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Abstract
Let p be a prime with 5|(p − 1). Let S be a set of all repeated-root cyclic codes C = 〈g(x)〉,
(x5 − 1)|g(x), of length 5p over a field field Fp , whose Hamming distances are at most 7. In
this paper, we present a method to find all maximum distance separable (MDS) symbol-pair
codes in S. By this method we can easily obtain the results in Ma and Luo (Des Codes
Cryptogr 90:121–137, 2022) and new MDS symbol-pair codes, so we remain two possible
MDS symbol-pair codes for readers.
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1 Introduction

Symbol-pair codes introduced by Cassuto and Blaum [1] are designed to protect against pair
errors in symbol-pair read channels. Cassuto and Litsyn [3] constructed cyclic symbol-pair
codes using algebraic methods and showed that there exist symbol-pair codes whose rates are
strictly higher, compared to codes for the Hamming metric with the same relative distance.
Yaakobi et al. [16] studied b-symbol read channels and generalized some of the known results
for symbol-pair codes to those for b-symbol read channels. Dinh et al. [9–11] investigated
the symbol-pair weight distributions of repeated-root constacyclic codes etc.
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1874 F. Li

The minimum symbol-pair distance plays an important role in determining the error
correcting capability of a symbol-pair code. In general, a code over Fq of length n with size
M and minimum pair-distance dp is called an (n, M, dp) symbol-pair code. An (n, M, dp)
symbol-pair code can correct up to �(dp − 1)/2� pair errors (see [1, Proposition 3]). Chee et
al. [4] gave the Singleton-type bound for symbol-pair codes relates the parameters n, M and
dp .

Lemma 1.1 [4] (Singleton Bound) Let q be a prime power and 2 ≤ dp ≤ n. If C is an
(n, M, dp) symbol-pair code over Fq , then M ≤ qn−dp+2. If M = qn−dp+2, then it is called
an maximum distance separable (MDS) symbol-pair code.

A q-ary MDS symbol-pair code with parameters (n, M, dp) is simply called an MDS
(n, dp) symbol-pair code.

There are several works that have contributed to the constructions of MDS symbol-pair
codes. Chee et al. [4, 5] obtained many classes of MDS symbol-pair codes from classical
MDS codes and interleaving method of Cassuto and Blaum [1]. Moreover, they obtained
nontrivial MDS symbol-pair codes with length (q2 + 2q)/2 by employing classical MDS
codes and Eulerian graphs of certain girth. Kai et al. [12] constructedMDS symbol-pair codes
with dp = 5 based on constacyclic codes. Later Kai et al. [13] derived three families of MDS
symbol-pair codes by using repeated-root constacyclic codes. Ding et al. [7] obtained MDS
symbol-pair codes with dp = 6, whose lengths from 6 to q2 + 1, moreover, they found some
MDS symbol-pair codes with dp ≥ 7 utilizing elliptic curves. Then they investigated MDS
b-symbol codes [8]. Li et al. [14] gave a number of MDS symbol-pair codes with dp = 7 by
analyzing some linear fractional transformations. Chen et al. [6] obtained MDS symbol-pair
codes with dp = 8 of length 3p from repeated-root cyclic codes. Recently, Ma and Luo
[15] constructed two classes of MDS symbol-pair codes with dp = 10 and dp = 12 from
repeated-root cyclic codes of length 3p over Fp . However, it becomes difficult to find MDS
symbol-pair codes possessing comparatively large length and minimum pair-distance.

In this paper, let p be a prime with 5|(p − 1). Let S be a set of all repeated-root cyclic
codes C = 〈g(x)〉, (x5 − 1)|g(x), we present a method to find MDS symbol-pair codes of
length 5p over Fp . Moreover, by the method we can easily obtain the results in [15]. This
paper is organized as follows. In Sect. 2, basic notations and results about cyclic codes and
symbol-pair codes are provided. In Sect. 3, an unique class of MDS symbol-pair codes with
dp = 12 among all repeated-root cyclic codes whose Hamming distance is equal to 6 are
investigated. In Sect. 4, we conclude this paper with remarks.

2 Preliminaries

In this section, we review some basic notations, results on cyclic codes, and symbol-pair
codes over a finite field, which will be used to prove our main results in the sequel.

2.1 Cyclic code

Let Fq be a finite field with q elements, where q = ps , p is a prime and s is a positive
integer. Let C be an [n, l] linear code over Fq , i.e., it is an l-dimensional subspace of Fn

q .
If for each codeword (c0, c1, . . . , cn−1) ∈ C, (cn−1, c0, . . . , cn−2) is also in C, then we call
C a cyclic code. We identify a codeword c = (c0, c1, . . . , cn−1) in C with the polynomial
c(x) = c0 + c1x + c2x2 + · · · + cn−1xn−1 in Fq [x]/〈xn − 1〉. A code C of length n over
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Cyclic codes of length 5pwith MDS symbol-pair 1875

Fq corresponds to a subset of Fq [x]/〈xn − 1〉. Then C is a cyclic code if and only if the
corresponding subset is an ideal of Fq [x]/〈xn − 1〉. Hence there exists a monic divisor g(x)
of xn − 1 ∈ Fq [x] such that

C = 〈g(x)〉 = { f (x)g(x) (mod xn − 1) : f (x) ∈ Fq [x]}.
The g(x) is called the generator polynomial of C.

A cyclic code is called simple-root cyclic code if gcd(n, p) = 1 and a repeated-root cyclic
code if p|n. Castagnoli et al. in [2] studied the Hamming distance of repeated-root cyclic
codes by using polynomial algebra, they showed that the Hamming distance of a repeated-
root cyclic code C can be expressed in terms of dH (Ct ), where Ct are simple-root cyclic codes
fully determined by C.

