new variables given in Theorem 2.1, (£, ) = (M &1, My,1n4), system
(3.1) is conjugated into an autonomous system of the form:

Erq=—iAP(W)Esa.

7.7+,a = ikgo(w)nﬁa’

aeN.

Therefore the solution subject to the initial datum (&4 (0), 4 (0)) reads
E+ (D), n(D) = (7N2EL(0), N (0)), 1 ER,

where Noo = diag{A°, a > 1}. Then the solution of (1.1) with the initial datum
up(x) = Zazléa(O)ha(x) e H! is formulated by u(r,x) = Zazlﬁ;‘a(t)ha(x) with

£(t) = My (wt)e "Noe MT (0)£(0), where we use the fact (M) o M since M is unitary.
Now we define the coordinate transformation W>°(0) by

W) | D Eahalx) :=Z(M£ <9>s)aha(x)=25+,aha(x>.

a>1 a>1 a>1

Then we have u(z, x) satisfies (1.1) if and only if v(r, x) = U3’ (wr)u(t, x) satisfies the
autonomous equation id;v = —vyyx + x2v+e 0 (v), where

€0 | D Eha() | =) ((Noo = NOE)aha(x) = Y (A3 = ha)baha ().

a>1 a>1 a>1

The rest estimates are standard (see Lemma 3.4 in [25] for the details). O

4 Proof of Lemma 1.2When1< <2

For reader’s convenience, we will use the notations in [25]. In the whole section we will
always suppose > 0 and don’t point it out in the following lemmas.

The eigenfunction of the quantum oscillator operator T'is /1, (x) = (n!2" 3 )~ 3 e 32 H,(x),
where H, (x) is the nth Hermite polynomial. Since %, (x) is an even (or odd) function when
n is odd (or even), we only need to estimate

+o00 .
/ ) e* p O )dx, 1 <m <n. (4.1)
0

By Lemma 4.4 and Remarks 4.5, 4.6 in [25], when m > my,

T (X) = Oy — x4 (%) 1" )
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1
O —x2)7F <M> ’ H?(;m)o (%)

=" () + vy (),

X
where ¢, (x) = / Vhm — t2dt with X2 = 4,y (X,, > 0). Otherwise, when m < my, then
Xm

m m m _1 1
R () = Y™ )+ 93" (x) for x > 2X g, where Y™ (x) = (o —x2) "3 (%) 1 BV (¢,
3

and |1/f2(m) )| < x%lt/fl(m)(x)l. Following the same strategies in [25] we distinguish 3 cases
to estimate (4.1):

I. m,n < Cyp:= 28m(3);
II. m <mgandn > Cy;
I m,n > mo.

4.1 The Estimates for Case | and Case Il

Lemma 4.1 Whenn,m < Cy,

c

+00 -
/ (@)™ By () () dx | < ———.
0 (mn)z(g—ﬂ)

Proof When x < X, from Holder inequality and n, m < Cy, we have

c

Xo -
/ (x)*e** h (), (x)dx —_—
0 (mn)ﬁ(gf")

<Xj <

. . . _1
where X is a positive constant depending on Cy only. When x > X, |X,%1 — X277 < 1,

we have %Hf”({m) < e éml by Lemma 5.4 in [25]. By Lemma 5.5 in [25] we have
3

1
[Em| = %EX%(JC - Xm)% > x — Xg for x > Xg. Thus
C

(mn)%(%_“) '

+00 i .
/ () e* ) O Ry () dx
Xo

+00
< / (x)He 207X gy < ce?X0 <
Xo

m}

Lemma4.2 Form <mgandn > Cyand u > 0,
C

=75
(mn)z(g—ll)

+o00 -
f ()RR () n x| <
0

Proof We divide the integral into two parts.

