1 Introduction

In 1976 Stein [19] introduced the spherical maximal means \({\mathfrak {M}}^\alpha f(x)= \sup _{t>0} |{\mathfrak {M}}^\alpha _tf (x) |\) of (complex) order \(\alpha \), where

$$\begin{aligned} {\mathfrak {M}}^\alpha _t f (x) = {1\over \Gamma (\alpha ) } \int _{|y|\le 1} \left( 1-{|y|^2 }\right) ^{\alpha -1} f(x-ty)\,\text {d}y. \end{aligned}$$
(1.1)

These means are defined a priori only for \(\textrm{Re}\ \alpha >0\), but the definition can be extended to all complex \(\alpha \) by analytic continuation. In the case \(\alpha =1\), \({\mathfrak {M}}^\alpha \) corresponds to the Hardy–Littlewood maximal operator and in the case \(\alpha =0\), one recovers the spherical maximal means \({\mathfrak {M}} f(x)= \sup _{t>0} |{\mathfrak {M}}_tf (x) |\) in which

$$\begin{aligned} {\mathfrak {M}}_tf (x) = c_n \int _{{{\mathbb {S}}}^{n-1}} f(x-ty) \,\text {d}\sigma (y), \ \ \ (x, t)\in {{\mathbb {R}}^n}\times {\mathbb R^+}, \end{aligned}$$
(1.2)

where \(c_n\) is a constant depending only on n, \({{\mathbb {S}}}^{n-1}\) denotes the standard unit sphere in \({{\mathbb {R}}^n}\) and \(\text {d}\sigma \) is the induced Lebesgue measure on the unit sphere \({{\mathbb {S}}}^{n-1}.\) In [19, Theorem 2], Stein showed that

$$\begin{aligned} \Vert {\mathfrak {M}}^{\alpha } f \Vert _{L^p({{\mathbb {R}}^n})} \le C\Vert f \Vert _{L^p({{\mathbb {R}}^n})} \end{aligned}$$
(1.3)

in the following circumstances:

$$\begin{aligned} \textrm{Re}\, \alpha >1-n+ {n\over p} \ \ \ \ \textrm{when}\ 1<p\le 2; \end{aligned}$$
(1.4)

or

$$\begin{aligned} \ \ \textrm{Re}\, \alpha >{2-n\over p} \ \ \ \ \ \ \ \ \textrm{when}\ 2\le p\le \infty . \end{aligned}$$
(1.5)

The above maximal theorem tells us that when \(\alpha =0\) and \(n\ge 3\), the maximal operator \({\mathfrak {M}} \) is bounded on \(L^p({{\mathbb {R}}^n})\) for the range of \(p>n/(n-1)\). This range of p is sharp, as has been pointed out in [19, 21], no such result can hold for \(p\le n/(n-1)\) if \(n\ge 2\).

Some 10 years passed before Bourgain [1] finally proved that the maximal operator \({\mathfrak {M}} \) is bounded on \(L^p{(\mathbb R^2)} \) for \(p>2\). Bourgain’s theorem says that there exists \(\epsilon (p)>0\) such that

$$\begin{aligned} \Vert {\mathfrak {M}}^{\alpha } f \Vert _{L^p({{\mathbb {R}}^2})} \le C\Vert f \Vert _{L^p({{\mathbb {R}}^2})}, \ \ \ \textrm{Re}\, \alpha > -\epsilon (p), \ \ \ 2< p< \infty . \end{aligned}$$
(1.6)

This result cannot hold even for \(\alpha =0\) when \(p=2\), see [19]. An alternative proof of Bourgain’s result was subsequently found by Mockenhaupt, Seeger and Sogge [11], who used a local smoothing estimate for the solutions of the wave operator. In 2017, Miao, Yang and Zheng [10] improved certain range of \(\alpha \) for \(L^p\)-bounds for the operator \({\mathfrak {M}}^{\alpha }\) by using the Bourgain–Demeter decoupling theorem [2]. All these refinements can be stated altogether as follows: For \( n\ge 2\) and \(p\ge 2\), (1.3) holds whenever

$$\begin{aligned} \textrm{Re} \, \alpha >\max \left\{ { 1-n\over 4} +{3-n\over 2p}, \, {1-n\over p} \right\} . \end{aligned}$$
(1.7)

The above range \(\alpha \) in (1.7) for \(p>2\) is strictly wider than the range of \(\alpha \) in (1.5). However, the range \(\alpha \) in (1.7) is not optimal.

As mentioned above, the proof of the range of \(\alpha \) in (1.7) relies on the progress concerning Sogge’s local smoothing conjecture, as originally formulated by Sogge [18]: For \(n\ge 2\) and \(p\ge 2n/(n-1)\), one has

$$\begin{aligned} \left\| u \right\| _{L^p({{\mathbb {R}}^n}\times [1,2])} \le C\left( \Vert f\Vert _{W^{\gamma , p}({{\mathbb {R}}^n})} + \Vert g\Vert _{W^{\gamma -1, p}({{\mathbb {R}}^n})} \right) , \ \ \ \ \ \ \ \textrm{if}\ \ \gamma >{n-1\over 2}-{n\over p},\nonumber \\ \end{aligned}$$
(1.8)

where

$$\begin{aligned} u(x,t)= \cos (t\sqrt{-\Delta }) f(x) +{\sin (t\sqrt{-\Delta }) \over \sqrt{-\Delta }} g(x) \end{aligned}$$

is the solution to the Cauchy problem for the wave equation in \({{\mathbb {R}}^{n}\times {{\mathbb {R}}}}:\)

$$\begin{aligned} \left\{ \begin{array}{l} \left( (\partial /\partial t)^2-\Delta \right) u(x,t) =0, \\ u|_{t=0} = f, \\ (\partial /\partial t) u|_{t=0} =g. \end{array} \right. \end{aligned}$$
(1.9)

The local smoothing conjecture has been studied in numerous papers, see for instance [2, 4, 7, 8, 10, 11, 17, 24] and the references therein. When \(n=2\), sharp results follow by the work of Guth, Wang and Zhang [7]. When \(n\ge 3\), the conjecture holds for all \(p\ge {2(n+1)/ (n-1)}\) by the Bourgain–Demeter decoupling theorem [2] and the method of [24].

The aim of this article is to prove the following result.

Theorem 1.1

Let \(p\ge 2\).

  1. (i)

    Let \(n\ge 2\). Suppose (1.3) holds for some \(\alpha \in \mathbb {C}\). Then we must have

    $$\begin{aligned} \textrm{Re}\,\alpha \ge \max \left\{ {1\over p}-{n-1\over 2},\ -{n-1\over p}\right\} . \end{aligned}$$
  2. (ii)

    Let \(n=2\). Then the estimate (1.3) holds if

    $$\begin{aligned} \textrm{Re}\,\alpha > \max \left\{ {1\over p}-{1\over 2},\ -{1\over p}\right\} , \end{aligned}$$

    and consequently the range of \(\alpha \) is sharp in the sense that the estimate fails for \(\textrm{Re}\ \alpha <\max \{1/p-1/2, -1/ p\}.\)

Let \(p\ge 2\) and \(\alpha =(3-n)/2\). For an appropriate constant \(c_n\), we have that \(c_nt ({\mathfrak {M}}_t^\alpha g)(x)= u(x,t)\), where u is the solution to the wave equation (1.9) with \(f=0\), see [20, 4.10, p.519]. As a consequence of (i) of Theorem 1.1, we have the following corollary.

Corollary 1.2

Let \(n\ge 4\). Then

$$\begin{aligned} \left\| \sup _{t>0} \left| {u(x,t)\over t}\right| \right\| _{L^p({{\mathbb {R}}^n})} \le C_p\Vert g\Vert _{L^p({{\mathbb {R}}^n})} \end{aligned}$$

can not hold whenever \(p> 2(n-1)/(n-3)\).

We would like to mention that for the range \(\alpha \) in (1.5), it is commented in [20, 4.10, p.519] that the optimal results for \(p>2\) and \(n\ge 2\) “are still a mystery". Our Theorem 1.1 gives an affirmative answer in dimension \(n=2\) to show sharpness of \( \textrm{Re}\,\alpha > \max \left\{ {1/p}-{1/2},\ -{1/p}\right\} \) in the estimate (1.3) except the borderline.

