1 Introduction

Symbol-pair codes introduced by Cassuto and Blaum [1] are designed to protect against pair errors in symbol-pair read channels. Cassuto and Litsyn [3] constructed cyclic symbol-pair codes using algebraic methods and showed that there exist symbol-pair codes whose rates are strictly higher, compared to codes for the Hamming metric with the same relative distance. Yaakobi et al. [16] studied b-symbol read channels and generalized some of the known results for symbol-pair codes to those for b-symbol read channels. Dinh et al. [9,10,11] investigated the symbol-pair weight distributions of repeated-root constacyclic codes etc.

The minimum symbol-pair distance plays an important role in determining the error correcting capability of a symbol-pair code. In general, a code over \({\mathbb {F}}_q\) of length n with size M and minimum pair-distance \(d_p\) is called an \((n, M, d_p)\) symbol-pair code. An \((n, M, d_p)\) symbol-pair code can correct up to \(\lfloor (d_p-1)/2\rfloor \) pair errors (see [1, Proposition 3]). Chee et al. [4] gave the Singleton-type bound for symbol-pair codes relates the parameters n, M and \(d_p\).

Lemma 1.1

[4] (Singleton Bound) Let q be a prime power and \(2 \le d_p \le n\). If \({\mathcal {C}}\) is an \((n, M, d_p)\) symbol-pair code over \({\mathbb {F}}_q\), then \( M \le q^{n-d_p+2}\). If \(M = q^{n-d_p+2}\), then it is called an maximum distance separable (MDS) symbol-pair code.

A q-ary MDS symbol-pair code with parameters \((n, M, d_p)\) is simply called an MDS \((n, d_p)\) symbol-pair code.

There are several works that have contributed to the constructions of MDS symbol-pair codes. Chee et al. [4, 5] obtained many classes of MDS symbol-pair codes from classical MDS codes and interleaving method of Cassuto and Blaum [1]. Moreover, they obtained nontrivial MDS symbol-pair codes with length \((q^2+2q)/2\) by employing classical MDS codes and Eulerian graphs of certain girth. Kai et al. [12] constructed MDS symbol-pair codes with \(d_p=5\) based on constacyclic codes. Later Kai et al. [13] derived three families of MDS symbol-pair codes by using repeated-root constacyclic codes. Ding et al. [7] obtained MDS symbol-pair codes with \(d_p=6\), whose lengths from 6 to \(q^2 + 1\), moreover, they found some MDS symbol-pair codes with \(d_p\ge 7\) utilizing elliptic curves. Then they investigated MDS b-symbol codes [8]. Li et al. [14] gave a number of MDS symbol-pair codes with \(d_p=7\) by analyzing some linear fractional transformations. Chen et al. [6] obtained MDS symbol-pair codes with \(d_p=8\) of length 3p from repeated-root cyclic codes. Recently, Ma and Luo [15] constructed two classes of MDS symbol-pair codes with \(d_p=10\) and \(d_p=12\) from repeated-root cyclic codes of length 3p over \({\mathbb {F}}_p\). However, it becomes difficult to find MDS symbol-pair codes possessing comparatively large length and minimum pair-distance.

In this paper, let p be a prime with \(5 |(p-1)\). Let S be a set of all repeated-root cyclic codes \({\mathcal {C}}=\langle g(x)\rangle \), \((x^5-1)|g(x)\), we present a method to find MDS symbol-pair codes of length 5p over \({\mathbb {F}}_p\). Moreover, by the method we can easily obtain the results in [15]. This paper is organized as follows. In Sect. 2, basic notations and results about cyclic codes and symbol-pair codes are provided. In Sect. 3, an unique class of MDS symbol-pair codes with \(d_p=12\) among all repeated-root cyclic codes whose Hamming distance is equal to 6 are investigated. In Sect. 4, we conclude this paper with remarks.

2 Preliminaries

In this section, we review some basic notations, results on cyclic codes, and symbol-pair codes over a finite field, which will be used to prove our main results in the sequel.

2.1 Cyclic code

Let \({\mathbb {F}}_q\) be a finite field with q elements, where \(q=p^s\), p is a prime and s is a positive integer. Let \({\mathcal {C}}\) be an [nl] linear code over \({\mathbb {F}}_q\), i.e., it is an l-dimensional subspace of \({\mathbb {F}}_{q}^n\). If for each codeword \((c_0,c_1,\ldots ,c_{n-1})\in {\mathcal {C}}\), \(( c_{n-1},c_0,\ldots ,c_{n-2})\) is also in \(\mathcal {C}\), then we call \(\mathcal {C}\) a cyclic code. We identify a codeword \(\textbf{c} =(c_0, c_1, \ldots , c_{n-1})\) in \({\mathcal {C}} \) with the polynomial \(c(x)=c_0+c_1x+c_2x^2+\cdots +c_{n-1}x^{n-1}\) in \({\mathbb {F}}_q[x]/\langle x^n-1\rangle \). A code \({\mathcal {C}} \) of length n over \({\mathbb {F}}_q\) corresponds to a subset of \({\mathbb {F}}_q[x]/\langle x^n-1\rangle \). Then \({\mathcal {C}}\) is a cyclic code if and only if the corresponding subset is an ideal of \({\mathbb {F}}_q[x]/\langle x^n-1\rangle \). Hence there exists a monic divisor g(x) of \(x^n-1\in {\mathbb {F}}_q[x]\) such that

$$\begin{aligned} {\mathcal {C}} =\langle g(x) \rangle =\{ f(x)g(x)\pmod {x^n-1}: f(x)\in {\mathbb {F}}_q[x]\}. \end{aligned}$$

The g(x) is called the generator polynomial of \({\mathcal {C}}\).

A cyclic code is called simple-root cyclic code if \(\gcd (n,p)=1\) and a repeated-root cyclic code if p|n. Castagnoli et al. in [2] studied the Hamming distance of repeated-root cyclic codes by using polynomial algebra, they showed that the Hamming distance of a repeated-root cyclic code \({\mathcal {C}}\) can be expressed in terms of \(d_H(\overline{{\mathcal {C}}}_t)\), where \(\overline{{\mathcal {C}}}_t\) are simple-root cyclic codes fully determined by \({\mathcal {C}}\).

Let \({\mathcal {C}}=\langle g(x)\rangle \) be a repeated-root cyclic code of length \(\ell p^s\) over \({\mathbb {F}}_q\), where \(\ell >1\) is a positive integer such that \(\gcd (\ell ,p)=1\) and s is a positive integer. Suppose that \(g(x)=\Pi _{i=1}^s m_i(x)^{e_i}\) is the factorization of g(x) over \({\mathbb {F}}_q\), where \(m_i(x), i=1,\ldots ,s\) are distinct monic irreducible polynomials of multiplicity \(e_i\). Fixing an integer t, \(0\le t\le p^s-1\), we define \(\overline{{\mathcal {C}}}_t=\langle {\overline{g}}_t(x)\rangle \) a simple-root cyclic code of length \(\ell \) over \({\mathbb {F}}_q\), where \({\overline{g}}_t(x)\) is the product of those irreducible factors \(m_i(x)\) with \(e_i>t\). If this product is equal to \(x^{\ell }-1\), i.e., \(\overline{{\mathcal {C}}}_t\) contains only the zero codeword, then \(d_H(\overline{{\mathcal {C}}}_t)=\infty \). If all \(e_i\) satisfy \(e_i\le t\), then \({\overline{g}}_{t}(x)=1\) and \(d_H(\overline{{\mathcal {C}}}_t)=1\).

The following lemma will be used to determine the Hamming distance of repeated-root cyclic codes \({\mathcal {C}}\), which obtained from [2].

