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Abstract
LetMα be the spherical maximal operators of complex order α on R

n . In this article
we show that when n ≥ 2, suppose

‖Mα f ‖L p(Rn) ≤ C‖ f ‖L p(Rn)

holds for some α and p ≥ 2, then we must have that Re α ≥ max{1/p − (n −
1)/2, −(n − 1)/p}. In particular, when n = 2, we prove that ‖Mα f ‖L p(R2) ≤
C‖ f ‖L p(R2) if Reα > max{1/p − 1/2, −1/p}, and consequently the range of α is
sharp in the sense that the estimate fails for Re α < max{1/p − 1/2,−1/p}.

Mathematics Subject Classification 42B25 · 42B20 · 35L05

1 Introduction

In 1976 Stein [19] introduced the spherical maximal means Mα f (x) = supt>0
|Mα

t f (x)| of (complex) order α, where

Mα
t f (x) = 1

�(α)

∫
|y|≤1

(
1 − |y|2

)α−1
f (x − t y) dy. (1.1)

These means are defined a priori only for Re α > 0, but the definition can be extended
to all complex α by analytic continuation. In the case α = 1, Mα corresponds to the
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Hardy–Littlewood maximal operator and in the case α = 0, one recovers the spherical
maximal means M f (x) = supt>0 |Mt f (x)| in which

Mt f (x) = cn

∫
Sn−1

f (x − t y) dσ(y), (x, t) ∈ R
n × R

+, (1.2)

where cn is a constant depending only on n, Sn−1 denotes the standard unit sphere in
R
n and dσ is the induced Lebesgue measure on the unit sphere S

n−1. In [19, Theorem
2], Stein showed that

‖Mα f ‖L p(Rn) ≤ C‖ f ‖L p(Rn) (1.3)

in the following circumstances:

Re α > 1 − n + n

p
when 1 < p ≤ 2; (1.4)

or

Re α >
2 − n

p
when 2 ≤ p ≤ ∞. (1.5)

The abovemaximal theorem tells us that when α = 0 and n ≥ 3, the maximal operator
M is bounded on L p(Rn) for the range of p > n/(n − 1). This range of p is sharp, as
has been pointed out in [19, 21], no such result can hold for p ≤ n/(n − 1) if n ≥ 2.

Some 10 years passed before Bourgain [1] finally proved that the maximal operator
M is bounded on L p(R2) for p > 2. Bourgain’s theorem says that there exists ε(p) >

0 such that

‖Mα f ‖L p(R2) ≤ C‖ f ‖L p(R2), Re α > −ε(p), 2 < p < ∞. (1.6)

This result cannot hold even for α = 0 when p = 2, see [19]. An alternative proof of
Bourgain’s result was subsequently found by Mockenhaupt, Seeger and Sogge [11],
who used a local smoothing estimate for the solutions of the wave operator. In 2017,
Miao,Yang andZheng [10] improved certain range ofα for L p-bounds for the operator
Mα by using the Bourgain–Demeter decoupling theorem [2]. All these refinements
can be stated altogether as follows: For n ≥ 2 and p ≥ 2, (1.3) holds whenever

Re α > max

{
1 − n

4
+ 3 − n

2p
,
1 − n

p

}
. (1.7)

The above range α in (1.7) for p > 2 is strictly wider than the range of α in (1.5).
However, the range α in (1.7) is not optimal.

As mentioned above, the proof of the range of α in (1.7) relies on the progress
concerning Sogge’s local smoothing conjecture, as originally formulated by Sogge
[18]: For n ≥ 2 and p ≥ 2n/(n − 1), one has

‖u‖L p(Rn×[1,2]) ≤ C
(‖ f ‖W γ,p(Rn) + ‖g‖W γ−1,p(Rn)

)
, if γ >

n − 1

2
− n

p
,

(1.8)
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where

u(x, t) = cos(t
√−�) f (x) + sin(t

√−�)√−�
g(x)

is the solution to the Cauchy problem for the wave equation in R
n × R :

⎧⎨
⎩
(
(∂/∂t)2 − �

)
u(x, t) = 0,

u|t=0 = f ,
(∂/∂t)u|t=0 = g.