Let C = 〈g(x)〉 be a repeated-root cyclic code of length �ps over Fq , where � > 1 is
a positive integer such that gcd(�, p) = 1 and s is a positive integer. Suppose that g(x) =
�s

i=1mi (x)ei is the factorization of g(x) over Fq , where mi (x), i = 1, . . . , s are distinct
monic irreducible polynomials of multiplicity ei . Fixing an integer t , 0 ≤ t ≤ ps − 1, we
define Ct = 〈gt (x)〉 a simple-root cyclic code of length � over Fq , where gt (x) is the product
of those irreducible factors mi (x) with ei > t . If this product is equal to x� − 1, i.e., Ct
contains only the zero codeword, then dH (Ct ) = ∞. If all ei satisfy ei ≤ t , then gt (x) = 1
and dH (Ct ) = 1.

The following lemma will be used to determine the Hamming distance of repeated-root
cyclic codes C, which obtained from [2].

Lemma 2.1 [2] Let C = 〈g(x)〉 be a repeated-root cyclic code of length �ps over Fq , where
p is a prime with gcd(�, p) = 1 and s is a positive integer. Then

dH (C) = min{Pt · dH (Ct ) : t ∈ T },
where for each t ∈ T = {t : 0 ≤ t ≤ ps − 1}, t = t0 + t1 p + · · · + ts−1 ps−1 is the p-adic
representation and Pt = ∏s−1

m=0(tm + 1) = wH ((x − 1)t ).

2.2 Symbol-pair codes

For x = (x0, x1, . . . , xn−1) ∈ F
n
q , the symbol-pair read vector of x is

πp(x) = ((x0, x1), (x1, x2), . . . , (xn−1, x0)).

For a code C ⊂ F
n
q , there is the symbol-pair code generated by C:

πp(C) := {πp(x) : x ∈ C}.
Let x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) ∈ F

n
q . Recall that the Hamming

weight of the vector x is defined aswH (x) = |{i : xi �= 0, 0 ≤ i ≤ n−1}| and the Hamming
distance between x and y is defined as dH (x, y) = |{i : xi �= yi , 0 ≤ i ≤ n − 1}|. Define
the symbol-pair weight of x as

wp(x) = wH (πp(x)) = |{(xi , xi+1) : (xi , xi+1) �= (0, 0), 0 ≤ i ≤ n − 1}|,
define the symbol-pair distance between x and y as

dp(x, y) = d(πp(x), πp(y))

= |{i : (xi , xi+1) �= (yi , yi+1), 0 ≤ i ≤ n − 1}|,
where the subscripts i + 1 are reduced modulo n.
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1876 F. Li

An (n, M, dp) symbol-pair code πp(C) generated by C ⊂ F
n
q has size M and minimum

symbol-pair distance dp , where dp = min{dp(x, y) : x, y ∈ C, x �= y}. Similar to the
classical case, if C is a linear code, then the minimum symbol-pair distance of πp(C) is the
smallest symbol-pair weight of nonzero codewords of πp(C), that is

dp(C) = min{wp(x) : x ∈ C, x �= 0}.
It is known in [1] that for any 0 < dH (C) < n,

dH (C) + 1 ≤ dp(C) ≤ 2dH (C).

Let S = {(xi , xi+1) : 0 ≤ i ≤ n − 1} be the set from the vector x . There are two subsets
of S:

S0 = {(xi , xi+1) ∈ S : xi �= 0}
and

S1 = {(xi , xi+1) ∈ S : xi = 0, xi+1 �= 0}.
It is obvious that wH (x) = |S0| and

wp(x) = |S0| + L, (2.1)

where L = |S1|. In fact if x = (x0, x1, . . . , xn−1) ∈ F
n
q is viewed as a cycle of length

n, then L is the number of a sequence of 0’s in the cyclic of x . For example, in x =
(1, 0, 0, 1, 0, 0, 0, 1, 0, 1) and y = (0, 1, 0, 0, 1, 0, 1, 0, 1, 0) ∈ F

10
2 , we have L = 3 and

L = 4, respectively.
In this paper, we will utilize repeated-root cyclic codes to obtain a class of new MDS

symbol-pair codes. A simple notation is given below.

Definition 2.2 The support of a polynomial f (y) = ∑�−1
i=0 ai y

i is the set

supp( f ) = {i : ai �= 0, 0 ≤ i ≤ � − 1},
and denote the number of elements in supp( f ) by N .

3 MDS symbol-pair codes

In this section, we always assume that p is a prime number and 5|(p − 1). There is an
irreducible factorization over Fp:

x5p − 1 =
4∏

i=0

(x − ζ i )p,

where ζ ia a primitive 5-th root of unity in Fp .
Let

S =
{

C = 〈g(x)〉 : g(x) =
4∏

i=0

(x − ζ i ) ji , p ≥ j0 ≥ j1 ≥ j2 ≥ j3 ≥ j4 ≥ 1

}

(3.1)

be a set of nontrivial cyclic codes with length 5p over Fp .
First, we shall find MDS symbol-pair codes from all repeated-root cyclic codes of length

5p with dH (C) ≤ 7 defined as (3.1).
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Cyclic codes of length 5pwith MDS symbol-pair 1877

Theorem 3.1 If C = 〈g(x)〉 ∈ S, dH (C) ≤ 7, and C is an MDS symbol-pair code. Then there
is a unique possible code as follows: dH (C) = 6 and

g(x) = (x − 1)5(x − ζ )2(x − ζ 2)(x − ζ 3)(x − ζ 4). (3.2)

Proof Suppose that C = 〈g(x)〉 is a [5p, l, dH (C)] cyclic code with MDS symbol-pair. Then
dp(C) = 5p − l + 2 with l = 5p − deg(g(x)), so

dp(C) = deg(g(x)) + 2. (3.3)

In (3.1), (x5 − 1)|g(x) and deg(g(x)) ≥ 5. Recall that dp(C) ≤ 2dH (C). Then dH (C) ≥ 4.
By Lemma 2.1, dH (C) = min{Pt · dH (Ct ) : t = 1, 2, . . . , p − 1}, where Ct = 〈gt (x)〉, it

is clear that g0(x) = x5 − 1 and P0 · dH (C0) = ∞. So we only consider 1 ≤ t ≤ p − 1 and
Pt = t + 1.