Lemma 2.1

[2] Let \({\mathcal {C}}=\langle g(x)\rangle \) be a repeated-root cyclic code of length \(\ell p^s\) over \({\mathbb {F}}_q\), where p is a prime with \(\gcd (\ell ,p)=1\) and s is a positive integer. Then

$$\begin{aligned} d_H({\mathcal {C}}) = \min \{P_t\cdot d_H(\overline{{\mathcal {C}}}_t) : t \in T\}, \end{aligned}$$

where for each \(t\in T=\{t:0\le t\le p^s-1\}\), \(t=t_{0}+t_{1}p+\cdots +t_{s-1}p^{s-1}\) is the p-adic representation and \(P_t=\prod _{m=0}^{s-1}(t_m+1)=w_{H}((x-1)^t)\).

2.2 Symbol-pair codes

For \(x=(x_0,x_1,\ldots ,x_{n-1})\in {\mathbb {F}}_q^n \), the symbol-pair read vector of x is

$$\begin{aligned} \pi _p(x) =((x_0, x_1), (x_1, x_2), \ldots , (x_{n-1}, x_{0} )). \end{aligned}$$

For a code \({\mathcal {C}}\subset {\mathbb {F}}_q^n\), there is the symbol-pair code generated by \({\mathcal {C}}\):

$$\begin{aligned} \pi _p({\mathcal {C}}):=\{\pi _p(x): x\in {\mathcal {C}}\}. \end{aligned}$$

Let \(x=(x_0, x_1, \ldots , x_{n-1})\) and \(y=(y_0, y_1, \ldots , y_{n-1})\in {\mathbb {F}}_q^n\). Recall that the Hamming weight of the vector x is defined as \(w_H (x) =|\{i: x_i \ne 0, 0\le i\le n-1\}|\) and the Hamming distance between x and y is defined as \(d_H (x,y) =|\{i:x_i \ne y_i, 0\le i\le n-1 \}|\). Define the symbol-pair weight of x as

$$\begin{aligned} w_p(x)=w_H(\pi _p(x))=|\{(x_i,x_{i+1}): (x_i,x_{i+1})\ne (0,0), 0\le i\le n-1\}|, \end{aligned}$$

define the symbol-pair distance between x and y as

$$\begin{aligned} d_p(x, y)= & {} d(\pi _p(x), \pi _p(y))\\ {}= & {} |\{i: (x_i, x_{i+1})\ne (y_i, y_{i+1}),0\le i\le n-1\}|, \end{aligned}$$

where the subscripts \( i+1 \) are reduced modulo n.

An \((n, M, d_p)\) symbol-pair code \(\pi _p({\mathcal {C}})\) generated by \({\mathcal {C}}\subset {\mathbb {F}}_q^n\) has size M and minimum symbol-pair distance \(d_p\), where \(d_p = \min \{d_p(x, y):x, y \in {\mathcal {C}}, x\ne y\}\). Similar to the classical case, if \({\mathcal {C}}\) is a linear code, then the minimum symbol-pair distance of \(\pi _p({\mathcal {C}})\) is the smallest symbol-pair weight of nonzero codewords of \(\pi _p({\mathcal {C}})\), that is

$$\begin{aligned} d_p({\mathcal {C}})=\min \{w_p(x):x \in {\mathcal {C}}, x\ne 0\}. \end{aligned}$$

It is known in [1] that for any \(0< d_H({\mathcal {C}}) < n\),

$$\begin{aligned} d_H({\mathcal {C}}) +1\le d_p({\mathcal {C}}) \le 2d_H({\mathcal {C}}). \end{aligned}$$

Let \(S=\{(x_i, x_{i+1}): 0\le i\le n-1\}\) be the set from the vector x. There are two subsets of S:

$$\begin{aligned} S_0=\{(x_i,x_{i+1} )\in S: x_i\ne 0\} \end{aligned}$$

and

$$\begin{aligned} S_1=\{(x_i,x_{i+1} )\in S: x_i=0, x_{i+1}\ne 0\}. \end{aligned}$$

It is obvious that \(w_H(x)=|S_0|\) and

$$\begin{aligned} w_p(x)=|S_0|+L, \end{aligned}$$
(2.1)

where \(L= |S_1|\). In fact if \(x=(x_0,x_1,\ldots , x_{n-1})\in {\mathbb {F}}_q^n\) is viewed as a cycle of length n, then L is the number of a sequence of 0’s in the cyclic of x. For example, in \(x=(1,0,0,1,0,0,0,1,0,1)\) and \(y=(0,1,0,0,1,0,1,0,1,0)\in {\mathbb {F}}_{2}^{10}\), we have \(L=3\) and \(L=4\), respectively.

In this paper, we will utilize repeated-root cyclic codes to obtain a class of new MDS symbol-pair codes. A simple notation is given below.

Definition 2.2

The support of a polynomial \(f(y)=\sum _{i=0}^{\ell -1}a_iy^i\) is the set

$$\begin{aligned} supp(f)=\{ i: a_i\ne 0, 0\le i\le \ell -1\}, \end{aligned}$$

and denote the number of elements in supp(f) by N.

3 MDS symbol-pair codes

In this section, we always assume that p is a prime number and \(5|(p-1)\). There is an irreducible factorization over \({\mathbb {F}}_p\):

$$\begin{aligned} x^{5 p}-1=\prod _{i=0}^{4}(x-\zeta ^i)^{p }, \end{aligned}$$

where \(\zeta \) ia a primitive 5-th root of unity in \({\mathbb {F}}_p\).

Let

$$\begin{aligned} S=\left\{ {\mathcal {C}}=\langle g(x)\rangle : g(x)=\prod _{i=0}^{4}(x-\zeta ^{i})^{j_i}, p\ge j_0\ge j_1\ge j_2\ge j_3 \ge j_4\ge 1\right\} \end{aligned}$$
(3.1)

be a set of nontrivial cyclic codes with length 5p over \({\mathbb {F}}_p\).

First, we shall find MDS symbol-pair codes from all repeated-root cyclic codes of length 5p with \(d_H({\mathcal {C}})\le 7\) defined as (3.1).

Theorem 3.1

If \({\mathcal {C}}=\langle g(x)\rangle \in S, d_H({\mathcal {C}})\le 7\), and \({\mathcal {C}}\) is an MDS symbol-pair code. Then there is a unique possible code as follows: \( d_H({\mathcal {C}})=6\) and

$$\begin{aligned} g(x)=(x-1)^5(x-\zeta )^2(x-\zeta ^2)(x-\zeta ^3)(x-\zeta ^4). \end{aligned}$$
(3.2)

Proof

Suppose that \({\mathcal {C}}=\langle g(x)\rangle \) is a \([5p,l,d_H({\mathcal {C}})]\) cyclic code with MDS symbol-pair. Then \(d_p({\mathcal {C}})=5p-l+2\) with \(l=5p-\deg (g(x))\), so

$$\begin{aligned} d_p( {{\mathcal {C}}} )=\deg (g(x))+2. \end{aligned}$$
(3.3)

In (3.1), \((x^5-1)| {g}(x)\) and \(\deg (g(x))\ge 5\). Recall that \(d_p( {{\mathcal {C}}} )\le 2d_H( {{\mathcal {C}}} )\). Then \(d_H({\mathcal {C}})\ge 4 \).

By Lemma 2.1, \(d_H({\mathcal {C}})=\min \{P_t\cdot d_H(\overline{{\mathcal {C}}}_t): t=1,2,\ldots ,p-1\}\), where \(\overline{ {\mathcal {C}} }_t=\langle {g}_t(x)\rangle \), it is clear that \( {g}_0 (x)= x^5-1 \) and \(P_0\cdot d_H(\overline{{\mathcal {C}}}_0)=\infty \). So we only consider \(1\le t\le p-1\) and \(P_t=t+1\).

(1) Suppose that \(d_H({\mathcal {C}})=4\). Then \(d_p( {{\mathcal {C}}} )\le 8\).

If \(t=1\), then \(d_H(\overline{{\mathcal {C}}}_1)\ge 2\) and \( {g}_1 (x) \) has at least one factor: \(x-1\), this means \( j_0\ge 2\).