The proof of (ii) of Theorem 1.1 can be shown by applying the work of Guth-Wang-Zhang [7] on local smoothing estimates along with the techniques previously used in [11] and [10]. The main contribution of this article is to show (i) of Theorem 1.1. From the asymptotic expansion of Fourier multiplier of the operator \({\mathfrak {M}}^{\alpha }_t\), it is seen that \({\mathfrak {M}}_t^\alpha \) are essentially the sum of half-wave operators \(e^{it\sqrt{-\Delta }} \) and \(e^{-it\sqrt{-\Delta }}\), and hence the complexity of the operator \({\mathfrak {M}}^{\alpha }_t\) comes from the interference between the operators \(e^{it\sqrt{-\Delta }} \) and \(e^{-it\sqrt{-\Delta }}\). To show the necessity of \(L^p\)-boundedness of \({\mathfrak {M}}^{\alpha }_t\), we make the following observations. For the case \(p>2n/(n-1)\) we note that by the stationary phase argument, two waves \(e^{ it\sqrt{-\Delta }}f\) and \(e^{ -it\sqrt{-\Delta }}f\) concentrate on the opposite parts of sphere \(\{x\in {\mathbb {R}^n}: |x|=t\}\), respectively, when \({{\hat{f}}}\) is supported on a small cone. For the case \(2\le p\le 2n/(n-1)\), we let f be a wave packet of direction \(\nu \in S^{n-1}\), then one can regard \(e^{\pm it\sqrt{-\Delta }}f(x)\) as the translations \(f(x\pm t\nu )\) of f(x), which concentrate on the opposite parts of sphere \(\{x\in {\mathbb {R}^n}:\ |x|=t\}\). In Sect. 3, we construct two examples such that there is no interference between \(e^{it\sqrt{-\Delta }}f\) and \(e^{-it\sqrt{-\Delta }}f\) to obtain the desired range of \(\alpha \) in (i) of Theorem 1.1.

The paper is organized as follows. In Sect. 2, we give some preliminary results including the properties of the Fourier multiplier associated to the spherical operators \( {\mathfrak {M}}^\alpha _t \) by using asymptotic expansions of Bessel functions. The proof of (i) of Theorem 1.1 will be given in Sect. 3 by constructing two examples to obtain the necessarity of \(L^p\)-bounds for the maximal operator \( {\mathfrak {M}}^\alpha \). In Sect. 4 we will give the proof of (ii) of Theorem 1.1.

2 Preliminary results

We begin with recalling the spherical function \( {\mathfrak {M}}^\alpha _t f(x)=f*m_{\alpha ,t}(x)\) where \(m_{\alpha ,t}(x)= t^{-n}m_{\alpha }(t^{-1}x)\) and

$$\begin{aligned} m_{\alpha }(x)=\Gamma (\alpha )^{-1}\big (1-|x|^{2}\big )_{+}^{\alpha -1}, \end{aligned}$$

where \(\Gamma (\alpha )\) is the Gamma function and \((r)_+=\max \{0,r\}\) for \(r\in {\mathbb {R}}\). Define the Fourier transform of f by \( {\hat{f}}(\xi )=\int _{{\mathbb {R}^n}} e^{-2\pi ix \cdot \xi }f(x)\,\text {d}x. \) It follows by [22, p.171] that the Fourier transform of \(m_\alpha \) is given by

$$\begin{aligned} \widehat{m_{\alpha }}(\xi )=\pi ^{-\alpha +1}|\xi |^{-n/2-\alpha +1} J_{n/2+\alpha -1}\big (2\pi |\xi |\big ). \end{aligned}$$
(2.1)

Here \(J_\beta \) denotes the Bessel function of order \(\beta \). For any complex number \(\beta \), we can obtain the complete asymptotic expansion

$$\begin{aligned} J_\beta (r)\sim r^{-1/2}e^{ir} \sum _{j= 0}^{\infty }b_{j} r^{-j} + r^{-1/2}e^{-ir} \sum _{j= 0}^{\infty }d_j r^{-j},\, \ \ \ \ \ \ r\ge 1 \end{aligned}$$
(2.2)

for suitable coefficients \(b_j\) and \(d_j\) with \(b_0,d_0\ne 0\). Note that when \(\beta \) is a positive integer, (2.2) is given in [20, (15), p.338]. For general \(\beta \), we refer it to [23, (1). 7.21, p.199].

Then there exists an error terms \(E_{N,1}(r), E_{N,2}(r)\) and E(r) such that for any given \(N\ge 1\) and \(r\ge 1\),

$$\begin{aligned}&J_\beta (r) \nonumber \\&= r^{-1/2}e^{ir}\left( \sum _{j= 0}^{N-1}b_{j} r^{-j}+E_{N,1}(r)\right) + r^{-1/2}e^{-ir}\left( \sum _{j= 0}^{N-1}d_j r^{-j}+ E_{N,2}(r)\right) +E(r), \end{aligned}$$
(2.3)

where

$$\begin{aligned} \left| \left( \frac{d}{dr}\right) ^k E_{N,1}(r)\right| +\left| \left( \frac{d}{dr}\right) ^k E_{N,2}(r)\right| +\left| \left( \frac{d}{dr}\right) ^k E(r)\right| \le C_{k}r^{-N-k} \end{aligned}$$
(2.4)

for all \(k\in \mathbb {Z}_+\). We rewrite (2.1) as

$$\begin{aligned} \widehat{m_\alpha }(\xi )&= \varphi (|\xi |)\widehat{m_\alpha }(\xi ) + (1-\varphi (|\xi |))\widehat{m_\alpha }(\xi ) \nonumber \\&= \left[ \varphi (|\xi |)\widehat{m_\alpha }(\xi )+{{\mathcal {E}}}(|\xi |) \right] \nonumber \\&\quad + \left[ e^{2\pi i|\xi |}{{\mathcal {E}}}_{N,1}(|\xi |)+e^{-2\pi i|\xi |}{{\mathcal {E}}}_{N,2}(|\xi |) \right] \nonumber \nonumber \\&\quad + |\xi |^{-(n-1)/2-\alpha }\left[ e^{2\pi i|\xi |}a_1(|\xi |)+e^{-2\pi i|\xi |}a_2(|\xi |) \right] , \end{aligned}$$
(2.5)

where

$$\begin{aligned}&{{\mathcal {E}}}(r) = (2\pi )^{1/2}c(\pi , \alpha )(1-\varphi (r))r^{-(n-2)/2-\alpha }E(2\pi r),\nonumber \\&{{\mathcal {E}}}_{N,\ell }(r) = c(\pi , \alpha ) E_{N,\ell }(2\pi r)(1-\varphi (r))r^{-(n-1)/2-\alpha },\ \ \ \ell =1,2, \nonumber \\&a_1(r) = c(\pi , \alpha ) \sum _{j= 0}^{N-1}b_j (2\pi r)^{-j}(1- \varphi (r)),\nonumber \\&a_2(r) = c(\pi , \alpha )\sum _{j= 0}^{N-1}d_j (2\pi r)^{-j}(1- \varphi (r)) \end{aligned}$$
(2.6)

with \(c(\pi , \alpha )= 2^{-1/2}\pi ^{-\alpha +1/2}\). Here \(\varphi \in C_0^{\infty }(\mathbb {R})\) is an even function, identically equals 1 on B(0, M) and supported on B(0, 2M), where \(M=M(N)\) is large enough such that \(|a_2(r)| \ge c_{low}>0 \) for \(|r|\ge M\). Then we can split the Fourier multiplier of the operator \(\mathfrak {M}^\alpha _1 \) into three parts as in (2.5) above. Firstly, we note that \(\varphi (|\xi |)\widehat{m_\alpha }(\xi )\) is smooth and compactly supported and \({{\mathcal {E}}}(|\xi |)\in {{\mathscr {S}}}({\mathbb {R}^n})\). It is seen that \(\sup _{t>0} |\widehat{m_\alpha }(tD) \varphi (t|D|)f|\) and \(\sup _{t>0} |{{\mathcal {E}}}(t|D|)f|\) are bounded by the Hardy–Littlewood maximal function. Then for \(p>1\),

$$\begin{aligned} \hspace{1cm} \left\| \sup _{t>0} |\widehat{m_\alpha }(tD) \varphi (t|D|))f|\right\| _{L^p(\mathbb {R}^n)}+\left\| \sup _{t>0} |{{\mathcal {E}}}(t|D|)f |\right\| _{L^p(\mathbb {R}^n)} \le C\Vert f\Vert _{L^p({\mathbb {R}^n})}.\nonumber \\ \end{aligned}$$
(2.7)

Secondly, we define

$$\begin{aligned} {{\mathscr {E}}}_{N}f(x,t)=\int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi +t|\xi |)}{{\mathcal {E}}}_{N,1}\big (t|\xi |\big ) {\hat{f}}(\xi )\,\text {d}\xi +\int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi -t|\xi |)}{{\mathcal {E}}}_{N,2}\big (t|\xi |\big ) {\hat{f}}(\xi )\,\text {d}\xi . \end{aligned}$$

Then we have the following lemma.