(1) Suppose that dH (C) = 4. Then dp(C) ≤ 8.
If t = 1, then dH (C1) ≥ 2 and g1(x) has at least one factor: x − 1, this means j0 ≥ 2.
If t = 2, then dH (C2) ≥ 2 and g2(x) has at least one factor: x − 1, this means j0 ≥ 3.
Thus j0 ≥ 3 and j1 ≥ j2 ≥ j3 ≥ j4 ≥ 1 and deg(g(x)) ≥ 7, which is a contradiction.
(2) Suppose that dH (C) = 5. Then dp(C) ≤ 10.
If t = 1, then dH (C1) ≥ 3 and g1(x) has at least two factors: x − 1 and x − ζ , this means

j0 ≥ 2 and j1 ≥ 2.
If t = 2, then dH (C2) ≥ 2 and g2(x) has at least one factor: x − 1, this means j0 ≥ 3.
If t = 3, then dH (C3) ≥ 2 and g2(x) has at least one factor: x − 1, this means j0 ≥ 4.
Thus j0 ≥ 4, j1 ≥ 2, and j2 ≥ j3 ≥ j4 ≥ 1, and deg(g(x)) ≥ 9, which is a contradiction.
(3) Suppose that dH (C) = 7. Then dp(C) ≤ 14.
If t = 1, then dH (C1) ≥ 4 and g1(x) has at least three factors: x − 1, x − ζ , and x − ζ 2,

this means j0 ≥ 2, j1 ≥ 2, j2 ≥ 2.
If t = 2, then dH (C2) ≥ 3 and g2(x) has at least two factors: x − 1 and x − ζ , this means

j0 ≥ 3 and j1 ≥ 3.
If t = 3, then dH (C3) ≥ 2 and g2(x) has at least one factor: x − 1, this means j0 ≥ 4.
If t = 4, then dH (C4) ≥ 2 and g2(x) has at least one factor: x − 1, this means j0 ≥ 5.
If t = 5, then dH (C5) ≥ 2 and g2(x) has at least one factor: x − 1, this means j0 ≥ 6.
Thus j0 ≥ 6, j1 ≥ 3, j2 ≥ 2, and j3 ≥ j4 ≥ 1, and deg(g(x)) ≥ 13, which is a

contradiction.
(4) Suppose that dH (C) = 6. Then dp(C) ≤ 12.
If t = 1, then dH (C1) ≥ 3 and g1(x) has at least two factors: x − 1 and x − ζ , this means

j0 ≥ 2 and j1 ≥ 2.
If t = 2, then dH (C2) ≥ 2 and g2(x) at least one factor: x − 1, this means j0 ≥ 3.
If t = 3 and t = 4, then either g3(x) or g4(x) has at least one factor: x − 1, this means

j0 ≥ 5.
Thus j0 ≥ 5, j1 ≥ 2, and j2 ≥ j3 ≥ j4 ≥ 1. Then

g(x) = (x − 1)5+ j ′0(x − ζ )2+ j ′1(x − ζ 2)1+ j ′2(x − ζ 3)1+ j ′3(x − ζ 4)1+ j ′4 ,

where for 0 ≤ i ≤ 4, j ′i is a positive integer, and deg(g(x)) = 10 + ∑4
i=0 j ′i .

By (3.3), we have

dp(C) = 10 +
4∑

i=0

j ′i + 2 ≤ 12,

it can only have

j ′0 = j ′1 = j ′2 = j ′3 = j ′4 = 0.
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1878 F. Li

Hence if C = 〈g(x)〉 ∈ S and C is an MDS symbol-pair code, then there is a unique
possible code as follows: dH (C) = 6 and

g(x) = (x − 1)5(x − ζ )2(x − ζ 2)(x − ζ 3)(x − ζ 4).

This is completed the proof. 
�
Next, we shall verify that the code in Theorem 3.1 is just MDS symbol-pair with dH (C) =

6.
Suppose that c(x) is a nonzero code polynomial of C = 〈g(x)〉 ∈ S. Then g(x)|c(x) and

c(x) can be written as the form c(x) = ∑4
i=0 x

i Vi (x5), for convenience, we write

c(x) = (V0(x
5), V1(x

5), V2(x
5), V3(x

5), V4(x
5)),

where Vi (x5) is a polynomial of x5. Let Ni = |supp(Vi (x5))|, 0 ≤ i ≤ 4, where each
supp(Vi (x5) is in Definition 2.2.

By c(1) = c(ζ ) = · · · = c(ζ 4) = 0, we obtain a system of 5 equations over Fp as
follows:

⎛

⎜
⎜
⎜
⎝

(ζ 0)0 (ζ 0)1 . . . (ζ 0)4

(ζ 1)0 (ζ 1)1 . . . (ζ 1)4

...
...

...

(ζ 4)0 (ζ 4)1 . . . (ζ 4)4

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

V0(1)
V1(1)

...

V4(1)

⎞

⎟
⎟
⎟
⎠

= 0. (3.4)

It is easy to check that the coefficient matrix of (3.4) is nonsingular. Then

V0(1) = V1(1) = · · · = V4(1) = 0,

it is implied that (x5 − 1)|Vi (x5) for each 0 ≤ i ≤ 4. Suppose that Vi (x5) = ∑n
j=0 a j (x5)

j
,

it follows from Vi (1) = 0 that a0 = −(a1 + . . . + an).

Theorem 3.2 Let g(x) be defined as (3.2) and C = 〈g(x)〉. Then C is an MDS symbol-pair
codes with dH (C) = 6.

Now we give some lemmas to prove Theorem 3.2.

Lemma 3.3 If wH (c(x)) = 6, then wp(c(x)) = 12.

Proof We divide into three cases to investigate wp(c(x)) with wH (c(x)) = 6.

Case 1: If c(x) = (Vi (x5), Vj (x5)) with (Ni , N j ) = (4, 2) and 0 ≤ i < j ≤ 4.
Since wH (xi Vi (x5)) = wH (Vi (x5)), without loss of generality, we consider c(x) =
(V0(x5), Vk(x5)) with 1 ≤ k ≤ 4.