If \(t=2\), then \(d_H(\overline{{\mathcal {C}}}_2)\ge 2\) and \( {g}_2 (x) \) has at least one factor: \(x-1\), this means \( j_0\ge 3\).

Thus \(j_0\ge 3 \) and \(j_1\ge j_2\ge j_3\ge j_4 \ge 1\) and \(\deg (g(x))\ge 7\), which is a contradiction.

(2) Suppose that \(d_H({\mathcal {C}})=5\). Then \(d_p({\mathcal {C}})\le 10\).

If \(t=1\), then \(d_H(\overline{{\mathcal {C}}}_1)\ge 3\) and \( {g}_1 (x) \) has at least two factors: \(x-1\) and \(x-\zeta \), this means \( j_0\ge 2\) and \(j_1\ge 2\).

If \(t=2\), then \(d_H(\overline{{\mathcal {C}}}_2)\ge 2\) and \( {g}_2 (x) \) has at least one factor: \(x-1\), this means \( j_0\ge 3\).

If \(t=3\), then \(d_H(\overline{{\mathcal {C}}}_3)\ge 2\) and \( {g}_2 (x) \) has at least one factor: \(x-1\), this means \( j_0\ge 4\).

Thus \(j_0\ge 4\), \(j_1\ge 2\), and \( j_2\ge j_3\ge j_4 \ge 1\), and \(\deg (g(x))\ge 9\), which is a contradiction.

(3) Suppose that \(d_H({\mathcal {C}})=7\). Then \(d_p({\mathcal {C}})\le 14\).

If \(t=1\), then \(d_H(\overline{{\mathcal {C}}}_1)\ge 4\) and \( {g}_1 (x) \) has at least three factors: \(x-1\), \(x-\zeta \), and \(x-\zeta ^2\), this means \( j_0\ge 2\), \(j_1\ge 2\), \(j_2\ge 2\).

If \(t=2\), then \(d_H(\overline{{\mathcal {C}}}_2)\ge 3\) and \( {g}_2 (x) \) has at least two factors: \(x-1\) and \(x-\zeta \), this means \( j_0\ge 3\) and \(j_1\ge 3\).

If \(t=3\), then \(d_H(\overline{{\mathcal {C}}}_3)\ge 2\) and \( {g}_2 (x) \) has at least one factor: \(x-1\), this means \( j_0\ge 4\).

If \(t=4\), then \(d_H(\overline{{\mathcal {C}}}_4)\ge 2\) and \( {g}_2 (x) \) has at least one factor: \(x-1\), this means \( j_0\ge 5\).

If \(t=5\), then \(d_H(\overline{{\mathcal {C}}}_5)\ge 2\) and \( {g}_2 (x) \) has at least one factor: \(x-1\), this means \( j_0\ge 6\).

Thus \(j_0\ge 6\), \(j_1\ge 3\), \(j_2\ge 2\), and \( j_3\ge j_4 \ge 1\), and \(\deg (g(x))\ge 13\), which is a contradiction.

(4) Suppose that \(d_H({\mathcal {C}})=6\). Then \(d_p({\mathcal {C}})\le 12\).

If \(t=1\), then \(d_H(\overline{{\mathcal {C}}}_1)\ge 3\) and \( {g}_1 (x) \) has at least two factors: \(x-1\) and \(x-\zeta \), this means \( j_0\ge 2\) and \(j_1\ge 2\).

If \(t=2\), then \(d_H(\overline{{\mathcal {C}}}_2)\ge 2\) and \( {g}_2 (x) \) at least one factor: \(x-1\), this means \( j_0\ge 3\).

If \(t=3\) and \(t=4\), then either \( {g}_3 (x) \) or \({g}_4 (x) \) has at least one factor: \(x-1\), this means \( j_0\ge 5\).

Thus \(j_0\ge 5 \), \(j_1\ge 2\), and \( j_2\ge j_3\ge j_4\ge 1\). Then

$$\begin{aligned} {g}(x)=(x-1)^{5+j_0^\prime }(x-\zeta )^{2+j_1^\prime }(x-\zeta ^2)^{1+j_2^\prime } (x-\zeta ^3)^{1+j_3^\prime }(x-\zeta ^4)^{1+j_4^\prime }, \end{aligned}$$

where for \(0\le i\le 4\), \(j_i^\prime \) is a positive integer, and \(\deg (g(x))=10+\sum _{i=0}^4j_i^\prime \).

By (3.3), we have

$$\begin{aligned} d_p({\mathcal {C}})=10+\sum _{i=0}^4j_i^\prime +2 \le 12, \end{aligned}$$

it can only have

$$\begin{aligned} j_0^\prime =j_1^\prime = j_2^\prime = j_3^\prime =j_4^\prime =0. \end{aligned}$$

Hence if \({\mathcal {C}}=\langle g(x)\rangle \in S \) and \({\mathcal {C}}\) is an MDS symbol-pair code, then there is a unique possible code as follows: \( d_H({\mathcal {C}})=6\) and

$$\begin{aligned} g(x)=(x-1)^5(x-\zeta )^2(x-\zeta ^2)(x-\zeta ^3)(x-\zeta ^4). \end{aligned}$$

This is completed the proof. \(\square \)

Next, we shall verify that the code in Theorem 3.1 is just MDS symbol-pair with \( d_H({\mathcal {C}})=6\).

Suppose that c(x) is a nonzero code polynomial of \({\mathcal {C}}=\langle g(x)\rangle \in S\). Then g(x)|c(x) and c(x) can be written as the form \(c(x)=\sum _{i=0}^{4} x^iV_i(x^{5}) \), for convenience, we write

$$\begin{aligned} c(x)=(V_0(x^5),V_1(x^5),V_2(x^5),V_3(x^5),V_4(x^5) ), \end{aligned}$$

where \(V_i(x^{5})\) is a polynomial of \(x^{5}\). Let \(N_i=|supp(V_i(x^5))|, 0\le i\le 4\), where each \(supp(V_i(x^5)\) is in Definition 2.2.

By \(c(1)=c(\zeta )=\cdots =c(\zeta ^{4})=0\), we obtain a system of 5 equations over \({\mathbb {F}}_p\) as follows:

$$\begin{aligned} \left( \begin{array}{cccc} (\zeta ^0)^0 &{} (\zeta ^0)^1 &{} \ldots &{} (\zeta ^0)^{4}\\ (\zeta ^{1})^0 &{} (\zeta ^{1})^1 &{} \ldots &{} (\zeta ^{1})^{4}\\ \vdots &{} \vdots &{} &{}\vdots \\ (\zeta ^{4})^0&{} (\zeta ^{4})^1&{} \ldots &{}(\zeta ^{4})^{4} \end{array} \right) \left( \begin{array}{c} V_0(1)\\ V_1(1)\\ \vdots \\ V_4(1) \end{array} \right) =0. \end{aligned}$$
(3.4)

It is easy to check that the coefficient matrix of (3.4) is nonsingular. Then

$$\begin{aligned} V_0(1)=V_1(1)=\cdots =V_4(1)=0, \end{aligned}$$

it is implied that \( (x^{5}-1)|V_{i}(x^{5})\) for each \(0\le i\le 4\). Suppose that \( V_i(x^{5})=\sum _{j=0}^n a_j{(x^5)}^j\), it follows from \( V_{i}(1)=0\) that \( a_0=-(a_1+\ldots +a_n)\).

Theorem 3.2

Let g(x) be defined as (3.2) and \({\mathcal {C}}=\langle g(x)\rangle \). Then \({\mathcal {C}}\) is an MDS symbol-pair codes with \( d_H({\mathcal {C}})=6\).

Now we give some lemmas to prove Theorem 3.2.

Lemma 3.3

If \( w_H(c(x))=6\), then \(w_p(c(x))=12\).