1
+00 - Vel +00
/ () " p (O (x)dx :/ Jr/l .
0 0 X3

Since x > 2X,,,, we have
@] = 202 = X204y T D ) < 2070,
3
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1
On the other hand, for x € [0, X,; ], one has |h,(x)| < C(Xﬁ — x2)_%. Note 1l < B < 2,it
follows

1 1

X)i‘s . Xr? _l,p
/ ) ek b O ) dx | < c/ (/X2 — x2)"idx < CX, 013
0 0

C
S —TF
(mn)z(g—li)
1
Whenx > X,;} > 2X,,, from Lemma 5.5 in [25], e ~1én| < e=C&=Xm) Note ||, (x) |2 = 1,

from Holder inequality,

1
1

+o00 bl L
<C <[ 1 (x)z“e_cxdx) < e CXi

+o00 -
/ ()R By ()R, () dx |
X,

X7

4.2 The Estimate for Case lll
In the following we will turn to the complicated case when m,n > mg. We divide the
integral into two parts f0+°o (x)“eikxﬁhm )h,(x)dx = fo "4 f;;oo We first go to the latter

+00
X,

case
4.2.1 The Integral on [X;,, +00)

Lemma4.3 Formg <m <n,

=

/ e p GO Ry () dx

mizZ " 4np 112 ,4t - (mn)%(g_'“') .
We first estimate the integral on [2X,,, +00]. The following result is clear from [25].

Lemma4.4 Formg <m <n,

+00 -
/ (x)*e®" B () (X)dx| < e M.
2X,
For the integral on [ X, 2X,,], we prove that
Lemma4.5 Formg <m <n,
2X
n . C
/ ()" (g (x| < ————
n mn2- 4api2— 4
. .. 2X, kB
Proof As [25], we only need to estimate the following integral [ := X, (x )M etk 1//{'”)

(x)wl(n) (x)dx since the rest three ones are higher order. / can be divided into two parts as

2X, Xt X o -
1= ( f 4 / )<x>“e"” v ™ @y (0dx

X +X3
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2Xn

X’l+XPl
= coxp( / L+ f ‘wf’")(x)wf”)m

Xy +X,)

dx.

From Lemma 5.5 in [25], when x = X, + X,1. || = 22 X2 (x — X,)} = 22X,,. Thus
2X,
/L
Xnt+Xi
iy [2Xn | 22
< Ce 5 Xn / | ()c2 —An) 2dx < Ce 5 Xn,
Xo X,

2X,
m)(x)v, n)(-x) dx < C/ 1 (x2 — )\‘m)ii(_xQ — )Ln)f%eflfnldx

Xp+X,

For the second part

Xll
‘x/ff'")(xw(”)(x) dx
1
X,,+X,? , . XntXid I
< c/ (% = Am) 3 (x —Ay) Hdx < Cf (= d)”2dx

_L XX 1 -1

=< CXVL : / (X - Xn)ijd-x =< CXn }
_1
It follows [I| < CXh 3 < ——C O

Combining with the above two lemmas we finish Lemma 4.3.

In the following we will estimate the integral on [0, X,,], which is the most complicated
case. Note my < m < n, the following two cases have to be considered respectively: 1.
Xp > 2X IL X, < X, <2X,,.

4.2.2 The Integral Estimate on [0, X,] When X, > 2X,,

Our aim in this part is to build the following
Lemma4.6 Fork #0,if X, >2X,, and 1 < B <2, then

X L

" . — C(k|*v1
/ (x)“e'k"ﬁhm(x)hn(x)dx‘ < %’
0 T_p 1 _nu

ms8 4niz 4

ﬁ, 1<pB <2,
0, B =2

wherem0<m§nandtz{

As [25] we will use the following notation in the remained parts. We denote f, (x) =
1

_1 N
fooo et G (1 + ﬁ) ®dt and f,(x) = fooo e s (1 + %) ® dt. When x € [0, X1,
from a straightforward computation we have

Y@ = (3 - T )

1({m_*_*) it ~%
= (X2 _xz)*%%/ et <1 + 21—> dt
1"(6) 0 Cm
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= C(X% — x2) 3@ £, ().