Lemma 2.1

Let \(p\ge 2\). There exists a constant \(C>0\) such that

$$\begin{aligned} \left\| \sup _{t\in [1,2]}|{{\mathscr {E}}}_{N}f(\cdot ,t)| \right\| _{L^p({\mathbb {R}^n})}\le C \Vert f\Vert _{L^p({\mathbb {R}^n})}, \end{aligned}$$
(2.8)

when

$$\begin{aligned} N>-{n-2\over p}-\textrm{Re}\,\alpha . \end{aligned}$$

The proof of Lemma 2.1 is based on the following elementary result (see [17, Lemma 2.4.2]).

Lemma 2.2

Let F be a smooth function defined on \({{\mathbb {R}}^n}\times [1,2]\). Then for \(p>1\) and \(1/p +1/p' =1,\)

$$\begin{aligned} \left\| \sup _{1\le t\le 2} |F(\cdot ,t)|\right\| _{L^p({\mathbb {R}^n})}\le C_p\left( \Vert F(\cdot ,1)\Vert _{L^p({\mathbb {R}^n})} + \Vert F\Vert _{L^p({\mathbb {R}^n}\times [1,2])}^{1-1/p} \left\| \partial _t F\right\| _{L^p({\mathbb {R}^n}\times [1,2])}^{1/p}\right) . \end{aligned}$$

Proof of Lemma 2.1

We fix a function \(\varphi \) as in (2.5). Let \(\psi (r):=\varphi (r)-\varphi (2r)\) and \(\psi _j(r):=\psi (2^{-j}r)\), for \(j\ge 1\). So we have

$$\begin{aligned} 1\equiv \varphi (r) + \sum _{j\ge 1 }\psi _j(r), \quad r\ge 0. \end{aligned}$$
(2.9)

For \(j\ge 1\), define

$$\begin{aligned} {{\mathscr {E}}}_{N,j}f(x,t)=\int _{{\mathbb {R}}^n} \left( e^{2\pi i(x\cdot \xi +t|\xi |)}{{\mathcal {E}}}_{N,1}\big (t|\xi |\big ) + e^{2\pi i(x\cdot \xi -t|\xi |)}{{\mathcal {E}}}_{N,2}\big (t|\xi |\big )\right) {\psi _j}(t|\xi |){\hat{f}}(\xi )d\xi . \end{aligned}$$

To prove (2.8), it suffices to show that there exists a constant \(\delta >0\) such that for all \(j\ge 1\),

$$\begin{aligned} \left\| \sup _{1\le t\le 2}|{{\mathscr {E}}}_{N,j}f(\cdot ,t)| \right\| _{L^p({\mathbb {R}^n})}\le C 2^{-\delta j}\Vert f\Vert _{L^p({\mathbb {R}^n})}. \end{aligned}$$
(2.10)

Let us prove (2.10) by using Lemma 2.2. First, for each fixed \(t\in [1,2]\), \({{\mathscr {E}}}_{N,j}f\) are the sum of two Fourier integral operators of order \(-(n-1)/2-\textrm{Re}\, \alpha -N\) with phase \(x\cdot \xi \pm t|\xi |\). By [20, Theorem 2, Chapter IX] and the fact that \(e^{it\sqrt{-\Delta }}\) is local at scale t, we have

$$\begin{aligned} \sup _{1\le t\le 2}\left\| {\mathscr {E}}_{N,j}f(\cdot ,t)\right\| _{L^p({\mathbb {R}^n})}\le C 2^{-((n-1)/2+\textrm{Re}\,\alpha +N) j}2^{(n-1)(1/2-1/p)j}\Vert f\Vert _{L^p({\mathbb {R}^n})}, \end{aligned}$$
(2.11)

see also [16, Corollary 2.4]. Next, we write \(\partial _{t}{{\mathscr {E}}}_{N,j}f(x,t)\) as the sum of following terms,

$$\begin{aligned}{} & {} \pm 2\pi it^{-1}\int e^{2\pi i(x\cdot \xi \pm t|\xi |)}t|\xi |{{\mathcal {E}}}_{N,1}\big (t|\xi |\big ) {\psi _j}(t|\xi |){\hat{f}}(\xi )d\xi ;\\{} & {} \pm 2\pi it^{-1}\int e^{2\pi i(x\cdot \xi \pm t|\xi |)}t|\xi |{{\mathcal {E}}}_{N,2}\big (t|\xi |\big ) {\psi _j}(t|\xi |){\hat{f}}(\xi )d\xi ;\\{} & {} t^{-1}\int e^{2\pi i(x\cdot \xi \pm t|\xi |)}t|\xi |({{\mathcal {E}}}_{N, 1}\psi _{j})'\big (t|\xi |\big ) {\hat{f}}(\xi )d\xi ;\\{} & {} t^{-1}\int e^{2\pi i(x\cdot \xi \pm t|\xi |)}t|\xi |({\mathcal E}_{N, 2}\psi _{j})'\big (t|\xi |\big ) {\hat{f}}(\xi )d\xi . \end{aligned}$$

By (2.4), we see that for each fixed \(t\in [1,2]\), they are Fourier integral operators of order no more than \(-(n-1)/2-\textrm{Re}\, \alpha -N+1\). By [20, Theorem 2, Chapter IX] again,

$$\begin{aligned} \sup _{1\le t\le 2}\left\| \partial _t{{\mathscr {E}}}_{N,j}f(\cdot ,t) \right\| _{L^p({\mathbb {R}^n})}\le C 2^{-((n-1)/2+\textrm{Re}\,\alpha +N-1) j}2^{(n-1)(1/2-1/p)j}\Vert f\Vert _{L^p({\mathbb {R}^n})}. \end{aligned}$$
(2.12)

Lemma 2.2, together with (2.11) and (2.12), gives

$$\begin{aligned} \left\| \sup _{1\le t\le 2}|{{\mathscr {E}}}_{N,j}f(\cdot ,t)| \right\| _{L^p({\mathbb {R}^n})}\le C 2^{-((n-1)/2+\textrm{Re}\,\alpha +N-1/p) j}2^{(n-1)(1/2-1/p)j}\Vert f\Vert _{L^p({\mathbb {R}^n})}. \end{aligned}$$

Choosing \(N>-(n-2)/p-\textrm{Re}\,\alpha \) and letting \(\delta = N+(n-2)/p+\textrm{Re}\,\alpha \), we obtain estimate (2.10). The proof of Lemma 2.1 is complete. \(\square \)

Finally, we define

$$\begin{aligned} {{\mathscr {A}}}_t f(x)= \int _{{\mathbb {R}^n}} \left( e^{2\pi i(x\cdot \xi + t|\xi |)}a_1(t|\xi |) + e^{2\pi i(x\cdot \xi - t|\xi |)}a_2(t|\xi |) \right) {\hat{f}}(\xi ) \,\text {d}\xi . \end{aligned}$$
(2.13)

From (2.5), (2.7) and Lemma 2.2, we see that the \(L^p\)-boundness of the operator \(\mathfrak {M}^\alpha _t \) reduces to boundedness of the operator \( {{\mathscr {A}}}_t \) on Sobolev spaces, which will be investigated in Sect. 3 below.

3 Proof of (i) of Theorem 1.1

To prove (i) of Theorem 1.1, we need to show the following proposition.

Proposition 3.1

Let \(n\ge 2\) and \(p\ge 2\). Suppose

$$\begin{aligned} \left\| {\mathfrak {M}}_1^\alpha f\right\| _{L^p({\mathbb {R}^n})}\le C\Vert f\Vert _{L^p({\mathbb {R}^n})} \end{aligned}$$
(3.1)

holds for some \(\alpha \in \mathbb {C}\). Then, we have

$$\begin{aligned}\textrm{Re}\,\alpha \ge -{n-1\over p}. \end{aligned}$$

Let us prove Proposition 3.1. Fix \(N>-{(n-2)/p}-\textrm{Re}\,\alpha \) as in Lemma 2.1. By (2.5), (2.7) and Lemma 2.1, we see that the proof of Proposition 3.1 reduces to the following lemma.