Suppose that k ∈ {2, 3}. Then L = 6 and wp(c(x)) = 12.
Suppose that k = 1. Let V0(x5) = a0 + a1x5r1 + a2x5r2 + a3x5r3 with 1 ≤ r1 < r2 <

r3 < p and V1(x5) = b1(x5r4 − 1), 1 ≤ r4 < p. Then

c(x) = a0 + a1x
5r1 + a2x

5r2 + a3x
5r3 + x(−b1 + b1x

5r4)

= a0 − b1x + a1x
5r1 + a2x

5r2 + a3x
5r3 + b1x

5r4+1 ∈ F
∗
p[x].

The first, the second and the third formal derivative of c(x) respectively gives

c(1)(x) = −b1 + 5r1a1x
5r1−1 + 5r2a2x

5r2−1 + 5r3a3x
5r3−1

+(5r4 + 1)b1x
5r4 ,

c(2)(x) = 5r1(5r1 − 1)a1x
5r1−2 + 5r2(5r2 − 1)a1x

5r2−2

+5r3(5r3 − 1)a1x
5r3−2 + 5(5r4 + 1)r4b1x

5r4−1,
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Cyclic codes of length 5pwith MDS symbol-pair 1879

and

c(3)(x) = 5r1(5r1 − 1)(5r1 − 2)a1x
5r1−3 + 5r2(5r2 − 1)(5r2 − 2)a1x

5r2−3

+5r3(5r3 − 1)(5r3 − 2)a1x
5r3−3 + 5(5r4 + 1)(5r4 − 1)r4b1x

5r4−2.

Since (x−1)5 and (x−ζ )2 are divisors of c(x), it follows from c(1)(1) = c(1)(ζ ) = c(2)(1) =
c(3)(1) = 0, note that a0 = −(a1 + a2 + a3), that

B(a1, a2, a3, b1)
� = 0, (3.5)

where B = (B1, B2, B3, B4), and for 1 ≤ i ≤ 3,

Bi =

⎛

⎜
⎜
⎝

ri
riζ−1

ri (5ri − 1)
ri (5ri − 1)(5ri − 2)

⎞

⎟
⎟
⎠ (3.6)

and

B4 =

⎛

⎜
⎜
⎝

r4
r4

r4(5r4 + 1)
r4(25r24 − 1)

⎞

⎟
⎟
⎠ . (3.7)

We make some elementary transformations:

B ∼

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 1
0 5(r2 − r1) 5(r3 − r1) 5r4 + 1
0 0 25(r3 − r2)(r3 − r1) λ

⎞

⎟
⎟
⎠ ,

where λ = (5r4 + 1)(5r4 − 5r1 − 5r2 + 2). Since 1 ≤ r1 < r2 < r3 < p, we can verfy
that the matrix B is nonsingular, thus a1 = a2 = a3 = b1 = 0, which contradicts with that
b1, a j ∈ F

∗
p, 0 ≤ j ≤ 3.

Suppose that k = 4, that is

c(x) = a0 − b1x
4 + a1x

5r1 + a2x
5r2 + a3x

5r3 + b1x
5r4+4 ∈ F

∗
p[x],

similarly, by c(1) = 0 and c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = 0, then we derive a
contradiction.

Hence if c(x) = (Vi (x5), Vj (x5)) with (Ni , N j ) = (4, 2), then wp(c(x)) = 12.

Case 2: If c(x) = (V0(x5), Vk(x5)), 1 ≤ k ≤ 4, with (N0, Nk) = (3, 3).
Let V0(x5) = a0 + a1x5r1 + a2x5r2 with 1 ≤ r1 < r2 < p and Vk(x5) = b0 + b1x5r3 +

b2x5r4 with 1 ≤ r3 < r4 < p, where a0 = −a1 − a2 and b0 = −b1 − b2. Then

c(x) = a0 + a1x
5r1 + a2x

5r2 + xk(b0 + b1x
5r3 + b2x

5r4)

= a0 + b0x
k + a1x

5r1 + a2x
5r2 + b1x

5r3+k + b2x
5r4+k ∈ F

∗
p[x].

It is obvious that if k ∈ {2, 3}, then L = 6 and wp(c(x)) = 12.
Suppose that k = 1. Then

c(x) = −(a1 + a2) − (b1 + b2)x + a1x
5r1 + a2x

5r2 + b1x
5r3+1 + b2x

5r4+1,
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1880 F. Li

by c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = 0, we have

(B1, B2, B
′
3, B4)

⎛

⎜
⎜
⎝

a1
a2
b1
b2

⎞

⎟
⎟
⎠ = 0,

where B1, B2, B4 are defined as (3.6), (3.7) and B ′
3 is given by changing r4 into r3 in B4. Note

that 1 ≤ r1 < r2 and1 ≤ r3 < r4,we canobtain that the determinant of B = (B1, B2, B ′
3, B4)

is not equal to 0. Hence k = 1 is impossible.
Suppose that k = 4, then

c(x) = −(a1 + a2) − (b1 + b2)x
4 + a1x

5r1 + a2x
5r2 + b1x

5r3+4 + b2x
5r4+4,

similar to the argument with k = 1, we know that k = 4 is also impossible.

Case 3: If c(x) = (V0(x5), Vi (x5), Vj (x5)) with (N0, Ni , N j ) = (2, 2, 2) and 1 ≤ i <

j ≤ 4.
Let V0(x5) = a1(x5r1 − 1), Vi (x5) = a2(x5r2 − 1), and Vj (x5) = a3(x5r3 − 1). Then

c(x) = a1(x
5r1 − 1) + xia2(x

5r2 − 1) + x j a3(x
5r3 − 1)

= −a1 − a2x
i − a3x

j + a1x
5r1 + a2x

5r2+i + a3x
5r3+ j ∈ F

∗
p[x].

Note that 1 ≤ i < j ≤ 4, then

(i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.
The first and the second formal derivative of c(x) respectively gives

c(1)(x) = −ia2x
i−1 − ja3x

j−1 + 5r1a1x
5r1−1 + (5r2 + i)a2x

5r2+i−1

+(5r3 + j)a3x
5r3+ j−1,

and

c(2)(x) = −i(i − 1)a2x
i−2 − j( j − 1)a3x

j−2 + 5r1(5r1 − 1)a1x
5r1−2

+(5r2 + i)(5r2 + i − 1)a2x
5r2+i−2 + (5r3 + j)(5r3 + j − 1)a3x

5r3+ j−2.