Similarly, " (x) = C(X2 — x2) 3¢~ F (x). For x € [0, X,,], denote W (x) = (X2 —
)*%xz — )7 fu ) () and g() = (Gu(x) — Lu(x) — kaxf) = /X222 —
./XZ — x2 — kBxP~! then

W (x) = %x(X,i ) TIX2 =) f () )

T R T SR Ay AE)

+ G = TR =T ([0l + fa @ ).
When x € [0, X, | fu(x)| < T'(2) and | £, (x)| < T'(2). Thus,
Corollary 4.7 Forx € [0, X,,) andm < n,

W] = C(x(X =D THXE =) a(Xg - D THE - )

(X2 —xDi (X2 =24 (XL —x?)” 4(X2—x2>4)
Xm(Xm _x)3 Xn(Xn _x)3
=C(i + L2+ B+ Js) <CUL+ S3).

_1
We first estimate the integral on [0, X, — X,,°].

Lemma4.8 Fork #0,1 < B <2, if X;, > 2X,,, then

_1

Xn—Xm? o _ C(|k|ﬁv1)
/ ()2 By (O Ry (D) dx | <~
0

ms8 dins I
where mg < m < n.

Proof First we estimate the main term of the integral

3

Xm*ij B mexm . B
/0\ ( )ﬂ ikx wl(m)( )1// ”)(x)dx — /(\) (x>ﬂel(§m7§n+kx )\I_[(x)dx’

i

by method of oscillating integral estimate, where W (x) = (X,zn — xz)_%(Xﬁ — x5~
S (x) frn(x). We discuss two different cases.

2-p
Case 1: k < ” . In this case, we have

2 2-8
8(X)Zm—\/ﬁ—ﬂkxfl > %_Z.X”Tx’li;*l . %'

Thus, by Lemma 6.1,

3

Xm—Xm -t —tn +hxP
/ e X ) (x)dx
0

@ Springer



2936 Journal of Dynamics and Differential Equations (2024) 36:2925-2950

1

Xop—Xm >
+[0 )(@)Mw)’ (x)‘ dx

<ox; | () w) X — X0

— n

Xp—Xm3 ¥
+ f <2<x>“ (1 + J3) + px) ! —
0 (x)

<X XWX, — X0

— n

|\If(x)|> dx

1
Xo—Xu?
<CX,'x# ‘xp(x — X ‘) / (J1 + J3)dx
0

Xm X/Yl
+Cux: 1/ Y W ()] dx.
0

Clearly,
1 1
_1 _1 i _1 i
XE AW (X — X)) < CXE (X,i — (X — XmS)Z) (X,% — (X — X,,ﬂ)z)
_1
<cx,
and

_1

Xin—Xm > 1
/ p) W )ldx < C (X,i — (X — Xm3>2)
0

1
3

1

1 NTd (X
(Xﬁ—(xm—xm»‘ﬁ) / uxt~dx
0
I

1
_1 1 _1 _1
<c (X,i — (X — xm3>2> (X,% — (X - Xm~‘>2> Xt < Cxp' M,

together with

X —Xm XX
/ Jldxscf x(X2 —x%)” 4(X2—x) 4dx<CXm ,
0 0

I
Ll

and

3 3

Xm—Xm Xm—Xm
/ Jzdx < CX;f/ (X —x)dx < CX,, ;.
0 0

l
. S _1
X=X (g 0 (o y O (x| < XX Now we turn to

So we obtain | f;

remained three terms. Since mg < m < n,

-1 _
X=X

X=X 3 m
/ (e g ey (x)dx| < c/ X (X2 — )" (X2 — 2% i dx
0
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Similarly, when mo < m < n, we have

1

Xn—Xn> i -
/ () Ty M oy (x)dx| < cn IS
0

and

1

X”17Xm§ ﬂ
/ () g s (dx| < Cn1HE
0

Thus,

_1

Xm—Xm B
/ ()€™ by ()R (x)dx | < < , mo<m<n.
0

Case 2: k > X"8 > 0.

Since m < n, we have 2n < (8k)2 + 1. It follows that

1
3 1

Xim—Xm .
/0 ) e, () ()dx| < CXE < CXH

|
ENES

Combining with these two cases we finish the proof. O

Lemma4.9 Fork #0, if X;, > 2X,, then

2

Xm—Xm 0
/ () * iy (0 () dx | <
0

where mg < m < n.