Proof

We divide into three cases to investigate \(w_p(c(x))\) with \( w_H(c(x))=6\).

Case 1: If \(c(x)=(V_i(x^5), V_j(x^5))\) with \((N_i, N_j)=(4,2)\) and \( 0\le i< j\le 4\). Since \(w_H(x^iV_i(x^5))=w_H(V_i(x^5))\), without loss of generality, we consider \(c(x)=(V_0(x^5), V_k(x^5))\) with \(1\le k\le 4\).

Suppose that \( k\in \{2,3\}\). Then \(L=6\) and \(w_p(c(x))=12\).

Suppose that \( k=1 \). Let \(V_0(x^5)=a_0+ a_1x^{5r_1}+a_2x^{5r_2}+a_3x^{5r_3}\) with \(1\le r_1<r_2<r_3<p\) and \(V_1(x^5)=b_1 (x^{5r_4}-1), 1\le r_4<p\). Then

$$\begin{aligned} c(x)= & {} a_0+ a_1x^{5r_1}+a_2x^{5r_2}+a_3x^{5r_3}+x(-b_1+b_1x^{5r_4})\nonumber \\= & {} a_0-b_1x+ a_1x^{5r_1}+a_2x^{5r_2}+a_3x^{5r_3}+ b_1x^{5r_4+1}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

The first, the second and the third formal derivative of c(x) respectively gives

$$\begin{aligned} c^{(1)}(x)= & {} -b_1 +5r_1a_1x^{5r_1-1}+5r_2a_2x^{5r_2-1}+5r_3a_3x^{5r_3-1}\\ {}{} & {} +(5r_4+1)b_1x^{5r_4},\\ c^{(2)}(x)= & {} 5r_1(5r_1-1)a_1x^{5r_1-2}+5r_2(5r_2-1)a_1x^{5r_2-2}\\{} & {} +5r_3(5r_3-1)a_1x^{5r_3-2}+5(5r_4+1)r_4b_1x^{5r_4-1}, \end{aligned}$$

and

$$\begin{aligned} c^{(3)}(x)= & {} 5r_1(5r_1-1)(5r_1-2)a_1x^{5r_1-3}+5r_2(5r_2-1)(5r_2-2)a_1x^{5r_2-3}\\{} & {} +5r_3(5r_3-1)(5r_3-2)a_1x^{5r_3-3}+5(5r_4+1)(5r_4-1)r_4b_1x^{5r_4-2}. \end{aligned}$$

Since \((x -1)^5\) and \((x-\zeta )^2\) are divisors of c(x), it follows from \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=0\), note that \(a_0=-(a_1+a_2+a_3)\), that

$$\begin{aligned} B( a_1,a_2,a_3,b_1)^\top =0, \end{aligned}$$
(3.5)

where \(B=(B_1,B_2,B_3,B_4)\), and for \(1\le i\le 3\),

$$\begin{aligned} B_i=\left( \begin{array}{cccc} r_i\\ r_i\zeta ^{-1} \\ r_i(5r_i-1) \\ r_i(5r_i-1)(5r_i-2) \\ \end{array} \right) \end{aligned}$$
(3.6)

and

$$\begin{aligned} B_4=\left( \begin{array}{cccc} r_4\\ r_4 \\ r_4(5r_4+1)\\ r_4(25r_4^2-1)\\ \end{array} \right) . \end{aligned}$$
(3.7)

We make some elementary transformations:

$$\begin{aligned} B \sim \left( \begin{array}{cccc} 1&{} 0&{}0&{}0\\ 0&{}0&{}0&{}1\\ 0&{}5(r_2-r_1) &{}5(r_3-r_1)&{}5r_4+1\\ 0&{}0&{}25(r_3-r_2)(r_3-r_1)&{}\lambda \end{array}\right) , \end{aligned}$$

where \(\lambda =(5r_4+1)(5r_4-5r_1-5r_2+2)\). Since \(1\le r_1<r_2<r_3<p\), we can verfy that the matrix B is nonsingular, thus \(a_1=a_2=a_3=b_1=0 \), which contradicts with that \(b_1, a_j\in {\mathbb {F}}_p^*, 0\le j\le 3\).

Suppose that \(k=4\), that is

$$\begin{aligned} c(x)=a_0-b_1x^4+ a_1x^{5r_1}+a_2x^{5r_2}+a_3x^{5r_3}+ b_1x^{5r_4+4}\in {\mathbb {F}}_p^*[x], \end{aligned}$$

similarly, by \(c(1)=0\) and \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=0\), then we derive a contradiction.

Hence if \(c(x)=(V_i(x^5), V_j(x^5))\) with \((N_i, N_j)=(4,2)\), then \(w_p(c(x))=12\).

Case 2: If \(c(x)=(V_0(x^5), V_k(x^5)), 1\le k\le 4\), with \((N_0, N_k)=(3,3)\).

Let \(V_0(x^5)=a_0+ a_1x^{5r_1}+a_2x^{5r_2} \) with \(1\le r_1<r_2<p \) and \(V_k(x^5)=b_0+ b_1x^{5r_3}+b_2x^{5r_4}\) with \(1\le r_3<r_4 <p\), where \(a_0=-a_1-a_2\) and \(b_0=-b_1-b_2\). Then

$$\begin{aligned} c(x)= & {} a_0+ a_1x^{5r_1}+a_2x^{5r_2} +x^k(b_0+ b_1x^{5r_3}+b_2x^{5r_4})\\= & {} a_0+b_0x^k+ a_1x^{5r_1}+a_2x^{5r_2}+b_1x^{5r_3+k}+ b_2x^{5r_4+k}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

It is obvious that if \(k\in \{2,3\}\), then \(L=6\) and \(w_p(c(x))=12\).

Suppose that \(k=1\). Then

$$\begin{aligned} c(x)=-(a_1+a_2)-(b_1+b_2)x+ a_1x^{5r_1}+a_2x^{5r_2}+b_1x^{5r_3+1}+ b_2x^{5r_4+1}, \end{aligned}$$

by \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=0\), we have

$$\begin{aligned} (B_1,B_2,B_3^\prime ,B_4)\left( \begin{array}{cccc} a_1\\ a_2 \\ b_1\\ b_2\\ \end{array} \right) =0, \end{aligned}$$

where \(B_1,B_2,B_4\) are defined as (3.6), (3.7) and \(B_3^\prime \) is given by changing \(r_4\) into \(r_3\) in \(B_4\). Note that \(1\le r_1<r_2\) and \(1\le r_3<r_4\), we can obtain that the determinant of \(B=(B_1,B_2,B_3^\prime ,B_4)\) is not equal to 0. Hence \(k=1\) is impossible.

Suppose that \(k=4\), then

$$\begin{aligned} c(x)=-(a_1+a_2)-(b_1+b_2)x^4+ a_1x^{5r_1}+a_2x^{5r_2}+b_1x^{5r_3+4}+ b_2x^{5r_4+4}, \end{aligned}$$

similar to the argument with \(k=1\), we know that \(k=4\) is also impossible.

Case 3: If \(c(x)= (V_0(x^5), V_i(x^5), V_j(x^5))\) with \((N_0, N_i, N_j)=(2,2,2)\) and \(1\le i<j\le 4\).