(1) Suppose that (i, j) = (1, 2). Since (x − 1)5 and (x − ζ )2 are divisors of c(x),
c(1)(1) = c(1)(ζ ) = c(2)(1) = 0. Then

(B1, B2, B3)

⎛

⎝
a1
a2
a3

⎞

⎠ = 0, (3.8)

where

B1 =
⎛

⎝
r1

r1ζ−1

r1(5r1 − 1)

⎞

⎠ , B2 =
⎛

⎝
r2
r2

r2(5r2 + 1)

⎞

⎠ , B3 =
⎛

⎝
r3
r3ζ

r3(5r3 + 3)

⎞

⎠ . (3.9)

We make some elementary transformations:

(B1, B2, B3) ∼
⎛

⎝
1 0 0
0 1 − ζ−1 ζ − ζ−1

0 5(r2 − r1) + 2 5(r3 − r1) + 4

⎞

⎠ .
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Note that 1 ≤ r1, r2, r3 < p are positive integers, we conclude that
∣
∣
∣
∣
1 − ζ−1 ζ − ζ−1

5(r2 − r1) + 2 5(r3 − r1) + 4

∣
∣
∣
∣

= 5r3 − 5r1 + 4 − (5r2 − 5r1 + 2)ζ + (5r2 − 5r3 − 2)ζ−1 �= 0.

The solution of Eq. (3.8) has only zero, which is a contradiction.
(2) Suppose that (i, j) = (1, 3). By c(1)(1) = c(1)(ζ ) = c(2)(1) = 0, then

(B1, B2, B
′
3)

⎛

⎝
a1
a2
a3

⎞

⎠ = 0, (3.10)

where B1, B2 are defined as (3.9) and

B ′
3 =

⎛

⎝
r3
r3ζ 2

r3(5r3 + 5)

⎞

⎠ . (3.11)

(3) Suppose that (i, j) = (1, 4). By c(1)(1) = c(1)(ζ ) = c(2)(1) = 0, then

(B1, B2, B4)

⎛

⎝
a1
a2
a3

⎞

⎠ = 0, (3.12)

where B1, B2 are defined as (3.9) and

B4 =
⎛

⎝
r3
r3ζ 3

r3(5r3 + 7)

⎞

⎠ . (3.13)

(4) Suppose that (i, j) = (2, 3). By c(1)(1) = c(1)(ζ ) = c(2)(1) = 0, then

(B1, B
′
2, B

′
3)

⎛

⎝
a1
a2
a3

⎞

⎠ = 0, (3.14)

where B1, B ′
3 is defined as (3.9), (3.11), respectively, and

B ′
2 =

⎛

⎝
r2
r2ζ

r2(5r2 + 3)

⎞

⎠ . (3.15)

(5) Suppose that (i, j) = (2, 4). By c(1)(1) = c(1)(ζ ) = c(2)(1) = 0, then

(B1, B
′
2, B4)

⎛

⎝
a1
a2
a3

⎞

⎠ = 0, (3.16)

where B1, B ′
2, and B4 is defined as (3.9), (3.15), and (3.13), respectively.

(6) Suppose that (i, j) = (3, 4). By c(1)(1) = c(1)(ζ ) = c(2)(1) = 0, then

(B1, B
′′
2 , B4)

⎛

⎝
a1
a2
a3

⎞

⎠ = 0, (3.17)
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where B1 and B4 is defined as (3.9) and (3.13), respectively, B ′′
2 is replaced r3 by r2 in B ′

3
defined as (3.11).

Similar to the case i = 1 and j = 2, the solutions of (3.10), (3.12), (3.14), (3.16) and
(3.17) are zero, which are contradictions.

Hence if wH (c(x)) = 6, then wp(c(x)) = 12. 
�
Lemma 3.4 If wH (c(x)) = 7, then wp(c(x)) ≥ 12.

Proof We divide into three cases to investigate wp(c(x)) with wH (c(x)) = 7.

Case 1: If c(x) = (V0(x5), Vk(x5)), 1 ≤ k ≤ 4, with (N0, Nk) = (4, 3).
Let V0(x5) = a0 + a1x5r1 + a2x5r2 + a3x5r3 with 1 ≤ r1 < r2 < r3 < p and Vk(x5) =

b0 + b1x5r4 + b2x5r5 with 1 ≤ r4 < r5 < p. Then

c(x) = a0 + a1x
5r1 + a2x

5r2 + a3x
5r3 + xk(b0 + b1x

5r4 + b2x
5r5)

= a0 + b0x
k + a1x

5r1 + a2x
5r2 + a3x

5r3 + b1x
5r4+k + b2x

5r5+k ∈ F
∗
p[x].

It is obvious that if k ∈ {2, 3}, then L = 7 and wp(c(x)) = 14.
Suppose that k = 1. Then

c(x) = a0 + b0x + a1x
5r1 + a2x

5r2 + a3x
5r3 + b1x

5r4+1 + b2x
5r5+1,

then wp(c(x)) ≥ 12 except (r4, r5) ∈ {(r1, r2), (r1, r3), (r2, r3)}. Without loss of generality,
we assume that r4 = r1 and r5 = r2. That is

c(x) = a0 + b0x + a1x
5r1 + b1x

5r1+1 + a2x
5r2 + b2x

5r2+1 + a3x
5r3 ,

in this case L = 4 and wp(c(x)) = 11. But, this is impossible. The details are the below.
The i-th 1 ≤ i ≤ 4, formal derivative of c(x) respectively gives

c(1)(x) = b0 + 5r1a1x
5r1−1 + 5r2a2x

5r2−1 + 5r3a3x
5r3−1

+(5r1 + 1)b1x
5r1 + (5r2 + 1)b2x

5r2 ,

c(2)(x) = 5r1(5r1 − 1)a1x
5r1−2 + 5r2(5r2 − 1)a1x

5r2−2 + 5r3(5r3 − 1)a1x
5r3−2

+5(5r1 + 1)r1b1x
5r1−1 + 5(5r2 + 1)r2b2x

5r2−1,

c(3)(x) = 5r1(5r1 − 1)(5r1 − 2)a1x
5r1−3 + 5r2(5r2 − 1)(5r2 − 2)a1x

5r2−3

+5r3(5r3 − 1)(5r3 − 2)a1x
5r3−3 + 5(5r1 + 1)(5r1 − 1)r1b1x

5r1−2

+5(5r2 + 1)(5r2 − 1)r2b2x
5r2−2,

and

c(4)(x) = 5r1(5r1 − 1)(5r1 − 2)(5r1 − 3)a1x
5r1−4 + 5r2(5r2 − 1)(5r2 − 2)(5r2 − 3)a1x