Lemma 3.2

Let \(n\ge 2\) and \(1<p<\infty \). Let \({{\mathscr {A}}}_1\) be an operator given in (2.13). Suppose

$$\begin{aligned} \Vert {{\mathscr {A}}}_1f \Vert _{L^p({\mathbb {R}^n})}\le C\Vert f\Vert _{W^{s,p}({\mathbb {R}^n})} \end{aligned}$$
(3.2)

holds for some \(s\in \mathbb {R}\). Then, we have

$$\begin{aligned}s\ge (n-1)\left| \frac{1}{2}-\frac{1}{p}\right| .\end{aligned}$$

Proof

Let \(\widehat{\gamma _\beta }(\xi ):=(1+|\xi |^{2})^{-\beta /2}\) with \(\beta >(n-1)/2\). Recall that \(\varphi \) is a function in (2.5). Let w belong to \({ S}^{0}\) (a symbol of order zero) satisfying \( |w(r)|\ge c>0 \) on \(\mathbb {R}\) for some constant c. Moreover, w equals \(\big (\sum _{j\ge 0}^{N-1}d_j r^{-j}\big )^{-1}\) on \(\textrm{supp}{\hspace{.05cm}}(1-\varphi )\), and equals constant near zero. Assume that \(\chi (\xi )\in C^\infty ({\mathbb {R}^n}\backslash \{0\})\) is homogeneous of order 0 and vanishes if \(|{\xi \over |\xi |}-v_1|\ge 10^{-2}\), where \(v_1:=(1,0,\ldots ,0)\). Define

$$\begin{aligned} {\hat{f}}_{\beta ,R}(\xi )=w(|\xi |)\varphi _R(|\xi |) \chi (\xi ){\widehat{\gamma }}_\beta (\xi ), \end{aligned}$$

where \(\varphi _R(\cdot ):=\varphi (\cdot /R)\), and R is a large positive number. Since \(w(|\xi |)\in S^{0}\) and \(\chi \) is a Hörmander multiplier, w(|D|) and \(\chi (D)\) are bounded on \(L^{p}({\mathbb {R}^n})\). And \(\varphi _R(|D|)\) is bounded on \(L^{p}({\mathbb {R}^n})\) uniformly in R. So we have

$$\begin{aligned} \Vert f_{\beta ,R}\Vert _{W^{s,p}({\mathbb {R}^n})}=\Vert w(|D|) \varphi _R(|D|)\chi (D)\gamma _{\beta -s}\Vert _{L^{p}({\mathbb {R}^n})}\le C\Vert \gamma _{\beta -s}\Vert _{L^p({\mathbb {R}^n})}, \end{aligned}$$
(3.3)

where \(C>0\) is a constant independent of R. On the other hand, it follows by [6, Proposition 1.2.5] that

$$\begin{aligned} |\gamma _{\beta -s}(x)|\le \left\{ \begin{array}{lll} C|x|^{-n+\beta -s} &{}\quad \textrm{if} &{} \, |x|\le 2,\\ Ce^{-|x|/2} &{}\quad \textrm{if} &{} \, |x|\ge 2 \end{array} \right. \end{aligned}$$

when \(0<\beta -s<n\). From this, we see that \(\Vert f_{\beta ,R}\Vert _{W^{s,p}({\mathbb {R}^n})}<\infty \) whenever \(0<\beta -s<n\) and \((-n+\beta -s)p>-n\).

Now we turn to estimate \(\Vert {{\mathscr {A}}}_1f_{\beta ,R} \Vert _{L^p({\mathbb {R}^n})}\). By using polar coordinate,

$$\begin{aligned}&\int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi + |\xi |)}a_1(\xi ) {\hat{f}}_{\beta ,R}(\xi ) \,\text {d}\xi \nonumber \\&\quad =\int _{0}^{\infty }\int _{S^{n-1}} e^{2\pi i(x\cdot r\theta + r)}a_{1}(r)w(r) \chi (\theta )(1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}\sigma (\theta )\text {d}r\nonumber \\&\quad =\int _{0}^{\infty } e^{2\pi ir}\widehat{\chi \text {d}\sigma }(-rx)a_1(r)w(r) (1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}r. \end{aligned}$$
(3.4)

Note that \(\chi (\xi ) \) vanishes if \(|{\xi \over |\xi |}-v_1|\ge 10^{-2}\). By the expansion in [20, p. 360], we can write that for \(|x|\ge 1\) and \(|{x\over |x|}-v_1|\le 10^{-2}\),

$$\begin{aligned} \widehat{\chi \text {d}\sigma }(-x)= e^{2\pi i|x|}h(-x)+e(-x), \end{aligned}$$
(3.5)

where e belongs to \({ S}^{-\infty }\) and \(h\in { S}^{-(n-1)/2}\) can be splitted into two terms:

$$\begin{aligned} h(x)= c_0|x|^{-(n-1)/2}\chi (-x/|x|)+ {\tilde{e}}(x),\ \ {\tilde{e}}\in { S}^{-(n+1)/2} \end{aligned}$$
(3.6)

for all \(|x|\ge 1\). Hence, if \(|{x\over |x|}-v_1|\le 10^{-2}\), we then have

$$\begin{aligned}&\int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi + |\xi |)}a_1(\xi ) {\hat{f}}_{\beta ,R}(\xi ) \,\text {d}\xi \nonumber \\&\quad =\int _{0}^{\infty } e^{2\pi ir(|x|+1)}h(-rx)a_1(r)w(r) (1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}r\nonumber \\&\qquad +\int _{0}^{\infty } e^{2\pi ir}e(-rx)a_1(r)w(r) (1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}r. \end{aligned}$$
(3.7)

From (2.6), we have that \(a_1=0\) near the origin. Since \(\beta >(n-1)/2\), we see that if \(|{x\over |x|}-v_1|\le 10^{-2}\) and \( 1/2\le |x|\le 2\),

$$\begin{aligned} \left| \int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi + |\xi |)}a_1(\xi ) {\hat{f}}_{\beta ,R}(\xi ) \,\text {d}\xi \right| \le C \end{aligned}$$
(3.8)

for some constant \(C>0\) independent of R.

Next we calculate

$$\begin{aligned} \int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi - |\xi |)}a_2(\xi ) {\hat{f}}_{\beta ,R}(\xi ) \,\text {d}\xi \end{aligned}$$

when \(|{x\over |x|}-v_1|\le 10^{-2}\) and \(1< |x| \le 1+\varepsilon \) ( \(\varepsilon >0\) is a small constant that will be chosen later). As (3.4) and (3.7), we write

$$\begin{aligned}&\int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi - |\xi |)}a_2(\xi ) {\hat{f}}_{\beta ,R}(\xi ) \,\text {d}\xi \\&\quad =C\int _{0}^{\infty }\int _{S^{n-1}} e^{2\pi i(x\cdot r\theta - r)}(1-\varphi (r)) \chi (\theta )(1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\, \text {d}\sigma (\theta )\text {d}r\\&\quad =C\int _{0}^{\infty } e^{-2\pi ir}\widehat{\chi \text {d}\sigma }(-rx)(1-\varphi (r)) (1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}r\\&\quad =C\int _{0}^{\infty } e^{2\pi ir(|x|-1)}h(-rx)(1-\varphi (r)) (1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}r\\&\qquad +C\int _{0}^{\infty } e^{-2\pi ir}e(-rx)(1-\varphi (r)) (1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}r. \end{aligned}$$

The second term is bounded since \(e\in { S}^{-\infty }\). Now we use (3.6) to write

$$\begin{aligned}&\int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi - |\xi |)}a_2(\xi ) {\hat{f}}_{\beta ,R}(\xi ) \,\text {d}\xi \\&\qquad =C\int _{0}^{\infty } e^{2\pi ir(|x|-1)}\left[ c_0(r|x|)^{-\frac{n-1}{2}}\chi (x/|x|) + {\tilde{e}}(-rx) \right] \\&\qquad \quad (1-\varphi (r)) (1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}r +O(1). \end{aligned}$$

To continue, we need the following result.