Proof We first estimate the main part of the integral. By the oscillating integral estimate,

i i
Xm—Xm

moxd . |
/ ()RR g (0 (g = © / (e el Gn—t D g (1),
0 0

where W(x) = (X2 —x2) "5 (X2—x2) 74 - f,,(x) f (x). Since g (x) > ¢"(0) = >
%anl, by Lemma 6.1,

2

Xm_X1731 -t —n +hx?
/ e X () (x)dx
0

_ L
XVII XVI

2

/an _Xrg
0

SCXIZ '(< )H\I”)( - m)

() w) (x)’ dx
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2

2 Xm*XrZ X
V(X — X) +/ (Z(X)” (1 +J3) +M(X)”7lm I‘II(X)|> dx
0

1
<CX; | Xk

2

X=X
[ (J1 + J3) dx
0

1 2
<CXjX! ‘np(xm—x,z) +

2

1 Xm—Xo
+ CMX:%/ ) (x| dx.
0
2

The estimate comes from three terms. Clearly, for x € [0, X,, — X,},] we have

W(x)| < C(X2 —x2)~5(X2 — x?)73
< C(Xan)_Z(Xm _x) 4(Xn _x) Z <C

It follows that
5 1
< CX, X, 7,

2
X |V (Xom — Xm)

and
2

Xm*Xn? _5 _1 X m
/ u) W0l dx < CX 7 X, / () ldx < CXpy X, 7,
0 0

together with

2

2
Xm— Xm 7;
2

Nl—=

X’n X"l
/ Jidx < c/ X(X2 —xH)H(X2 —x2)Tidx < CXp P X, 2
0 0
and
2 2
Xm_Xlg 3 _1 Xm—Xom i 1
/ J3dx§CXm4an/ X —x)" 4dx<C 2x, 2,
0 0
Z
we obtain fOX"’*X'h( Yetka () )wf”)(x)dx‘ < cxm”“‘ ;7 < C(XpX,)5~%. The

estimate of rest parts of the integral is similar with Lemma 4.8. Thus,

2

mexrg . 2
/O ()2 By () () dx | < ————

mog<m=<n.

Lemma4.10 If X, > 2X,, and 1 < B < 2, then

X"’l . —
/ ey (R ) dx| < 5
m—X T6~ 16

—Am
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where mg < m < n and

-3 1<p<2,
T2k, p=2

Proof First,

X”l ﬂ
[ e e oas

X=Xl

V1
—Am

Xm
< c/ ()H(X2 — %) "5 (X2 — x2)"ddx
m X

an
< cx,;ﬁ"(xﬁ —X2)"3 / X = X)"Tdx

<cox, -2 )—zx“' < Cx, TR E Rty
Similarly,
/Xme( P g @ (ax| < 0, XTI Geq1,a),
Thus we finish the proof. O

Lemma 4.11 When X, > 2X,and1 < B <2,

=

Xn -
/ ()RR ()T OV dx

Xom

ms dpn2 4

where mg < m < n.

Proof When X,, > 2Xug » X + X < o 41 < 2X,. It follows

_1

Xu4+Xm3 s JE—
/ ()b (0 ® () dx

X"l
XX, . .
<CX* / (2 — x2)"1 (X2 —xH"Hdx
_1

_l+M 2 _1 2 — 3 Xim+Xm 1
<CXp' <Xn_(Xm+Xm3) ) / (x — Xpm) " 4dx
Xom

From X,, > 2X,,, we have X,, — X,, - > %Xm, together with Lemma 5.5 in [25], thus

ix'" B
L ey wu P ds
X

m+Xm -

,a

3
ixnz 1 -
<Cx# / L% = X2)TH (X2 — xY)"delndy
X)YI+X}’IZ
1

_l+M _1 1 %X’" 1
<CX,,* (Xi — (Xn — X 3)2> / 1= X)) i X gy
Xin+Xp 2
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oo 1,1 1,1
L —-it+5 o—5t5
/ tTie7dt < CX,t 2 X, 007
0