Let \(V_0(x^5)=a_1(x^{5r_1}-1)\), \(V_i(x^5)=a_2(x^{5r_2}-1)\), and \(V_j(x^5)=a_3(x^{5r_3}-1)\). Then

$$\begin{aligned} c(x)= & {} a_1(x^{5r_1}-1)+x^ia_2(x^{5r_2}-1)+x^ja_3(x^{5r_3}-1)\\= & {} -a_1-a_2x^{i}-a_3x^j+a_1x^{5r_1}+a_2x^{5r_2+i}+a_3x^{5r_3+j}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

Note that \(1\le i<j\le 4\), then

$$\begin{aligned} (i,j)\in \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}. \end{aligned}$$

The first and the second formal derivative of c(x) respectively gives

$$\begin{aligned} c^{(1)}(x)= & {} -ia_2x^{i-1}-j a_3x^{j-1} +5r_1a_1x^{5r_1-1}+(5r_2+i)a_2x^{5r_2+i-1}\\{} & {} +(5r_3+j)a_3x^{5r_3+j-1}, \end{aligned}$$

and

$$\begin{aligned} c^{(2)}(x)= & {} -i(i-1)a_2x^{i-2}-j(j-1) a_3x^{j-2} +5r_1(5r_1-1)a_1x^{5r_1-2}\\{} & {} + (5r_2+i)(5r_2+i-1)a_2x^{5r_2+i-2}+(5r_3+j)(5r_3+j-1)a_3x^{5r_3+j-2}. \end{aligned}$$

(1) Suppose that \((i,j)=(1,2)\). Since \((x -1)^5\) and \((x-\zeta )^2\) are divisors of c(x), \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=0\). Then

$$\begin{aligned} (B_1,B_2,B_3)\left( \begin{array}{c} a_1\\ a_2 \\ a_3\\ \end{array} \right) =0, \end{aligned}$$
(3.8)

where

$$\begin{aligned} B_1=\left( \begin{array}{c } r_{1} \\ r_1\zeta ^{-1} \\ r_1(5r_1-1) \\ \end{array} \right) , B_2=\left( \begin{array}{c} r_{2} \\ r_2 \\ r_2(5r_2+1) \\ \end{array} \right) , B_3=\left( \begin{array}{c} r_{3} \\ r_3\zeta \\ r_3(5r_3+3) \\ \end{array} \right) . \end{aligned}$$
(3.9)

We make some elementary transformations:

$$\begin{aligned} (B_1,B_2,B_3) \sim \left( \begin{array}{cccc} 1 &{} 0&{}0 \\ 0 &{} 1-\zeta ^{-1} &{} \zeta -\zeta ^{-1} \\ 0&{}5(r_2-r_1)+2&{}5(r_3-r_1)+4 \\ \end{array} \right) . \end{aligned}$$

Note that \(1\le r_1,r_2,r_3<p\) are positive integers, we conclude that

$$\begin{aligned}{} & {} \left| \begin{array}{ll}1-\zeta ^{-1} &{} \zeta -\zeta ^{-1}\\ 5(r_2-r_1)+2 &{} 5(r_3-r_1)+4\end{array}\right| \\= & {} 5r_3-5r_1+4-(5r_2-5r_1+2)\zeta +(5r_2-5r_3-2)\zeta ^{-1}\ne 0. \end{aligned}$$

The solution of Eq. (3.8) has only zero, which is a contradiction.

(2) Suppose that \((i,j)=(1,3)\). By \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=0\), then

$$\begin{aligned} (B_1,B_2,B_3^\prime )\left( \begin{array}{cccc} a_1\\ a_2 \\ a_3\\ \end{array} \right) =0, \end{aligned}$$
(3.10)

where \(B_1,B_2\) are defined as (3.9) and

$$\begin{aligned} B_3^\prime =\left( \begin{array}{c} r_{3} \\ r_3\zeta ^2 \\ r_3(5r_3+5) \\ \end{array} \right) . \end{aligned}$$
(3.11)

(3) Suppose that \((i,j)=(1,4)\). By \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=0\), then

$$\begin{aligned} (B_1,B_2,B_4 )\left( \begin{array}{cccc} a_1\\ a_2 \\ a_3\\ \end{array} \right) =0, \end{aligned}$$
(3.12)

where \(B_1,B_2\) are defined as (3.9) and

$$\begin{aligned} B_4=\left( \begin{array}{c} r_{3} \\ r_3\zeta ^3 \\ r_3(5r_3+7) \\ \end{array} \right) .\end{aligned}$$
(3.13)

(4) Suppose that \((i,j)=(2,3)\). By \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=0\), then

$$\begin{aligned} (B_1,B_2^\prime ,B_3^\prime )\left( \begin{array}{cccc} a_1\\ a_2 \\ a_3\\ \end{array} \right) =0, \end{aligned}$$
(3.14)

where \(B_1,B_3^\prime \) is defined as (3.9), (3.11), respectively, and

$$\begin{aligned} B_2^\prime =\left( \begin{array}{c} r_{2} \\ r_2\zeta \\ r_2(5r_2+3) \\ \end{array} \right) . \end{aligned}$$
(3.15)

(5) Suppose that \((i,j)=(2,4)\). By \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=0\), then

$$\begin{aligned} (B_1,B_2^{\prime },B_4 )\left( \begin{array}{cccc} a_1\\ a_2 \\ a_3\\ \end{array} \right) =0, \end{aligned}$$
(3.16)

where \(B_1\), \(B_2^{\prime }\), and \( B_4 \) is defined as (3.9), (3.15), and (3.13), respectively.

(6) Suppose that \((i,j)=(3,4)\). By \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=0\), then

$$\begin{aligned} (B_1,B_2^{\prime \prime },B_4 )\left( \begin{array}{cccc} a_1\\ a_2 \\ a_3\\ \end{array} \right) =0, \end{aligned}$$
(3.17)

where \(B_1\) and \( B_4 \) is defined as (3.9) and (3.13), respectively, \(B_2^{\prime \prime }\) is replaced \(r_3\) by \(r_2\) in \(B_3^\prime \) defined as (3.11).

Similar to the case \(i=1\) and \(j=2\), the solutions of (3.10), (3.12), (3.14), (3.16) and (3.17) are zero, which are contradictions.

Hence if \(w_H( c(x))=6\), then \(w_p(c(x))=12\). \(\square \)

Lemma 3.4

If \( w_H(c(x))=7\), then \(w_p(c(x))\ge 12\).

Proof

We divide into three cases to investigate \(w_p(c(x))\) with \( w_H(c(x))=7\).

Case 1: If \(c(x)=(V_0(x^5), V_k(x^5)), 1\le k\le 4\), with \((N_0, N_k)=(4,3)\).

Let \(V_0(x^5)=a_0+ a_1x^{5r_1}+a_2x^{5r_2}+a_3x^{5r_3}\) with \(1\le r_1<r_2<r_3<p\) and \(V_k(x^5)=b_0+ b_1x^{5r_4}+b_2x^{5r_5}\) with \(1\le r_4<r_5<p\). Then

$$\begin{aligned} c(x)= & {} a_0+ a_1x^{5r_1}+a_2x^{5r_2}+a_3x^{5r_3}+x^k(b_0+ b_1x^{5r_4}+b_2x^{5r_5})\\= & {} a_0+b_0x^k+ a_1x^{5r_1}+a_2x^{5r_2}+a_3x^{5r_3}+ b_1x^{5r_4+k}+ b_2x^{5r_5+k}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

It is obvious that if \(k\in \{2,3\}\), then \(L=7\) and \(w_p(c(x))=14\).

Suppose that \(k=1\). Then

$$\begin{aligned} c(x)=a_0+b_0x+ a_1x^{5r_1}+a_2x^{5r_2}+a_3x^{5r_3}+ b_1x^{5r_4+1}+ b_2x^{5r_5+1}, \end{aligned}$$

then \(w_p(c(x))\ge 12\) except \( (r_4,r_5)\in \{ (r_1,r_2), (r_1,r_3), (r_2,r_3)\}\). Without loss of generality, we assume that \(r_4=r_1\) and \(r_5=r_2\). That is

$$\begin{aligned} c(x)=a_0+b_0x+ a_1x^{5r_1}+ b_1x^{5r_1+1}+a_2x^{5r_2}+b_2x^{5r_2+1}+a_3x^{5r_3}, \end{aligned}$$

in this case \(L=4\) and \(w_p(c(x))=11\). But, this is impossible. The details are the below.