Lemma 3.3

Let g be a function satisfying \(|g^{(k)}(r)|\le Cr^{m-k}, r\ge 1 \) for some \(m\in {{\mathbb {R}}}\) and for all \(k\in \mathbb {Z}_+\). Then for all \(\tau \ne 0\), we have

$$\begin{aligned} \left| \int _0^\infty e^{2\pi ir\tau } g(r)(1-\varphi (r)) \varphi _R(r)\,\text {d}r\right| \le C|\tau |^{-m-1} \end{aligned}$$
(3.9)

for some constant \(C>0\) independent of R and \(\tau \).

Proof

By (2.9), we write

$$\begin{aligned} \int _0^\infty e^{2\pi ir\tau } g(r)(1-\varphi (r)) \varphi _R(r) \,\text {d}r= \sum _{j\ge 1}\int _0^\infty e^{2\pi ir\tau } g(r)\psi _j(r) \varphi _R(r) \,\text {d}r. \end{aligned}$$

For each j and N, integration by parts shows

$$\begin{aligned}&\left| \int _0^\infty e^{2\pi ir\tau } g(r)\psi _j(r) \varphi _R(r)\,\text {d}r \right| \nonumber \\&\qquad = (2\pi )^{N}|\tau |^{-N}\left| \int _0^\infty e^{2\pi ir\tau }\left( \frac{\text {d}}{\text {d}r} \right) ^N\left( g(r)\psi _j(r) \varphi _R(r)\right) \,\text {d}r \right| \nonumber \\&\qquad \le C|\tau |^{-N}\int _{2^{j-1}\le r\le 2^{j+1}} r^{m-N} \text {d}r \nonumber \\&\qquad \le C|\tau |^{-N} 2^{j(m-N+1)}, \end{aligned}$$
(3.10)

where we applied the condition on g and for all \(k\in \mathbb {Z}_+\)

$$\begin{aligned} \left| {\text {d}^k\over \text {d}r^k} \big (\varphi _R(r)\big )\right| \le C_kr^{-k} \end{aligned}$$

for some constant \(C_k>0\) independent of R and r.

Set \(N=0\) for \(2^j\le |\tau |^{-1}\), and \(N>m+1\) otherwise. From this, it follows that

$$\begin{aligned}&\left| \int _0^\infty e^{2\pi ir\tau } g(r)(1-\varphi (r)) \varphi _R(r) \,\text {d}r\right| \\&\qquad \le C\sum _{2^j\le |\tau |^{-1}} 2^{j(m+1)}+ C\sum _{2^j\ge |\tau |^{-1}}|\tau |^{-N} 2^{j(m-N+1)}\\&\qquad \le C|\tau |^{-m-1}. \end{aligned}$$

This proves Lemma 3.3. \(\square \)

Back to the proof of Lemma 3.2. By Lemma 3.3,

$$\begin{aligned} \int _{0}^{\infty } e^{2\pi ir(|x|-1)} {\tilde{e}}(-rx) (1-\varphi (r)) (1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}r =O\left( \big ||x|-1\big |^{\beta -(n-1)/2}\right) . \end{aligned}$$

Finally, for \(|{x\over |x|}-v_1|\le 10^{-2}\) and \( 1< |x| \le 1+\varepsilon \), let us estimate

$$\begin{aligned} \int _{0}^{\infty } e^{2\pi ir(|x|-1)}(r|x|)^{-\frac{n-1}{2}}(1-\varphi (r)) (1+r^{2})^{-\beta /2}r^{n-1} \varphi _R(r)\,\text {d}r. \end{aligned}$$

Note that by Lemma 3.3 again,

$$\begin{aligned}{} & {} |x|^{-\frac{n-1}{2}}\int _{0}^{\infty } e^{2\pi ir(|x|-1)}(1-\varphi (r)) r^{\frac{n-1}{2}}((1+r^{2})^{-\beta /2}-r^{-\beta }) \varphi _R(r)\,\text {d}r\\{} & {} \quad =O\left( \big ||x|-1\big |^{\beta -(n-1)/2+1}\right) . \end{aligned}$$

For the term \( |x|^{-\frac{n-1}{2}}\int _{0}^{\infty } e^{2\pi ir(|x|-1)}(1-\varphi (r)) r^{-\beta +\frac{n-1}{2}} \varphi _R(r)\,\text {d}r, \) we use scaling to obtain that if \(-\beta +\frac{n-1}{2}>-1\),

$$\begin{aligned}&|x|^{-\frac{n-1}{2}}\int _{0}^{\infty } e^{2\pi ir(|x|-1)} (1-\varphi (r)) r^{-\beta +\frac{n-1}{2}} \varphi _R(r)\,\text {d}r\\&\quad =|x|^{-\frac{n-1}{2}}\int _{0}^{\infty } e^{2\pi ir(|x|-1)} r^{-\beta +\frac{n-1}{2}} \varphi _R(r)\,\text {d}r+O(1)\\&\quad =|x|^{-\frac{n-1}{2}}(|x|-1)^{\beta -\frac{n+1}{2}}\int _{0}^{\infty } e^{2\pi ir} r^{-\beta +\frac{n-1}{2}} \varphi \left( {r\over (|x|-1)R}\right) \,\text {d}r+O(1). \end{aligned}$$

Note that \( 1< |x| \le 1+\varepsilon \). When \(\beta >\frac{n-1}{2}\) and \(-\beta +\frac{n-1}{2}>-1\),

$$\begin{aligned} \lim _{R\rightarrow \infty } \int _{0}^{\infty } e^{2\pi ir} r^{-\beta +\frac{n-1}{2}} \varphi \left( {r\over (|x|-1)R}\right) \,\text {d}r = C_0, \end{aligned}$$

where \(C_0\) is a non-zero constant. Hence, there exist \(C>0\) and \(\varepsilon _{1}\in (0,1/2)\) such that if \(1< |x| \le 1+\varepsilon _1\),

$$\begin{aligned} \liminf _{R\rightarrow \infty } |x|^{-\frac{n-1}{2}}\left| \int _{0}^{\infty } e^{2\pi ir(|x|-1)}(1-\varphi (r)) r^{-\beta +\frac{n-1}{2}} \varphi _R(r)\,\text {d}r\right| \ge C \big ||x|-1\big |^{\beta -\frac{n+1}{2}}. \end{aligned}$$

Furthermore, we can find \(0<\varepsilon \le \varepsilon _1\) such that for \(1< |x| \le 1+\varepsilon \),

$$\begin{aligned}&\liminf _{R\rightarrow \infty }\left| \int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi - |\xi |)}a_2(\xi ) {\hat{f}}_{\beta ,R}(\xi ) \,\text {d}\xi \right| \\&\qquad \ge C \big ||x|-1\big |^{\beta -\frac{n+1}{2}}-O\left( \big ||x|-1\big |^{\beta -(n-1)/2+1}\right) \\&\qquad \ge {C\over 2}\big ||x|-1\big |^{\beta -\frac{n+1}{2}}. \end{aligned}$$

This, together with (3.8), tells us

$$\begin{aligned} \liminf _{R\rightarrow \infty } \Vert {{\mathscr {A}}}_1f_{\beta ,R} \Vert _{L^p(\Omega _\varepsilon )}\ge \Vert \liminf _{R\rightarrow \infty } |{\mathscr {A}}_1f_{\beta ,R}|\,\Vert _{L^p(\Omega _\varepsilon )}=\infty , \end{aligned}$$
(3.11)

if \(\beta >\frac{n-1}{2}\), \(-\beta +\frac{n-1}{2}>-1\), and \(\big (\beta -\frac{n+1}{2}\big )p\le -1\). Here we applied Fatou’s lemma and \(\Omega _\varepsilon := \{x\in {\mathbb {R}^n}: |{x\over |x|}-v_1|\le 10^{-2}\),\(1< |x| \le 1+\varepsilon \}\).