When x > %Xm,x — X > %x, it follows

1

Xu—Xp 3 5
/ ()b 2y @ () dx

3 Xm
1

Xn Xn .3 1 |
< c/3 ()P (x? = X2)73 (X2 — x?)"Helmdx

jxm

_1

1 L N"E Xe—X, O .

<CXx,* (Xﬁ — (X — X, 3)2> /3 (x — Xpp) "3 THe~ @ Xm gy
3 Xm

1 1 R 1 11

<CX,*'X,° / TATe T < CX oyt Xy ©.
0
Thus,

Xn B
[yt oy

Xy—X, 2

X
n 1 ] .
< c/ P = X2) (X2 — x?)Taelngy
n—=Xn
1

_1 i _1 rXa
—C<(Xn_Xn3)2_X,2n> Xn4/ 7%(Xn—x)_%x”e_%xdx
n Xll

1 1 X
<Ccx,2x,* / X - x)"idx
=X

—A4n

<CX,

X, ? < C(XpX,) 2%5.

Nl—=

Combining with all the above, we have

The rest estimates are similar as above. O

Combining with Lemmas 4.8, 4.9, 4.10, 4.11, we finish the proof of Lemma 4.6.
4.2.3 The Integral Estimate on [0, X,] When X;;, < X, < 2Xp,

One can split the integral into

Xn P m n B -
/ ()™ Ry (x) iy (x)dx = / / / ()1 hyn (0 (),
0 =X

and estimate them respectively, where

1-2, 1<p<2
V) = § IB—Z
9> =4

Our main aim in this part is to build the following two lemmas.
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Lemma4.12 For X,, < X,, <2X,, and k # 0,
CkI™' v D)

1 " 1 7

mi8 4p8 4

<

Xn . 2
f ()" Ry (XY (X)dx | <
0

where C > 0, mg < m < n.

Lemma4.13 For X,;, < X,, <2Xp, k ZQand 1 < < 2,

/“%mhﬁ”h(mh(mdx<(er“”ﬂw‘4xﬂ—2wrévn
o <

)

where C > 0, mg <m < n.

From a straightforward computation we have
Lemma4.14 For X,, < X,, <2Xpand1 < B <2,

2

X _
/ () e By (x| <
0

where C > 0, mg < m < n.

2 5
Next we estimate the integral on [X,3,, X,,, — X, ], for which we discuss different cases as
the following.

4
Lemma4.15 If X,, < X, < 2X,,, whenk > 0and 0 < X2 — X2, < kX, then

5

9 1

Xm—X _1
m m 0 Ck 2
3 e, x| < — S
X m¥» " In%
where mg < m < n.
Proof We first estimate
5 5
X=X _ _ Xn—Xm A )
) () ™ oy ™ (dx | = |C | (x )Pl =En RNy () dx | .
3 1 1 3
Xon X
Notice that
4
kX3 X

— 2k

g/(x) S 14 10 14 10 14 10 14 10
\/2X,;,7 —Xo\V2XS — X0 (V2X, — X, +V2X, — X))
7
kX3 3
T2k = —5k,
2X,

=

2

and by straightforward computation, g”(x) > 0. It follows |g’(x)| > %k onx € [X,,
5

Xm — X;n]. By Lemma 6.1,

5

Xn=Xn P2 Gn—tnthx®)- % 2 2y-bog 2yt Ty
2 (x)tel3riem=on 2 (X5, = X)X = xT) T fin () fu(X)dx
X"7
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1 5 Xm_xr§
< Ck72 | (0“0 (X — X2) —l—/% |((x)ﬂQI)/(x)|dx
XIT(
- 5
1 é an_Xlg
<Ck72 | XK WX — X)) +<Xm>M/%
X

|’ (x)| dx

m
5

Xm*Xrg
+u/z () W) dx
X?

m

We estimate the above terms one by one. Clearly,

5
’W(Xm - Xr?t)