The i-th \(1\le i\le 4\), formal derivative of c(x) respectively gives

$$\begin{aligned} c^{(1)}(x)= & {} b_0 +5r_1a_1x^{5r_1-1}+5r_2a_2x^{5r_2-1}+5r_3a_3x^{5r_3-1}\\{} & {} +(5r_1+1)b_1x^{5r_1}+(5r_2+1)b_2x^{5r_2}, \\ c^{(2)}(x)= & {} 5r_1(5r_1-1)a_1x^{5r_1-2}+5r_2(5r_2-1)a_1x^{5r_2-2}+5r_3(5r_3-1)a_1x^{5r_3-2}\\{} & {} +5(5r_1+1)r_1b_1x^{5r_1-1}+5(5r_2+1)r_2b_2x^{5r_2-1},\\ c^{(3)}(x)= & {} 5r_1(5r_1-1)(5r_1-2)a_1x^{5r_1-3}+5r_2(5r_2-1)(5r_2-2)a_1x^{5r_2-3}\\{} & {} +5r_3(5r_3-1)(5r_3-2)a_1x^{5r_3-3}+5(5r_1+1)(5r_1-1)r_1b_1x^{5r_1-2}\\{} & {} +5(5r_2+1)(5r_2-1)r_2b_2x^{5r_2-2}, \end{aligned}$$

and

$$\begin{aligned} c^{(4)}(x)= & {} 5r_1(5r_1-1)(5r_1-2)( 5r_1-3)a_1x^{5r_1-4}+5r_2(5r_2-1)(5r_2-2)( 5r_2-3)a_1x^{5r_2-4}\\{} & {} +5r_3(5r_3-1)(5r_3-2)( 5r_3-3)a_1x^{5r_3-4}+5(5r_1+1)(5r_1-1)( 5r_1-2)r_1b_1x^{5r_1-3}\\{} & {} +5(5r_2+1)(5r_2-1)( 5r_2-2)r_2b_2x^{5r_2-3}, \end{aligned}$$

Since \((x -1)^5\) and \((x-\zeta )^2\) are divisors of c(x), it follows from \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=c^{(4)}(1)=0\), note that \(a_0=-(a_1+a_2+a_3)\) and \(b_0=-(b_1+b_2)\), that

$$\begin{aligned} \left( \begin{array}{cc} B&{} \alpha \\ \beta &{} a_{55}\end{array}\right) (a_1,a_2,a_3,b_1,b_2)^\top =0, \end{aligned}$$
(3.18)

where B is defined as (3.5), \(\alpha =( r_2, r_2, r_2(5r_2+1), r_2(25r_2^2-1))^\top \), \(\beta = (r_1(5r_1-1)(5r_1-2)(5r_1-3),r_2(5r_2-1)(5r_2-2)(5r_2-3),r_3(5r_3-1)(5r_3-2)(5r_3-3),r_1(25r_1^2-1)(5r_1-2))\), and \( a_{55}=r_2(25r_2^2-1)(5r_2-2)\). By make some elementary transformations, note that \(1\le r_1<r_2<r_3<p\) and \( 1\le r_4<r_5<p\), we can check that the matrix \(\left( \begin{array}{cc} B&{} \alpha \\ \beta &{} a_{55}\end{array}\right) \) is nonsingular, hence the solution of (3.18) is zero, which is a contradiction.

Suppose that \(k=4\). Then

$$\begin{aligned} c(x)=a_0+b_0x^4+ a_1x^{5r_1}+a_2x^{5r_2}+a_3x^{5r_3}+ b_1x^{5r_4+4}+ b_2x^{5r_5+4}, \end{aligned}$$

then \(w_p(c(x))\ge 12\) except \(r_1=1\) and \( (r_4,r_5)=(r_2-1,r_3-1)\). That is

$$\begin{aligned} c(x)=a_0+b_0x^4+ a_1x^{5}+ b_1x^{5r_2-1}+a_2x^{5r_2}+ b_2x^{5r_3-1}+a_3x^{5r_3}, \end{aligned}$$

using arguments similar to the above, \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=c^{(4)}(1)=0\), we derive a contradiction.

Hence if \(c(x)=( V_0(x^5), V_k(x^5)), 1\le k\le 4 \) with \((N_0, N_k)=(4,3)\), then \(w_p(c(x))\ge 12\).

Case 2: If \(c(x)=(V_0(x^5),V_k(x^5)), 1\le k\le 4\), with \((N_0, N_k)=(5,2)\). It is easy to see that \(L\ge 5\) and \(w_p(c(x))\ge 12\).

Case 3: If \(c(x)= (V_0(x^5), V_i(x^5), V_j(x^5))\) with \((N_0, N_i, N_j)=(2,2,3)\) and \( 1\le i<j\le 4\).

Let \(V_0(x^5)=a_1(x^{5r_1}-1)\), \(V_i(x^5)=a_2(x^{5r_2}-1)\), and \(V_j(x^5)= b_0+b_1x^{5r_3}+b_2x^{5r_4}\), where \(1\le r_3<r_4<p\). Then

$$\begin{aligned} c(x)= & {} a_1(x^{5r_1}-1)+x^ia_2(x^{5r_2}-1)+x^j(b_0+b_1x^{5r_3}+b_2x^{5r_4})\\= & {} -a_1-a_2x^{i}+b_0x^j+a_1x^{5r_1}+a_2x^{5r_2+i}+b_1x^{5r_3+j}+b_2x^{5r_4+j}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

Note that \(1\le i<j\le 4\), it is easy to check that \(w_p(c(x))\ge 12\) except

$$\begin{aligned} (i,j)\in \{(1,2),(1,4),(3,4)\}. \end{aligned}$$

In the following, we discuss the subcases: (1) \(i=1\) and \(j=2\); (2) \( i=1 \) and \( j=4\); (3) \(i=3\) and \(j=4\).

The first, the second, and the third formal derivative of c(x) respectively gives

$$\begin{aligned} c^{(1)}(x)= & {} -ia_2x^{i-1}+j b_0x^{j-1} +5r_1a_1x^{5r_1-1}+(5r_2+i)a_2x^{5r_2+i-1}\\{} & {} +(5r_3+j)b_1x^{5r_3+j-1}+(5r_4+j)b_2x^{5r_4+j-1},\\ c^{(2)}(x)= & {} -i(i-1)a_2x^{i-2}+j(j-1) b_0x^{j-2} +5r_1(5r_1-1)a_1x^{5r_1-2}\\{} & {} + (5r_2+i)(5r_2+i-1)a_2x^{5r_2+i-2}+(5r_3+j)(5r_3+j-1)b_1x^{5r_3+j-2}\\ {}{} & {} +(5r_4+j)(5r_4+j-1)b_2x^{5r_4+j-2}.\\ c^{(3)}(x)= & {} -i(i-1)(i-2)a_2x^{i-3}+j(j-1)(j-2) b_0x^{j-3} +5r_1(5r_1-1)(5r_1-2)a_1x^{5r_1-3}\\{} & {} + (5r_2+i)(5r_2+i-1)(5r_2+i-2)a_2x^{5r_2+i-3}\\ {}{} & {} +(5r_3+j)(5r_3+j-1)(5r_3+j-2)b_1x^{5r_3+j-3}\\{} & {} +(5r_4+j)(5r_4+j-1)(5r_4+j-2)b_2x^{5r_4+j-3}.\end{aligned}$$

(1) Suppose that \((i,j)=(1,2)\). Since \((x -1)^5\) and \((x-\zeta )^2\) are divisors of c(x), \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=0\). Then

$$\begin{aligned} (B_1,B_2,B_3, B_4)\left( \begin{array}{c} a_1\\ a_2 \\ b_1\\ b_2\\ \end{array} \right) =0,\end{aligned}$$
(3.19)

where

$$\begin{aligned} B_1=\left( \begin{array}{c } r_{1} \\ r_1\zeta ^{-1} \\ r_1(5r_1-1) \\ r_1(5r_1-1)(5r_1-2) \end{array} \right) , B_2=\left( \begin{array}{c} r_{2} \\ r_2 \\ r_2(5r_2+1) \\ r_2(5r_2+1)(5r_2-1)\\ \end{array} \right) , \end{aligned}$$
(3.20)

and

$$\begin{aligned} B_3=\left( \begin{array}{c} r_{3} \\ r_3\zeta \\ r_3(5r_3+3) \\ r_3(5r_3+2)(5r_3+1)\\ \end{array} \right) , B_4=\left( \begin{array}{c} r_{4} \\ r_4\zeta \\ r_4(5r_4+3) \\ r_4(5r_4+2)(5r_4+1)\\ \end{array} \right) . \end{aligned}$$
(3.21)

Note that \(r_1,r_2,r_3<r_4<p\) are positive integers and \(\zeta \) is a primitive 5-th root of unity in \({\mathbb {F}}_p\), by making some elementary transformations, we obtain \((B_1,B_2,B_3,B_4)\) is nonsingular. The solution of Eq. (3.19) has only zero, which is a contradiction.