Therefore, we have \(\sup _{R>0}\Vert f_{\beta ,R}\Vert _{W^{s,p}({\mathbb {R}^n})}<\infty \) and \( \liminf \limits _{R\rightarrow \infty } \Vert {{\mathscr {A}}}_1f_{\beta ,R} \Vert _{L^p({\mathbb {R}^n})} =\infty \) provided that

$$\begin{aligned} \left\{ \begin{array}{rcl} &{}0<\beta -s<n, \quad \\ &{}(-n+\beta -s)p>-n, \quad \\ &{}\beta>\frac{n-1}{2}, \quad \\ &{}-\beta +\frac{n-1}{2}>-1, \quad \\ &{}\big (\beta -\frac{n+1}{2}\big )p\le -1, \\ \end{array} \right. \end{aligned}$$
(3.12)

which is solvable when

$$\begin{aligned} -(n+1)/2<s< (n-1)(1/p-1/2). \end{aligned}$$
(3.13)

Hence, if (3.2) holds, then we must have \(s\ge (n-1)(1/p-1/2)\) or \(s\le -(n+1)/2\). However, once (3.2) holds for some \(s_0\le -(n+1)/2\), it holds for all \(s\ge s_0\), which is in contradiction with (3.13). So the only possible range of s where (3.2) holds is \(s\ge (n-1)(1/p-1/2)\). By duality,

$$\begin{aligned} \Vert ({{\mathscr {A}}}_1)^{*} f\Vert _{L^{p'}({\mathbb {R}^n})}\le C\Vert f\Vert _{W^{s,p'}({\mathbb {R}^n})}. \end{aligned}$$

Because \(({{\mathscr {A}}}_1)^{*}\) is essentially the same as \({\mathscr {A}}_1\), we must have \(s\ge (n-1)(1/p'-1/2)=(n-1)(1/2-1/p)\) by the previous counterexample. This proves Lemma 3.2, and then the proof of Proposition 3.1 is complete. \(\square \)

Next, let us prove the following result.

Proposition 3.4

Let \(n\ge 2\) and \(p\ge 2\). Suppose

$$\begin{aligned} \left\| \sup _{1\le t\le 2}|\mathfrak {M}^\alpha _t f| \right\| _{L^p({\mathbb {R}^n})}\le C\Vert f\Vert _{L^p({\mathbb {R}^n})} \end{aligned}$$
(3.14)

holds for some \(\alpha \in \mathbb {C}\). Then, we have

$$\begin{aligned} \textrm{Re}\,\alpha \ge \frac{1}{p}-\frac{n-1}{2}. \end{aligned}$$

Let us prove Proposition 3.4. Fix \(N>-{(n-2)/p}-\textrm{Re}\,\alpha \) as in Lemma 2.1. By (2.7) and Lemma 2.1, the proof of Proposition 3.4 reduces to show the following lemma.

Lemma 3.5

Let \(n\ge 2\) and \(p>1\). Suppose

$$\begin{aligned} \left\| \sup _{1\le t\le 2}|{{\mathscr {A}}}_t f|\right\| _{L^p(\mathbb {R}^n)}\le C\Vert f\Vert _{W^{s,p}({\mathbb {R}^n})} \end{aligned}$$
(3.15)

holds for some \(s\in \mathbb {R}\). Then, we have \(s\ge 1/p\).

Proof

Let \(\delta >0\) be a small number to be chosen later, and denote \(\xi = (\xi _1, \xi ^\prime )\in {\mathbb {R}^n}\). For a given large \(j\in {\mathbb N}\), we let \({\hat{f}}\ge 0\) be a smooth cut-off of the set

$$\begin{aligned} \left\{ (\xi _1,\xi ^\prime )\in {\mathbb {R}^n}:|\xi _1-2^j|\le \delta 2^{j-1}, |\xi ^\prime |\le \delta 2^{j/2}\right\} \end{aligned}$$
(3.16)

such that \(\big |\partial _{\xi }^{\beta } {{\hat{f}}}(\xi )\big |\le C_{\delta ,\beta } 2^{-j|\beta '|/2}2^{-j|\beta _{1}|}\) for any \(\beta =(\beta _{1},\beta ')\in \mathbb {Z}_{+}^{n}\). By a simple calculation, we see that

$$\begin{aligned} |\xi |-\xi _1\le C\delta ^2 \end{aligned}$$
(3.17)

in the support of \({\hat{f}}\). Let j be large enough such that \((1-\varphi (t|\xi |)){\hat{f}}(\xi )={\hat{f}}(\xi )\) for all \(t\in [1,2]\), \(\xi \in {\mathbb {R}^n}\) and

$$\begin{aligned} \inf _{\xi \in \textrm{supp}{\hspace{.05cm}}{{\hat{f}}}}|a_2(\xi )|\ge c_{low}>0. \end{aligned}$$
(3.18)

Note by [20, Chapter IX, Section 4] we have

$$\begin{aligned}\sup _{1\le t\le 2}\big |\partial _{\xi }^{\beta } \big (e^{2\pi it(|\xi |-\xi _1)}a_1(t|\xi |){{\hat{f}}}(\xi )\big )\big |\le C_{\delta ,\beta } 2^{-j|\beta '|/2}2^{-j|\beta _{1}|}.\end{aligned}$$

Then for \(1\le t\le 2\) and \(x_1>0\), we use integration by parts to bound that

$$\begin{aligned}&\left| \int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi + t|\xi |)}a_1(t|\xi |) {\hat{f}}(\xi ) \,\text {d}\xi \right| \nonumber \\&\qquad = \left| \int _{{\mathbb {R}^n}} e^{2\pi i(x+t v_1)\cdot \xi }\left( e^{2\pi it(|\xi |-\xi _1)}a_1(t|\xi |) {\hat{f}}(\xi )\right) \,\text {d}\xi \right| \nonumber \\&\qquad \le C_{\delta } 2^{-jN}2^{j\frac{n+1}{2}}(x_1+t)^{-N}\le C_{\delta } 2^{-jN}2^{j\frac{n+1}{2}}, \end{aligned}$$
(3.19)

where \( v_1=(1,0,\ldots ,0)\), \(N\ge 1\) and the constant \(C_\delta \) is independent of j and t.

As for \(\int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi - t|\xi |)}a_2(t|\xi |) {\hat{f}}(\xi ) \,\text {d}\xi \) with \(1\le t\le 2\), we split it into three terms

$$\begin{aligned}&\int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi - t|\xi |)}a_2(t|\xi |) {\hat{f}}(\xi ) \,\text {d}\xi \nonumber \\&\qquad = \int _{{\mathbb {R}^n}} e^{2\pi i(x-t v_1)\cdot \xi }\big (e^{2\pi it(-|\xi |+\xi _1)}-1\big ) a_2(t|\xi |){\hat{f}}(\xi ) \,\text {d}\xi \nonumber \\&\quad \qquad + \int _{{\mathbb {R}^n}} (e^{2\pi i(x-t v_1)\cdot \xi }-1) a_2(t|\xi |){\hat{f}}(\xi )\,\text {d}\xi \nonumber \\&\quad \qquad +\int _{{\mathbb {R}^n}} a_2(t|\xi |){\hat{f}}(\xi ) \,\text {d}\xi . \end{aligned}$$
(3.20)

By (3.17), the first term of (3.20) is bounded by

$$\begin{aligned} C\int _{{\mathbb {R}^n}} \big |t(-|\xi |+\xi _1)\big | {\hat{f}}(\xi ) \,\text {d}\xi \le C\delta ^{2}\int _{{\mathbb {R}^n}} {\hat{f}}(\xi ) \,\text {d}\xi \le C\delta ^{n+2} 2^{j(n+1)/2}. \end{aligned}$$

If \(|x_1-t|\le \delta 2^{-j}\) and \(|x^\prime |\le 2^{-j/2}\), by the support condition (3.16) of \({\hat{f}}\), we have

$$\begin{aligned} \big |(x-tv_1)\cdot \xi \big |\le C\delta , \, \text {for all}\, \xi \in \textrm{supp}{\hspace{.05cm}}{\hat{f}}, \end{aligned}$$

which implies the second term of (3.20) is bounded by

$$\begin{aligned} C\int _{{\mathbb {R}^n}} \big |(x-tv_1)\cdot \xi \big | {\hat{f}}(\xi )\,\text {d}\xi \le C\delta \int _{{\mathbb {R}^n}} {\hat{f}}(\xi )\,\text {d}\xi \le C\delta ^{n+1} 2^{j(n+1)/2}. \end{aligned}$$

By (3.18), we have

$$\begin{aligned} \left| \int _{{\mathbb {R}^n}} a_2(t|\xi |){\hat{f}}(\xi ) \,\text {d}\xi \right| \ge \frac{c_{low}}{2}\int _{{\mathbb {R}^n}} {\hat{f}}(\xi ) \,\text {d}\xi \ge C_{L}\delta ^{n}2^{j\frac{n+1}{2}}. \end{aligned}$$

Then by (3.20) and the above estimates, if \(\delta \le \min \{\frac{C_{L}}{2C_{U}},1\}\), we have

$$\begin{aligned}&\left| \int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi - t|\xi |)}a_2(t|\xi |) {\hat{f}}(\xi ) \,\text {d}\xi \right| \nonumber \\&\qquad \ge \left| \int _{{\mathbb {R}^n}} a_2(t|\xi |){\hat{f}}(\xi ) \,\text {d}\xi \right| -C_{U}\delta ^{n+1}2^{j\frac{n+1}{2}}\ge \frac{C_{L}}{2}\delta ^{n}2^{j\frac{n+1}{2}} \end{aligned}$$
(3.21)

if \(|x_1-t|\le \delta 2^{-j}\) and \(|x^\prime |\le 2^{-j/2}\). It then follows from (3.19) and (3.21) that

$$\begin{aligned} \sup _{1\le t\le 2}|{{\mathscr {A}}}_t f|\ge \frac{C_{L}}{2}\delta ^{n}2^{j\frac{n+1}{2}} -C_{\delta } 2^{-jN}2^{j\frac{n+1}{2}}\ge \frac{C_{L}}{4}\delta ^{n}2^{j\frac{n+1}{2}}, \end{aligned}$$
(3.22)

when \(1\le x_1\le 2\), \(|x^\prime |\le 2^{-j/2}\) and \(j\ge \frac{1}{N}\log _{2}(\frac{4C_{\delta }}{\delta ^{n}C_{L}}+1)\).