1 1
5 -1 3 4
<C <X,2n — (X — X,3)2> (X,% - (Xm — Xr?z)z)
5

_1
<CXu’,
Xn=X3 |\ j—1 AL /
and f ; (XY W) |dx < CXpy . Besides, we have |V (x)| < C(J; + J3) and
Xa
5 5
X=X X=X s . 7
2 2\=3,p2 21 -5
f; J1dx§C/; xX(X,, —x7)73(X;, —x°)"4dx < CX,,~,
X; Xa
H
Xpn—X) -3
also, [} " Jzdx < CX
X

m - Combining with all the estimates, we obtain

5

Xm—Xp
|
X

2 - 1 _7
() g™ oy (dx | < kX,
The estimates for the rest three terms are easier. In fact, by m > myo,

5

3 5
L DR T e[S
¢ m n —
[3 T wre g e way] < cxg |

1
) (X2 —x*)"2dx
X3
m

5

s X=X 7
<cx 2*“/ (X —x)"2dx < CX,, 0"
0

m
The estimates for the other two are similar. Thus,

5

Xn—Xp -
=X, . _ Ck

3 e | <—

X 36

1
2
kT p
m36 _4n36 4
[m]
4
Lemma4.16 Fork > 0, X, < X, < 2X,,, if kX, < X2 — X2, then
3 |
Xm—X _1
m m ) Ck™3
/ 2 R Ry (DR (dx | <
X mis - Ips 1
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where mg < m < n.

4
Proof For kX, < X ﬁ - X,%l, straightforward computation shows that g”’(x) > 0. So

4
1 1 X2 _ x2 kX3 k 3
g0 =g 0= — — = > = =X

Xm Xl’l Xan(Xn‘l + Xn) 3XmeXn 6
Then by Lemma 6.1,
5
X, Xm ka 3 .

| / (X2 = — a7 L0 |

5

1 5 Xm— Xm
< Ck 3 Xy ‘«xW)(xm— Xm)| + /3 | () @) ()| dx
X

5

Xn—Xm
+Xf;/% | W (x)| dx
X

m

5 5
<Ck X)) [x,/:, W(X,, —X2)

5

Xim—Xpm
+u/ (! IW(x)ldx].

X
The rest part of the proof is similar with Lemma 4.15. O

Lemma4.17 ForVk <0, X;, < X,, <2X,,,, we have

—1
< C(Ikl v

Xm— Xm B
/ S e (T (D dx

X

where mg < m < n.

Proof We first estimate
X=X _ 5
= C/% (Xl =D g (x)dx| .

m

Xon =X ikxB , (m) (n)
f% ()™ Y™ oy (x)dx

m

28—
Notice that g(x) = /X2 — x2 — /X2 — 22 — gkxf =1 > kX" " and ¢'(x) > 0, then
by Lemma 6.1,

jém= {n+’\xﬂ |klx3(ﬁ71)

Xm an ﬁ ) 1 —_—
f ;o e o (X, = x) 7 XE =37 @) o ()
X

c

—3(6-1) w v Xn—Xo? wgy
< —Xn | (YWY (X — XD+ | 2 [({x)" W) (x)|dx
&l Xa

_z(ﬂ_l) Xm ernz
< Clk|™'Xx,,° [X,’jl W (X — X,2)| + XK /% W' (x)|dx

Xm_Xl];l2
+u/; <x>*‘—1|\P<x)|dx}.
X3

m

The rest part of the proof is similar with Lemma 4.15. O
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Finally, we have

Lemma4.18 Fork > 0,1 < p <2, X,, < X, <2X,,,, we have

CIB(B — 1)(B — k|5

=

X=X o
/ 2 (x)*e**" h, (), (x)dx
X

where mg < m < n.