(2) Suppose that \((i,j)=(1,4)\). By \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=0\), then

$$\begin{aligned} (B_1,B_2,B_3^\prime ,B_4^\prime )\left( \begin{array}{cccc} a_1\\ a_2 \\ b_1\\ b_2\\ \end{array} \right) =0, \end{aligned}$$
(3.22)

where \(B_1,B_2\) are defined as (3.20) and

$$\begin{aligned} B_3^\prime =\left( \begin{array}{c} r_{3} \\ r_3\zeta ^3 \\ r_3(5r_3+7) \\ r_3((5r_3+5)(5r_3+4)+6)\\ \end{array} \right) , B_4^\prime =\left( \begin{array}{c} r_{4} \\ r_4\zeta ^3 \\ r_4(5r_4+7) \\ r_4((5r_4+5)(5r_4+4)+6)\\ \end{array} \right) . \end{aligned}$$
(3.23)

(3) Suppose that \((i,j)=(3,4)\). By \(c^{(1)}(1)=c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=0\), then

$$\begin{aligned} (B_1,B_2^{\prime },B_3^\prime ,B_4^\prime )\left( \begin{array}{cccc} a_1\\ a_2 \\ b_1\\ b_2\\ \end{array} \right) =0, \end{aligned}$$
(3.24)

where \(B_1\) and \(B_3^\prime , B_4^\prime \) is defined as (3.20) and (3.23), respectively, and

$$\begin{aligned} B_2^\prime =\left( \begin{array}{c} r_{2} \\ r_2\zeta ^2 \\ r_2(5r_2+5) \\ r_2((5r_2+1)(5r_2+5)+6)\\ \end{array} \right) . \end{aligned}$$

Similar to the case \(i=1\) and \(j=2\), the solutions of (3.22) and (3.24) have zero, a contradiction.

Hence if \(w_H( c(x))=7\), then \(w_p(c(x))\ge 12\). \(\square \)

Lemma 3.5

If \( w_H(c(x))=8\), then \(w_p(c(x))\ge 12\).

Proof

If \( w(c(x))=8\). Suppose that \(c(x)= (V_0(x^5),V_k(x^5)),1\le k\le 4,\) with \((N_0, N_k)\in \{(2,6),(3,5),(4,4)\}\). Then \(w_p(c(x))\ge 12\). We only need to consider the following two cases.

Case 1: If \(c(x)= (V_0(x^5),V_i(x^5),V_j(x^5))\) with \((N_0, N_i,N_j)=(3, 3, 2)\) and \(1\le i<j\le 4\).

Let \(V_0(x^5)=a_0+ a_1x^{5r_1}+a_2x^{5r_2} \) with \(1\le r_1<r_2<p \), \(V_i(x^5)=b_0+ b_1x^{5r_3}+b_2x^{5r_4}\) with \(1\le r_3<r_4 <p\), and \(V_j(x^5)=b_3(x^{5r_5}-1)\), where \(a_0=-a_1-a_2\) and \(b_0=-b_1-b_2\). Then

$$\begin{aligned} c(x)= & {} a_0+ a_1x^{5r_1}+a_2x^{5r_2} +x^i(b_0+ b_1x^{5r_3}+b_2x^{5r_4})+x^j b_3(x^{5r_5}-1)\\= & {} a_0+b_0x^i-b_3x^j+ a_1x^{5r_1}+b_1x^{5r_3+i}+b_3x^{5r_3+j}+a_2x^{5r_2}+ b_2x^{5r_4+i}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

Note that \(1\le i<j \le 4\), then

$$\begin{aligned} (i,j)\in \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}. \end{aligned}$$

We can quickly check that \(d_p(c(x))\ge 12 \) except \( (i,j)\in \{ (1,2), (1,4)\}\).

(1) Suppose that \((i,j)=(1,2)\). We can now see that if \(r_1=r_3\) and \(r_2=r_4\), then \(w_p(c(x))=8+3=11\); otherwise, \(w_p(c(x))\ge 12\). Without loss of generality, we assume that \(r_1=r_3=1\) and \(r_2=r_4=2\). Then

$$\begin{aligned} c(x)=a_0+b_0x -b_3x^2+ a_1x^{5 }+b_1x^{6}+b_3x^{7}+a_2x^{10}+ b_2x^{11}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

By \(c^{(1)}(1) =c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=c^{(4)}(1)=0\), note that \(a_0=-(a_1+a_2)\) and \(b_0=-(b_1+b_2)\), we have

$$\begin{aligned} \left( \begin{array}{ccccc} 1 &{} 2&{}1&{}2&{}1 \\ \zeta ^4 &{} 2\zeta ^4 &{}1 &{} 2&{} \zeta \\ 2&{}9&{}3&{} 11&{}4 \\ 2&{}24&{}4 &{}33&{}7\\ 2&{}126&{}9 &{}198&{}21\\ \end{array} \right) \left( \begin{array}{cccc} a_1\\ a_2 \\ b_1\\ b_2\\ b_3\\ \end{array} \right) =0, \end{aligned}$$

it is easy to verify the solution of the above equation is zero, which is a contradiction.

(2) Suppose that \((i,j)=(1,4)\). We can easily observe that \(w_p(c(x))\ge 12\) except the case \(r_1=r_3=1\) and \(r_2=r_4=2\). In a similar way, by \(c^{(1)}(1) =c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=c^{(4)}(1)=0\), this is also a contradiction.

Case 2: If \(c(x)= (V_0(x^5),V_i(x^5),V_j(x^5),V_k(x^5))\) with \((N_0, N_i,N_j,N_k)=(2,2,2,2)\) and \(1\le i<j<k\le 4\).

Let \(V_0(x^5)=a_1(x^{5r_1}-1)\), \(V_i(x^5)=a_2(x^{5r_2}-1)\), \(V_j(x^5)=a_3(x^{5r_3}-1)\), and \(V_k(x^5)=a_4(x^{5r_4}-1)\). Then

$$\begin{aligned} c(x)= & {} a_1(x^{5r_1}-1)+a_2x^i(x^{5r_2}-1)+a_3x^j(x^{5r_3}-1)+a_4x^k(x^{5r_4}-1)\nonumber \\= & {} -a_1-a_2x^i-a_3x^j-a_4x^k+a_1x^{5r_1}+a_2x^{5r_2+i} +a_3x^{5r_3+j}+a_4x^{5r_4+k}.\nonumber \\ \end{aligned}$$
(3.25)

Note that \(1\le i<j<k\le 4\). Then

$$\begin{aligned} (i,j,k)\in \{ (1,2,4),(1,3,4),(2,3,4), (1,2,3)\}. \end{aligned}$$

(1) Suppose that \((i,j,k)=(1,2,4)\). It follows from (3.25) that \(w_p(c(x))\ge 12\) except \(r_1=r_2=r_3=1\).