5r2−4

+5r3(5r3 − 1)(5r3 − 2)(5r3 − 3)a1x
5r3−4 + 5(5r1 + 1)(5r1 − 1)(5r1 − 2)r1b1x

5r1−3

+5(5r2 + 1)(5r2 − 1)(5r2 − 2)r2b2x
5r2−3,

Since (x−1)5 and (x−ζ )2 are divisors of c(x), it follows from c(1)(1) = c(1)(ζ ) = c(2)(1) =
c(3)(1) = c(4)(1) = 0, note that a0 = −(a1 + a2 + a3) and b0 = −(b1 + b2), that

(
B α

β a55

)

(a1, a2, a3, b1, b2)
� = 0, (3.18)

where B is defined as (3.5), α = (r2, r2, r2(5r2+1), r2(25r22 −1))�, β = (r1(5r1−1)(5r1−
2)(5r1−3), r2(5r2−1)(5r2−2)(5r2−3), r3(5r3−1)(5r3−2)(5r3−3), r1(25r21−1)(5r1−2)),
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and a55 = r2(25r22 − 1)(5r2 − 2). By make some elementary transformations, note that

1 ≤ r1 < r2 < r3 < p and 1 ≤ r4 < r5 < p, we can check that the matrix

(
B α

β a55

)

is

nonsingular, hence the solution of (3.18) is zero, which is a contradiction.
Suppose that k = 4. Then

c(x) = a0 + b0x
4 + a1x

5r1 + a2x
5r2 + a3x

5r3 + b1x
5r4+4 + b2x

5r5+4,

then wp(c(x)) ≥ 12 except r1 = 1 and (r4, r5) = (r2 − 1, r3 − 1). That is

c(x) = a0 + b0x
4 + a1x

5 + b1x
5r2−1 + a2x

5r2 + b2x
5r3−1 + a3x

5r3 ,

using arguments similar to the above, c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = c(4)(1) = 0,
we derive a contradiction.

Hence if c(x) = (V0(x5), Vk(x5)), 1 ≤ k ≤ 4 with (N0, Nk) = (4, 3), then wp(c(x)) ≥
12.

Case 2: If c(x) = (V0(x5), Vk(x5)), 1 ≤ k ≤ 4, with (N0, Nk) = (5, 2). It is easy to see
that L ≥ 5 and wp(c(x)) ≥ 12.

Case 3: If c(x) = (V0(x5), Vi (x5), Vj (x5)) with (N0, Ni , N j ) = (2, 2, 3) and 1 ≤ i <

j ≤ 4.
Let V0(x5) = a1(x5r1 − 1), Vi (x5) = a2(x5r2 − 1), and Vj (x5) = b0 + b1x5r3 + b2x5r4 ,

where 1 ≤ r3 < r4 < p. Then

c(x) = a1(x
5r1 − 1) + xia2(x

5r2 − 1) + x j (b0 + b1x
5r3 + b2x

5r4)

= −a1 − a2x
i + b0x

j + a1x
5r1 + a2x

5r2+i + b1x
5r3+ j + b2x

5r4+ j ∈ F
∗
p[x].

Note that 1 ≤ i < j ≤ 4, it is easy to check that wp(c(x)) ≥ 12 except

(i, j) ∈ {(1, 2), (1, 4), (3, 4)}.
In the following, we discuss the subcases: (1) i = 1 and j = 2; (2) i = 1 and j = 4; (3)
i = 3 and j = 4.

The first, the second, and the third formal derivative of c(x) respectively gives

c(1)(x) = −ia2x
i−1 + jb0x

j−1 + 5r1a1x
5r1−1 + (5r2 + i)a2x

5r2+i−1

+(5r3 + j)b1x
5r3+ j−1 + (5r4 + j)b2x

5r4+ j−1,

c(2)(x) = −i(i − 1)a2x
i−2 + j( j − 1)b0x

j−2 + 5r1(5r1 − 1)a1x
5r1−2

+(5r2 + i)(5r2 + i − 1)a2x
5r2+i−2 + (5r3 + j)(5r3 + j − 1)b1x

5r3+ j−2

+(5r4 + j)(5r4 + j − 1)b2x
5r4+ j−2.

c(3)(x) = −i(i − 1)(i − 2)a2x
i−3 + j( j − 1)( j − 2)b0x

j−3 + 5r1(5r1 − 1)(5r1 − 2)a1x
5r1−3

+(5r2 + i)(5r2 + i − 1)(5r2 + i − 2)a2x
5r2+i−3

+(5r3 + j)(5r3 + j − 1)(5r3 + j − 2)b1x
5r3+ j−3

+(5r4 + j)(5r4 + j − 1)(5r4 + j − 2)b2x
5r4+ j−3.