Proof First we estimate
v2

= w ikxB, (m) )
f S R g (g (o dx

X

Xm_X:}nz . B
C/; (x)uel(inz—in+kx )llj(x)dx
X

Since

g () = —B(B— (B - kx> —p(B— (B - kXL,
then by Lemma 6.1,

X=Xt
(¢, — B _1 _1
[5 wmdematth 0 —ayd — a0 s
Xn

_E X=Xy,
= CIBGB = DB~ KXy, [|<<x>”\v><xm =X +fX% !(<x>“w)’(x>|dx}

m

_B X=Xy,
= CIBGB = DB~ KT Xy, 3[X,*,‘, ¥ (X —X)’,f)|+X£,if% W' ()| dx

X=Xt

+u f > @)l dx]
X

The rest part of the proof is similar with Lemma 4.15. O
For the last part of the integral, we have

Lemma4.19 ForVk #0, X, < Xp <2X,,, 1 < B <2,

=

Xm B
/ ()" h (), (X)dx

v
Xm_ m2

Here mg < m < n.

Proof First,

X”l
< c/ (X2 — x%) "5 (X2 — xY)"ddx
Xm*X:)n2

v
Xm 7sz

X ikxB | (m) (n)
/ ()RR (e @ (e

Xm 2 2 7l
<CXk L (X —x7) " 2dx
Xm_Xm2

_1 Xom
< cx,,ﬁ*"/ (X, — x)"2dx

v
m _Xm2

X
Itfollows/ , (x)* e By () (X)dx| < T |
Xin—Xn? ms 4 ¥ p3 4%
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Lemma4.20 Fork #0, X, < X, <2Xpand1 < B <2, we have

Xo c
} (x)ret™ hm(x)hn(x)dx’ S wmoiE u.l
I N T S )
m m-T6 T8 dp T6 T8 4

Proof For the integral on [X,,, X, ], we discuss two different cases:
Case 1.X,, — X, "> > X,, + X,,"*. We split the integral into three parts. First,

Xm +Xm 2 B e re—
/ () g M ey P ()

Xt X 2 2y=L o2 2y—1
< () = X)) 3 (X, — x°) " 7dx

LXKy
<CXEXy X, ' (X — X — X,,) Z/ (x — X)) #dx
X
1 v V: v w
< CXEXE X X X < o b R iR

When x > X,, + X,,"?, we have i¢,, < —(x — X,,). It follows

X?l Xll 2 /5
/ ey oy (dx

Xm+Xm

Xn Xn 2 1 1 -
< c/ )P (2 = X2)73 (X2 — x?) "1l
Xp+Xp"2

1 _1 Xn_X;Uz .
< CQRX)" X (X2 — (X — X, )%) " * / (X — Xp) "4 emdx
Xn+Xn"?
1 vp—1

<CRXp)" Xp* X, "

o0
1 Ly p L, v, nr
/ tTieTldt < Cn 8Tt a8 Tt
0

Finally, from

X kB, (m) 0]
/ 7v2( )™ oY () dx

Xn
sf ()2 — Xx2) 7 2 — )

Xn_X;vz
Xn
1
/ (X, —x) 4dx
X,— X—U

_1 1
< CRX)" (X — X% = X2) * X, *

it follows ‘fx” (x)“eikxﬁhm(X)hn(X)dx‘ < —5—.
m (nm)8~ 4" T6
— _ . . 1 1
Case2. X, — X, "2 < X,u + X,»"*. In fact, notice that the function (x — X,,,) "3 (X,, —x) "%
is symmetric on [X,,, X, ], we obtain

X, 5
/ ()R ey @ ()
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Xﬂ
< / () (% — X2)75 (X2 — x2)"ddx
1 1 Xn 1 1
<SCRXINXp* X, * / (x — Xp) 3(X,, —x)" %dx
_1 1 rXa |
=< C(ZX%)Xm4Xn N / (x — X)) 2dx
1 1
< CXEXp Xy ¥ (X = X)? < (nm) 31757472,

Thus,

=<

. Combining with the above

Xn b
/ ()" e** iy () (X)dx

two cases, we finish the proof. O

Lemmas 4.12 and 4.13 follow directly by the lemmas in Sect. 4.2.3. Combining with all
the lemmas in this section we finish the proof of Lemma 1.2 for 1 < 8 < 2.