Assume (3.15) is true. Then from the definition of f and (3.22), we have

$$\begin{aligned} \frac{C_{L}}{4}\delta ^{n}2^{(n+1)j/2-(n-1)j/(2p)}&\le \left\| \sup _{1\le t\le 2}|{{\mathscr {A}}}_t f|\right\| _{L^p(\mathbb {R}^n)} \nonumber \\&\le C\Vert f\Vert _{W^{s,p}({\mathbb {R}^n})}\le C_\delta 2^{sj}2^{(n+1)j/2-(n+1)j/(2p)}. \end{aligned}$$
(3.23)

Let \(j\rightarrow \infty \), then we obtain \(s\ge 1/p\). This proves Lemma 3.5, and then the proof of Proposition 3.4 is complete. \(\square \)

We finally present the endgame in the

Proof of (i) of Theorem 1.1

This is a consequence of Proposition 3.1 and Proposition 3.4. \(\square \)

4 Proof of (ii) of Theorem 1.1

In this section, we give a criterion that allows us to derive \(L^p\)-boundedness for the maximal operator \( {\mathfrak {M}}^{\alpha }\) on \({{\mathbb {R}}^n}, n\ge 2\). As a consequence, (ii) of Theorem 1.1 follows readily by applying the result of Guth, Wang and Zhang [7] on local smoothing estimate on \({\mathbb R^2}\). More precisely, we have the following result.

Proposition 4.1

Let \(n\ge 2 \) and \(p>2\). If the local smoothing estimate

$$\begin{aligned} \left\| e^{it\sqrt{-\Delta }}f \right\| _{L^p({\mathbb {R}^n}\times [1,2])} \le C_{n,p} \Vert f\Vert _{W^{s, p}({\mathbb {R}^n})} \end{aligned}$$
(4.1)

holds for some \(s\in \mathbb {R}\), then we have

$$\begin{aligned} \left\| \sup _{t>0}| {\mathfrak {M}}_t^{\alpha }f |\right\| _{L^p({\mathbb {R}^n})}\le C_{n,p,\alpha } \Vert f\Vert _{L^p({\mathbb {R}^n})} \end{aligned}$$
(4.2)

whenever \( \textrm{Re}\, \alpha > \max \big \{ -{(n-1)/p}, \ s -{(n-1)/2} +{1/p}\big \}. \)

The proof of Proposition 4.1 is inspired by [10]. Let \(\varphi \) and \(\{\psi _j\}_j\) be functions in (2.9). We write

$$\begin{aligned} \widehat{{\mathfrak {M}}_t^\alpha f}(\xi )&= \varphi (t|\xi |)\widehat{m_{\alpha }}(t\xi ){\hat{f}}(\xi )+\sum _{j\ge 1}\psi _j(t|\xi |)\widehat{m_{\alpha }}(t\xi ){\hat{f}}(\xi ) \nonumber \\&=:\widehat{{\mathfrak {M}}_{0,t}^\alpha f}(\xi )+\sum _{j\ge 1}\widehat{{\mathfrak {M}}_{j,t}^\alpha f}(\xi ). \end{aligned}$$
(4.3)

To prove Proposition 4.1, the first strategy is to show that if one modifies the definition so that for each operator \({\mathfrak {M}}_{j,t}^\alpha \), the supremum is taken over \(1\le t\le 2\), then the resulting maximal function is bounded on \(L^p({\mathbb R^n})\).

Lemma 4.2

Let \(n\ge 2 \) and \(p>2\). Under the assumption (4.1) of Proposition 4.1, there exist \(\delta >0\) and \(C>0\), such that for all \(j\ge 1\),

$$\begin{aligned} \left\| \sup _{t\in [1,2]}| {\mathfrak {M}}_{j,t}^{\alpha }f |\right\| _{L^p({\mathbb {R}^n})}\le C2^{-\delta j} \Vert f\Vert _{L^p({\mathbb {R}^n})}, \end{aligned}$$
(4.4)

if \(\textrm{Re}\, \alpha > \max \big \{ -{(n-1)/p}, s -{(n-1)/2} +{1/p}\big \}\).

Proof

By (2.5), (2.7) and (2.10), it suffices to show

$$\begin{aligned} \left\| \sup _{t\in [1,2]}| \mathscr {A}_{j,t}f |\right\| _{L^p({\mathbb {R}^n})}\le C2^{[ \max \{ (n-1)(1/2-1/p), \, s+{1/p}\}]j} \Vert f\Vert _{L^p({\mathbb {R}^n})}, \end{aligned}$$
(4.5)

where \(\widehat{\mathscr {A}_{j,t}f}(\xi )=\psi _j(t|\xi |)\widehat{\mathscr {A}_{t}f}(\xi )\) and \(\mathscr {A}_t f\) is defined in (2.13). By (2.6), we can write

$$\begin{aligned} {{\mathscr {A}}}_{j,t} f(x)= C\sum _{\ell =0}^{N-1}\int _{{\mathbb {R}^n}} \left( b_{\ell } e^{2\pi i(x\cdot \xi + t|\xi |)} + d_{\ell } e^{2\pi i(x\cdot \xi - t|\xi |)} \right) |t\xi |^{-\ell }\psi _j(t|\xi |) {\hat{f}}(\xi ) \,\text {d}\xi , \end{aligned}$$

which is a linear combination of

$$\begin{aligned} T_{\ell ,j}f(x,t):=\int _{{\mathbb {R}^n}}e^{2\pi i(x\cdot \xi \pm t|\xi |)}|t\xi |^{-\ell }\psi _j(t|\xi |){\hat{f}}(\xi )\,\text {d}\xi ,\ \ \ \ell =0,1,\ldots ,N-1. \end{aligned}$$

Hence, the proof of (4.5) reduces to showing that

$$\begin{aligned} \left\| \sup _{t\in [1,2]}| T_{0,j}f(\cdot ,t) |\right\| _{L^p({\mathbb {R}^n})}\le C2^{ [ \max \{ (n-1)(1/2-1/p), \, s+{1/p}\}]j} \Vert f\Vert _{L^p({\mathbb {R}^n})}, \ \ \ j\ge 1. \end{aligned}$$
(4.6)

Now we apply Lemma 2.2 to deal with (4.6). First, it follows from [20, Theorem 2, Chapter IX] that

$$\begin{aligned} \Vert T_{0,j}f(\cdot ,1) \Vert _{L^p({\mathbb {R}^n})}\le C 2^{(n-1)(1/2-1/p)j}\Vert f\Vert _{L^p({\mathbb {R}^n})}. \end{aligned}$$
(4.7)