If \((i,j,k)=(1,2,4)\) and \(r_1=r_2=r_3=1\), then

$$\begin{aligned} c(x)=-a_1-a_2x -a_3x^2-a_4x^4+a_1x^{5 }+a_2x^{6}+a_3x^{7}+a_4x^{5r_4+4}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

By \(c^{(1)}(1) =c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=0\), we have

$$\begin{aligned} \left( \begin{array}{cccc} 1 &{} 1&{}1&{}r_4 \\ \zeta ^4 &{} 1 &{} \zeta &{}r_4\zeta ^{3} \\ 4&{}6&{}8&{} r_4(5r_4+7) \\ 12&{}24&{}42&{}\mu \\ \end{array} \right) \left( \begin{array}{cccc} a_1\\ a_2 \\ a_3\\ a_4\\ \end{array} \right) =0, \end{aligned}$$

where \(\mu =r_4((5r_4+4)(5r_4+5)+6)\). The solution of the above equation has only zero, which is a contradiction.

(2) Suppose that \((i,j,k)=(1,3,4)\). It follows from (3.25) that \(w_p(c(x))\ge 12\) except \(r_1=r_2=1\) and \(r_3=r_4<p\).

If \((i,j,k)=(1,3,4)\), \(r_1=r_2= 1\), and \(r_3=r_4\), then

$$\begin{aligned} c(x)=-a_1-a_2x -a_3x^3-a_4x^4+a_1x^{5 }+a_2x^{6}+a_3x^{5r_3+3}+a_4x^{5r_3+4}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

A similar argument to the above, by \(c^{(1)}(1) =c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=0\), we conclude that if \((i,j,k)=(1,3,4)\) and \(r_1=r_2=1\) and \(r_3=r_4<p\) is impossible.

(3) Suppose that \((i,j,k)=(2,3,4)\). It follows from (3.25) that \(w_p(c(x))\ge 12\) except \(r_1=1\) and \(r_2=r_3=r_4<p\).

If \((i,j,k)=(2,3,4)\), \(r_1= 1\), and \(r_2=r_3=r_4\), then

$$\begin{aligned} c(x)=-a_1-a_2x^2 -a_3x^3-a_4x^4+a_1x^{5 }+a_2x^{5r_2+2}+a_3x^{5r_2+3}+a_4x^{5r_2+4}\in {\mathbb {F}}_p^*[x]. \end{aligned}$$

A similar argument to the above, by \(c^{(1)}(1) =c^{(1)}(\zeta )=c^{(2)}(1)=c^{(3)}(1)=0\), we know that if \((i,j,k)=(2,3,4)\) and \(r_1 =1\) and \(r_2=r_3=r_4\) is impossible.

(4) Suppose that \((i,j,k)=(1,2,3)\). It follows from (3.25) that \(w_p(c(x))\ge 12\) except \(r_1=r_2=r_3<p\) or \(r_2=r_3=r_4<p\) or \(r_1=r_2<p, r_3=r_4<p\). But the three cases are not happen.

Hence if \(w_H( c(x))=8\) then \(w_p(c(x))\ge 12\). \(\square \)

Now we are ready to complete the proof of Theorem 3.2.

Proof

From Lemmas 3.3, 3.4, 3.5, we know that for \(0\ne c(x)\in {\mathcal {C}}\), if \(6\le w_H(c(x))\le 8\), then \(w_p(c(x))\ge 12 \). Furthermore, if \(w_H(c(x))\ge 9\), then by (2.1), it is easy to verify that no such codeword c(x) in \({\mathcal {C}}\) exists such that \(w_p(c(x))< 12\). Hence we conclude that \(d_p({\mathcal {C}})=12\).

Therefore, if \(g(x)=(x-1)^5(x-\zeta )^2(x-\zeta ^2)(x-\zeta ^3)(x-\zeta ^4)\), then \({\mathcal {C}}=\langle g(x)\rangle \) is a (5p, 12) MDS symbol-pair code. This completes the proof of Theorem 3.2. \(\square \)

Example 3.6

Let \(p=11\) and \(g(x)=(x-1)^5(x-3)^2(x-9)(x-5)(x-4)\). Then \({\mathcal {C}}=\langle g(x)\rangle \) is a [55, 45, 6] cyclic code. By Theorem 3.2, its minimum symbol-pair distance is 12. The code \({\mathcal {C}}\) is an MDS symbol-pair code.

Example 3.7

Let \(p=31\) and \(g(x)=(x-1)^5(x-4)^2(x-16)(x-2)(x-8)\). Then \({\mathcal {C}}=\langle g(x)\rangle \) is a [155, 45, 6] cyclic code. By Theorem 3.2, its minimum symbol-pair distance is 12. The code \({\mathcal {C}}\) is an MDS symbol-pair code.

Suppose that \( 3|(p-1)\). Let

$$\begin{aligned} S^\prime =\{{\mathcal {C}}=\langle g(x)\rangle : g(x)=(x-1)^{j_0}(x-\omega )^{j_1}(x-\omega ^2)^{j_2}, p\ge j_0\ge j_1\ge j_2\ge 1\} \end{aligned}$$

be a set of nontrivial cyclic codes of length 3p over \({\mathbb {F}}_p\), where \(\omega \) is a primitive 3-th root of unity in \({\mathbb {F}}_p\). From the proof of Theorem 3.1 and the results in [15], we have the following results.

Theorem 3.8

Let \({\mathcal {C}}=\langle g(x)\rangle \in S^\prime \) and \(d_H({\mathcal {C}})= 5\). Then there is a unique MDS symbol-pair code of length 3p over \({\mathbb {F}}_p\) as follows:

$$\begin{aligned} g(x)=(x-1)^4(x-\omega )^2(x-\omega ^2)^2. \end{aligned}$$

Let \({\mathcal {C}}=\langle g(x)\rangle \in S^\prime \) and \(d_H({\mathcal {C}})= 6\). Then there is a unique MDS symbol-pair code of length 3p over \({\mathbb {F}}_p\) as follows:

$$\begin{aligned} g(x)=(x-1)^5(x-\omega )^3(x-\omega ^2)^2. \end{aligned}$$

Furthermore, by the proof of Theorem 3.1, we know the following results.

Proposition 3.9

(1) If \({\mathcal {C}}=\langle g(x)\rangle \in S, d_H({\mathcal {C}})=8\), and \({\mathcal {C}}\) is an MDS symbol-pair code of length 5p over \({\mathbb {F}}_p\). Then there is a unique possible code as follows:

$$\begin{aligned} g(x)=(x-1)^7(x-\zeta )^3(x-\zeta ^2)^2(x-\zeta ^3)(x-\zeta ^4). \end{aligned}$$

(2) If \({\mathcal {C}}=\langle g(x)\rangle \in S^\prime , d_H({\mathcal {C}})=7\), and \({\mathcal {C}}\) is an MDS symbol-pair code of length 3p over \({\mathbb {F}}_p\). Then there is a unique possible code as follows:

$$\begin{aligned} g(x)=(x-1)^6(x-\omega )^3(x-\omega ^2)^3. \end{aligned}$$

Question 3.10

In Proposition 3.9, are two codes MDS symbol-pair codes?

4 Concluding remarks

Let p be a prime and \(5|(p-1)\). Let S be a set of all repeated-root cyclic codes \({\mathcal {C}}=\langle g(x)\rangle \), \((x^5-1)|g(x)\), of length 5p over a field field \({\mathbb {F}}_p\). In this paper, we provided a method to find MDS symbol-pair codes in S whose Hamming distance is 6. By the method we can easily obtain the results in [15] and new MDS symbol-pair codes of length \(\ell p\) over \({\mathbb {F}}_p\), where \(\ell \) is a positive integer with \(\ell |(p-1)\) and \((x^{\ell }-1)|g(x)\).