5 Proof of Lemma 1.2 When B > 2

In the following we will suppose that m < n without losing the generality. As the case
1 < B < 2 we only need to estimate the integral on [0, co]. We first apply Theorem 3.1 in
[24] to obtain the integral estimates on [2X,,, 00) as follows.

Lemma 5.1 For u > 0, then we have

=

00 .
/ (x>uelkx R ()R (x)dx
2Xm

Proof By Theorem 3.1 in [24] we have

/ (VR By () Tin (D) dx
2Xm

< C/OO O By (O R () |dx
2Xn
1

1 1
< CIHO ™ gy - 1O R N gema,yy - 1 lloe @)
L1 =1
<CX,°X,° SC(mn)“(M 3)_
]

Next we consider the integral on [0, 2X,,]. Define v3 = % € (0, 1) when g > 2.

In the following we will discuss two different cases depending on whether X,> > 2X,, or
not.
The Case X, > 2X,, In this case we directly estimate the rest integral on [0, 2X,,].

Lemma5.2 For X, > 2X,, and B > 2, then

2Xm . C
f ()R () n x| <
0

(mn)z<4/3%227”) .
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Proof From Lemma 6.2,

2Xm g
/ ()" Ry () Ry (x)dx
0

X,

2Xm
5/ () [ O [[hn (0)|dx < CX,‘;/ [Am Q)| hn (x) |dx
0 0

X,3 q
< CXE iy () L2 M 0 | o /0 dx

< oxi U < cott)

’

where%—l—é:%,q:‘lﬂﬁ%ﬁ>4. O

The Case X, < 2X,, In this case we split the rest integral into two parts as follows.
Lemma5.3 Fork #0, X,* <2X,, and B > 2, then
C(kpI~" v 1)

<

2Xm -
[ e b o G | <

pa_ N\
(mn)z(m_“)
Proof Denote V¥ (x) = (x)*h (x)h,(x), ¢(x) = xP. Notice that when x € [X;, 2X ],
¢/ (x)| = BXP~D S0 by Lemma 6.1,

2Xm g
/ N (x)*e** B (), (x)dx
X,

2Xm
< ClkB| ' x, 7D [|w<zxm>|+/xv3 |W(x)|dx},

where |w(2Xm)| < CX,I:%, and |f§5§m <X>M—]hm(x)mdx| < CX,I,Z_I. By Lemma 62,
7, ()2 < CX,y. Thus,

2Xm
/ (X)ER, (O h, (x)dx| < CXE X, = CXAHL

X3

2Xm
‘/Uz (Y hy ()R, (x)dx| < CXEX, < CXEX,.
X,

Combining with all the conclusions we have

_ B2
< ClkBI~ X3 E=DH X < ClkBI~ (X, Xn) 2 X, 772

2Xm B
‘ f e by (o o)
Xy

[N

< ClpI mmy* (- 5).

[m}
Lemma5.4 For X,* < 2X,, and B > 2, then
X3
n . C
[ e | <
0 (mn)* (m _M)
Proof The proof is similar as Lemma 5.2, we omit it. O

Hence, combining the above four Lemmas we obtain Lemma 1.2 when g > 2.
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6 Appendix

In the following we will introduce two technical lemmas without proof. The first lemma
provides an estimate of oscillatory integral. For more details, see [37].

Lemma 6.1 [37] Suppose ¢ is real-valued and smooth in (A, B), ¥ is complex-valued, and
that |¢® (x)| > 1 for all x € (A, B). Then

B .o,
}/ e EOy (x)dx
A

B
S%A*”Dwunrgﬂ|w%mu{

holds when:

1) k=2, or
(ii) k = 1 and ¢'(x) is monotonic. The bound cy, is independent of ¢, ¥ and A.

The second lemma shows that the L?-norm of the eigenfunction of harmonic oscillating
operator can be controlled by its LZ2-norm.

Lemma 6.2 [24] Sppose that h(x) is the eigenfunction of Herimite operator with the corre-
sponding eigenvalue *. Then

IhllLe < wP PRl
where

-3 -1, 2<p<4
p(p) = 12 P
—3+3(3—5) 4<p=oo
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