Next, we observe that for any \(1\le t\le 2\) and \(j\ge 1\), there holds

$$\begin{aligned} \big |\partial _\xi ^\beta \big (\psi _j(t|\xi |)\big )\big |\le C(1+|\xi |)^{-|\beta |}, \end{aligned}$$

where \(\beta \) is any multi-index. So \(\psi _j(t|\cdot |)\in S^0\) uniformly \(1\le t\le 2\) and \(j\ge 1\), hence

$$\begin{aligned}&\int _{{\mathbb {R}^n}}\left| \int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi \pm t|\xi |)}\psi _j(t|\xi |){\hat{f}}(\xi )\,\text {d}\xi \right| ^p\,\text {d}x \nonumber \\&\quad \le C \int _{{\mathbb {R}^n}}\left| \int _{{\mathbb {R}^n}} e^{2\pi i(x\cdot \xi \pm t|\xi |)}{\tilde{\psi }}_j(\xi ){\hat{f}}(\xi )\,\text {d}\xi \right| ^p\,\text {d}x, \end{aligned}$$
(4.8)

where constant C is independent of t and j. Here \({\tilde{\psi }}_j\) equals to 1 if \(|\xi |\in [2^{j-2}M,2^{j+1}M]\) and vanishes if \(|\xi |\notin [2^{j-3}M,2^{j+2}M]\), so that \({\tilde{\psi }}_j\) equals to 1 on the support of \(\psi _j(t|\cdot |)\) when \(1\le t\le 2\). Then we apply our assumption (4.1) on local smoothing estimate to (4.8) to obtain

$$\begin{aligned} \Vert T_{0,j}f \Vert _{L^p({\mathbb {R}^n}\times [1,2])}\le C 2^{s j}\Vert f\Vert _{L^p({\mathbb {R}^n})}, \end{aligned}$$

and by the same token, the operator

$$\begin{aligned} \partial _t T_{0,j}(x,t) = \int _{{\mathbb {R}^n}}e^{2\pi i(x\cdot \xi \pm t|\xi |)}\big (\pm 2\pi i|\xi |\psi _j(t|\xi |)+|\xi |\psi _j^\prime (t|\xi |)\big ){\hat{f}}(\xi )\,\text {d}\xi . \end{aligned}$$

satisfies

$$\begin{aligned} \Vert \partial _tT_{0,j}f \Vert _{L^p({\mathbb {R}^n}\times [1,2])}\le C 2^{(s+1)j}\Vert f\Vert _{L^p({\mathbb {R}^n})}. \end{aligned}$$

Thus, we use Lemma 2.2 to get

$$\begin{aligned} \left\| \sup _{t\in [1,2]}| T_{0,j}f(\cdot ,t) |\right\| _{L^p({\mathbb {R}^n})} \le C \big (2^{(n-1)(1/2-1/p)j}+2^{(s+1/p)j}\big )\Vert f\Vert _{L^p({\mathbb {R}^n})}, \end{aligned}$$

which implies estimate (4.6). \(\square \)

Finally, we can apply Lemma 4.2 to prove Proposition 4.1.

Proof of Proposition 4.1

By (4.3) and (2.7), (4.2) reduces to

$$\begin{aligned} \left\| \sup _{t>0}| {\mathfrak {M}}_{j,t}^{\alpha }f |\right\| _{L^p({\mathbb {R}^n})}\le C2^{-\delta j} \Vert f\Vert _{L^p({\mathbb {R}^n})} \end{aligned}$$
(4.9)

for some \(\delta >0\). Since \(\ell ^p\subseteq \ell ^\infty \), we have

$$\begin{aligned} \left\| \sup _{t>0}| {\mathfrak {M}}_{j,t}^{\alpha }f |\right\| _{L^p({\mathbb {R}^n})}\le \left( \sum _{k\in \mathbb {Z}} \left\| \sup _{t\in [2^k,2^{k+1}]}| {\mathfrak {M}}_{j,t}^{\alpha }f |\right\| _{L^p({\mathbb {R}^n})}^p\right) ^{1/p}. \end{aligned}$$
(4.10)

However, it follows from Lemma 4.2 and a rescaling \(t\rightarrow 2^{-k} t\) that

$$\begin{aligned} \left\| \sup _{t\in [2^k,2^{k+1}]}| {\mathfrak {M}}_{j,t}^{\alpha }f |\right\| _{L^p({\mathbb {R}^n})}\le C2^{-\delta j}\Vert f\Vert _{L^p({\mathbb {R}^n})}. \end{aligned}$$
(4.11)

Then for \(2^k\le t\le 2^{k+1}\), there must be \(|\xi |\in [2^{j-k-2}M,2^{j-k+1}M]\). This tells us that we can rewrite (4.11) as

$$\begin{aligned} \left\| \sup _{t\in [2^k,2^{k+1}]}| {\mathfrak {M}}_{j,t}^{\alpha }f |\right\| _{L^p({\mathbb {R}^n})}\le C2^{-\delta j}\Vert P_{j-k}f\Vert _{L^p({\mathbb {R}^n})}. \end{aligned}$$

This, together with (4.10), implies

$$\begin{aligned} \left\| \sup _{t>0}| {\mathfrak {M}}_{j,t}^{\alpha }f |\right\| _{L^p({\mathbb {R}^n})}&\le C2^{-\delta j}\left( \sum _{k\in \mathbb {Z}} \Vert P_{j-k}f\Vert _{L^p({\mathbb {R}^n})}^p\right) ^{1/p} \\&=C2^{-\delta j}\left\| \left( \sum _{k\in \mathbb {Z}}|P_{j-k}f|^p\right) ^{1/p}\right\| _{L^p({\mathbb {R}^n})}\\&\le C2^{-\delta j}\left\| \left( \sum _{k\in \mathbb {Z}}|P_{j-k}f|^2\right) ^{1/2}\right\| _{L^p({\mathbb {R}^n})} \end{aligned}$$

since \(p>2\). By the Littlewood–Paley inequality [5],

$$\begin{aligned} \left\| \left( \sum _{k\in \mathbb {Z}}|P_{j-k}f|^2\right) ^{1/2}\right\| _{L^p({\mathbb {R}^n})}\le C\Vert f\Vert _{L^p({\mathbb {R}^n})}. \end{aligned}$$

This proves (4.9). Hence, the proof of Proposition 4.1 is complete. \(\square \)

Remark 4.3

(i) In the dimension \(n\ge 3\) Gao et al. [3] obtained improved local smoothing estimates for the wave equation, that is, (4.1) holds with \(s= (n-1)({1/2}-1/p)-\sigma \) for all \(\sigma <2/p-1/2\) when

$$\begin{aligned} p> \left\{ \begin{array}{lll} {2(3n+5)\over 3n+1}, \ \ \ \textrm{for}\ &{} n \ \textrm{odd}; \\ {2(3n+6)\over 3n+2}, \ \ \ \textrm{for}\ &{}n \ \textrm{even}. \end{array} \right. \end{aligned}$$

Applying Proposition 4.1, we get that (1.3) holds if \(\textrm{Re}\,\alpha > \alpha (p, n)\) where

$$\begin{aligned} \hspace{1cm} \alpha (p, n)= \left\{ \begin{array}{lll} \max \left\{ -{n-1\over p}, -\frac{3}{8}(n-1)+\frac{5-n}{4p},\frac{4(n-1)}{(3n+5)(n+3)}-\frac{n^{2}-5}{(n+3)p}\right\} , \ \ \ {} &{} \textrm{for}\ n \ \textrm{odd}; \\ \max \left\{ -{n-1\over p},-\frac{3n-2}{8}-\frac{n-6}{4p},-\frac{n-1}{n+4}-\frac{n^{2}+n-6}{(n+4)p}\right\} , \ \ \ &{} \textrm{for}\ n \ \textrm{even}. \end{array} \right. \qquad \end{aligned}$$
(4.12)

The above range \(\alpha \) in (4.12) for \(p>2\) is strictly wider than (1.7). However, the range p in (4.12) is not optimal. What happens when \(n\ge 3\) (and \(p>2\)) remains open.

(ii) Under the assumption (4.1) of Proposition 4.1, it follows by (4.4) that for \(n\ge 2 \) and \(p>2\),

$$\begin{aligned} \left\| \sup _{t\in [1,2]}| {\mathfrak {M}}_{t}^{\alpha }f |\right\| _{L^p({\mathbb {R}^n})}\le C \Vert f\Vert _{L^p({\mathbb {R}^n})} \end{aligned}$$

provided that \(\textrm{Re}\, \alpha > \max \big \{ -{(n-1)/p}, s -{(n-1)/2} +{1/p}\big \}\). It is interesting to describe the full range of (pq) such that

$$\begin{aligned} \left\| \sup _{t\in [1,2]}| {\mathfrak {M}}_{t}^{\alpha }f |\right\| _{L^q({\mathbb {R}^n})}\le C \Vert f\Vert _{L^p({\mathbb {R}^n})}. \end{aligned}$$

For \(\alpha =0\), we refer it to [9, 13,14,15] and the references therein.