(1) Suppose that (i, j) = (1, 2). Since (x − 1)5 and (x − ζ )2 are divisors of c(x),
c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = 0. Then

(B1, B2, B3, B4)

⎛

⎜
⎜
⎝

a1
a2
b1
b2

⎞

⎟
⎟
⎠ = 0, (3.19)
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where

B1 =

⎛

⎜
⎜
⎝

r1
r1ζ−1

r1(5r1 − 1)
r1(5r1 − 1)(5r1 − 2)

⎞

⎟
⎟
⎠ , B2 =

⎛

⎜
⎜
⎝

r2
r2

r2(5r2 + 1)
r2(5r2 + 1)(5r2 − 1)

⎞

⎟
⎟
⎠ , (3.20)

and

B3 =

⎛

⎜
⎜
⎝

r3
r3ζ

r3(5r3 + 3)
r3(5r3 + 2)(5r3 + 1)

⎞

⎟
⎟
⎠ , B4 =

⎛

⎜
⎜
⎝

r4
r4ζ

r4(5r4 + 3)
r4(5r4 + 2)(5r4 + 1)

⎞

⎟
⎟
⎠ . (3.21)

Note that r1, r2, r3 < r4 < p are positive integers and ζ is a primitive 5-th root of unity in
Fp , by making some elementary transformations, we obtain (B1, B2, B3, B4) is nonsingular.
The solution of Eq. (3.19) has only zero, which is a contradiction.

(2) Suppose that (i, j) = (1, 4). By c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = 0, then

(B1, B2, B
′
3, B

′
4)

⎛

⎜
⎜
⎝

a1
a2
b1
b2

⎞

⎟
⎟
⎠ = 0, (3.22)

where B1, B2 are defined as (3.20) and

B ′
3 =

⎛

⎜
⎜
⎝

r3
r3ζ 3

r3(5r3 + 7)
r3((5r3 + 5)(5r3 + 4) + 6)

⎞

⎟
⎟
⎠ , B ′

4 =

⎛

⎜
⎜
⎝

r4
r4ζ 3

r4(5r4 + 7)
r4((5r4 + 5)(5r4 + 4) + 6)

⎞

⎟
⎟
⎠ . (3.23)

(3) Suppose that (i, j) = (3, 4). By c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = 0, then

(B1, B
′
2, B

′
3, B

′
4)

⎛

⎜
⎜
⎝

a1
a2
b1
b2

⎞

⎟
⎟
⎠ = 0, (3.24)

where B1 and B ′
3, B

′
4 is defined as (3.20) and (3.23), respectively, and

B ′
2 =

⎛

⎜
⎜
⎝

r2
r2ζ 2

r2(5r2 + 5)
r2((5r2 + 1)(5r2 + 5) + 6)

⎞

⎟
⎟
⎠ .

Similar to the case i = 1 and j = 2, the solutions of (3.22) and (3.24) have zero, a
contradiction.

Hence if wH (c(x)) = 7, then wp(c(x)) ≥ 12. 
�
Lemma 3.5 If wH (c(x)) = 8, then wp(c(x)) ≥ 12.

Proof If w(c(x)) = 8. Suppose that c(x) = (V0(x5), Vk(x5)), 1 ≤ k ≤ 4, with (N0, Nk) ∈
{(2, 6), (3, 5), (4, 4)}. Then wp(c(x)) ≥ 12. We only need to consider the following two
cases.
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Case 1: If c(x) = (V0(x5), Vi (x5), Vj (x5)) with (N0, Ni , N j ) = (3, 3, 2) and 1 ≤ i <

j ≤ 4.
Let V0(x5) = a0+a1x5r1 +a2x5r2 with 1 ≤ r1 < r2 < p, Vi (x5) = b0+b1x5r3 +b2x5r4

with 1 ≤ r3 < r4 < p, and Vj (x5) = b3(x5r5 −1), where a0 = −a1−a2 and b0 = −b1−b2.
Then

c(x) = a0 + a1x
5r1 + a2x

5r2 + xi (b0 + b1x
5r3 + b2x

5r4) + x j b3(x
5r5 − 1)

= a0 + b0x
i − b3x

j + a1x
5r1 + b1x

5r3+i + b3x
5r3+ j + a2x

5r2 + b2x
5r4+i ∈ F

∗
p[x].

Note that 1 ≤ i < j ≤ 4, then

(i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.
We can quickly check that dp(c(x)) ≥ 12 except (i, j) ∈ {(1, 2), (1, 4)}.

(1) Suppose that (i, j) = (1, 2). We can now see that if r1 = r3 and r2 = r4, then
wp(c(x)) = 8 + 3 = 11; otherwise, wp(c(x)) ≥ 12. Without loss of generality, we assume
that r1 = r3 = 1 and r2 = r4 = 2. Then

c(x) = a0 + b0x − b3x
2 + a1x

5 + b1x
6 + b3x

7 + a2x
10 + b2x

11 ∈ F
∗
p[x].

By c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = c(4)(1) = 0, note that a0 = −(a1 + a2) and
b0 = −(b1 + b2), we have

⎛

⎜
⎜
⎜
⎜
⎝

1 2 1 2 1
ζ 4 2ζ 4 1 2 ζ

2 9 3 11 4
2 24 4 33 7
2 126 9 198 21

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

a1
a2
b1
b2
b3

⎞

⎟
⎟
⎟
⎟
⎠

= 0,

it is easy to verify the solution of the above equation is zero, which is a contradiction.
(2) Suppose that (i, j) = (1, 4). We can easily observe that wp(c(x)) ≥ 12 except the

case r1 = r3 = 1 and r2 = r4 = 2. In a similar way, by c(1)(1) = c(1)(ζ ) = c(2)(1) =
c(3)(1) = c(4)(1) = 0, this is also a contradiction.

Case 2: If c(x) = (V0(x5), Vi (x5), Vj (x5), Vk(x5)) with (N0, Ni , N j , Nk) = (2, 2, 2, 2)
and 1 ≤ i < j < k ≤ 4.

Let V0(x5) = a1(x5r1 −1), Vi (x5) = a2(x5r2 −1), Vj (x5) = a3(x5r3 −1), and Vk(x5) =
a4(x5r4 − 1). Then

c(x) = a1(x
5r1 − 1) + a2x

i (x5r2 − 1) + a3x
j (x5r3 − 1) + a4x

k(x5r4 − 1)

= −a1 − a2x
i − a3x

j − a4x
k + a1x

5r1 + a2x
5r2+i + a3x

5r3+ j + a4x
5r4+k .

(3.25)

Note that 1 ≤ i < j < k ≤ 4. Then

(i, j, k) ∈ {(1, 2, 4), (1, 3, 4), (2, 3, 4), (1, 2, 3)}.
(1) Suppose that (i, j, k) = (1, 2, 4). It follows from (3.25) that wp(c(x)) ≥ 12 except

r1 = r2 = r3 = 1.
If (i, j, k) = (1, 2, 4) and r1 = r2 = r3 = 1, then

c(x) = −a1 − a2x − a3x
2 − a4x

4 + a1x
5 + a2x

6 + a3x
7 + a4x

5r4+4 ∈ F
∗
p[x].
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By c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = 0, we have
⎛

⎜
⎜
⎝

1 1 1 r4
ζ 4 1 ζ r4ζ 3

4 6 8 r4(5r4 + 7)
12 24 42 μ

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

a1
a2
a3
a4

⎞

⎟
⎟
⎠ = 0,

where μ = r4((5r4 + 4)(5r4 + 5) + 6). The solution of the above equation has only zero,
which is a contradiction.

(2) Suppose that (i, j, k) = (1, 3, 4). It follows from (3.25) that wp(c(x)) ≥ 12 except
r1 = r2 = 1 and r3 = r4 < p.

If (i, j, k) = (1, 3, 4), r1 = r2 = 1, and r3 = r4, then

c(x) = −a1 − a2x − a3x
3 − a4x

4 + a1x
5 + a2x

6 + a3x
5r3+3 + a4x

5r3+4 ∈ F
∗
p[x].

A similar argument to the above, by c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = 0, we conclude
that if (i, j, k) = (1, 3, 4) and r1 = r2 = 1 and r3 = r4 < p is impossible.

(3) Suppose that (i, j, k) = (2, 3, 4). It follows from (3.25) that wp(c(x)) ≥ 12 except
r1 = 1 and r2 = r3 = r4 < p.

If (i, j, k) = (2, 3, 4), r1 = 1, and r2 = r3 = r4, then

c(x) = −a1 − a2x
2 − a3x

3 − a4x
4 + a1x

5 + a2x
5r2+2 + a3x

5r2+3 + a4x
5r2+4 ∈ F

∗
p[x].

A similar argument to the above, by c(1)(1) = c(1)(ζ ) = c(2)(1) = c(3)(1) = 0, we know
that if (i, j, k) = (2, 3, 4) and r1 = 1 and r2 = r3 = r4 is impossible.

(4) Suppose that (i, j, k) = (1, 2, 3). It follows from (3.25) that wp(c(x)) ≥ 12 except
r1 = r2 = r3 < p or r2 = r3 = r4 < p or r1 = r2 < p, r3 = r4 < p. But the three cases
are not happen.

Hence if wH (c(x)) = 8 then wp(c(x)) ≥ 12. 
�
Now we are ready to complete the proof of Theorem 3.2.

Proof FromLemmas 3.3, 3.4, 3.5, we know that for 0 �= c(x) ∈ C, if 6 ≤ wH (c(x)) ≤ 8, then
wp(c(x)) ≥ 12. Furthermore, ifwH (c(x)) ≥ 9, then by (2.1), it is easy to verify that no such
codeword c(x) in C exists such that wp(c(x)) < 12. Hence we conclude that dp(C) = 12.

Therefore, if g(x) = (x − 1)5(x − ζ )2(x − ζ 2)(x − ζ 3)(x − ζ 4), then C = 〈g(x)〉 is a
(5p, 12) MDS symbol-pair code. This completes the proof of Theorem 3.2. 
�
Example 3.6 Let p = 11 and g(x) = (x−1)5(x−3)2(x−9)(x−5)(x−4). Then C = 〈g(x)〉
is a [55, 45, 6] cyclic code. By Theorem 3.2, its minimum symbol-pair distance is 12. The
code C is an MDS symbol-pair code.

Example 3.7 Let p = 31 and g(x) = (x−1)5(x−4)2(x−16)(x−2)(x−8). Then C = 〈g(x)〉
is a [155, 45, 6] cyclic code. By Theorem 3.2, its minimum symbol-pair distance is 12. The
code C is an MDS symbol-pair code.

Suppose that 3|(p − 1). Let

S′ = {C = 〈g(x)〉 : g(x) = (x − 1) j0(x − ω) j1(x − ω2) j2 , p ≥ j0 ≥ j1 ≥ j2 ≥ 1}
be a set of nontrivial cyclic codes of length 3p over Fp , where ω is a primitive 3-th root of
unity in Fp . From the proof of Theorem 3.1 and the results in [15], we have the following
results.
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Theorem 3.8 Let C = 〈g(x)〉 ∈ S′ and dH (C) = 5. Then there is a unique MDS symbol-pair
code of length 3p over Fp as follows:

g(x) = (x − 1)4(x − ω)2(x − ω2)2.

Let C = 〈g(x)〉 ∈ S′ and dH (C) = 6. Then there is a unique MDS symbol-pair code of
length 3p over Fp as follows:

g(x) = (x − 1)5(x − ω)3(x − ω2)2.

Furthermore, by the proof of Theorem 3.1, we know the following results.

Proposition 3.9 (1) If C = 〈g(x)〉 ∈ S, dH (C) = 8, and C is an MDS symbol-pair code of
length 5p over Fp. Then there is a unique possible code as follows:

g(x) = (x − 1)7(x − ζ )3(x − ζ 2)2(x − ζ 3)(x − ζ 4).

(2) If C = 〈g(x)〉 ∈ S′, dH (C) = 7, and C is an MDS symbol-pair code of length 3p over
Fp. Then there is a unique possible code as follows:

g(x) = (x − 1)6(x − ω)3(x − ω2)3.

Question 3.10 In Proposition 3.9, are two codes MDS symbol-pair codes?

4 Concluding remarks

Let p be a prime and 5|(p − 1). Let S be a set of all repeated-root cyclic codes C = 〈g(x)〉,
(x5 − 1)|g(x), of length 5p over a field field Fp . In this paper, we provided a method to find
MDS symbol-pair codes in S whose Hamming distance is 6. By the method we can easily
obtain the results in [15] and new MDS symbol-pair codes of length �p over Fp , where � is
a positive integer with �|(p − 1) and (x� − 1)|g(x).
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