(1.9)

The local smoothing conjecture has been studied in numerous papers, see for instance
[2, 4, 7, 8, 10, 11, 17, 24] and the references therein. When n = 2, sharp results follow
by the work of Guth, Wang and Zhang [7]. When n ≥ 3, the conjecture holds for
all p ≥ 2(n + 1)/(n − 1) by the Bourgain–Demeter decoupling theorem [2] and the
method of [24].

The aim of this article is to prove the following result.

Theorem 1.1 Let p ≥ 2.

(i) Let n ≥ 2. Suppose (1.3) holds for some α ∈ C. Then we must have

Re α ≥ max

{
1

p
− n − 1

2
, −n − 1

p

}
.

(ii) Let n = 2. Then the estimate (1.3) holds if

Re α > max

{
1

p
− 1

2
, − 1

p

}
,

and consequently the range of α is sharp in the sense that the estimate fails for
Re α < max{1/p − 1/2,−1/p}.
Let p ≥ 2 and α = (3 − n)/2. For an appropriate constant cn , we have that

cnt(Mα
t g)(x) = u(x, t), where u is the solution to the wave equation (1.9) with

f = 0, see [20, 4.10, p.519]. As a consequence of (i) of Theorem 1.1, we have the
following corollary.

Corollary 1.2 Let n ≥ 4. Then

∥∥∥∥sup
t>0

∣∣∣∣u(x, t)

t

∣∣∣∣
∥∥∥∥
L p(Rn)

≤ Cp‖g‖L p(Rn)

can not hold whenever p > 2(n − 1)/(n − 3).

We would like to mention that for the range α in (1.5), it is commented in [20,
4.10, p.519] that the optimal results for p > 2 and n ≥ 2 “are still a mystery". Our
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Theorem 1.1 gives an affirmative answer in dimension n = 2 to show sharpness of
Re α > max {1/p − 1/2, −1/p} in the estimate (1.3) except the borderline.

The proof of (ii) of Theorem 1.1 can be shown by applying the work of Guth-Wang-
Zhang [7] on local smoothing estimates along with the techniques previously used in
[11] and [10]. The main contribution of this article is to show (i) of Theorem 1.1. From
the asymptotic expansion of Fourier multiplier of the operatorMα

t , it is seen thatM
α
t

are essentially the sum of half-wave operators eit
√−� and e−i t

√−�, and hence the
complexity of the operator Mα

t comes from the interference between the operators

eit
√−� and e−i t

√−�. To show the necessity of L p-boundedness ofMα
t , we make the

following observations. For the case p > 2n/(n − 1) we note that by the stationary
phase argument, two waves eit

√−� f and e−i t
√−� f concentrate on the opposite parts

of sphere {x ∈ R
n : |x | = t}, respectively, when f̂ is supported on a small cone. For

the case 2 ≤ p ≤ 2n/(n − 1), we let f be a wave packet of direction ν ∈ Sn−1, then
one can regard e±i t

√−� f (x) as the translations f (x ± tν) of f (x), which concentrate
on the opposite parts of sphere {x ∈ R

n : |x | = t}. In Sect. 3, we construct two
examples such that there is no interference between eit

√−� f and e−i t
√−� f to obtain

the desired range of α in (i) of Theorem 1.1.
The paper is organized as follows. In Sect. 2, we give some preliminary results

including the properties of the Fourier multiplier associated to the spherical operators
Mα

t by using asymptotic expansions of Bessel functions. The proof of (i) of Theo-
rem 1.1 will be given in Sect. 3 by constructing two examples to obtain the necessarity
of L p-bounds for the maximal operator Mα . In Sect. 4 we will give the proof of (ii)
of Theorem 1.1.

2 Preliminary results

We begin with recalling the spherical function Mα
t f (x) = f ∗ mα,t (x) where

mα,t (x) = t−nmα(t−1x) and

mα(x) = �(α)−1(1 − |x |2)α−1
+ ,

where �(α) is the Gamma function and (r)+ = max{0, r} for r ∈ R. Define the
Fourier transform of f by f̂ (ξ) = ∫

Rn e−2π i x ·ξ f (x) dx . It follows by [22, p.171] that
the Fourier transform of mα is given by

m̂α(ξ) = π−α+1|ξ |−n/2−α+1 Jn/2+α−1
(
2π |ξ |). (2.1)

Here Jβ denotes the Bessel function of order β. For any complex number β, we can
obtain the complete asymptotic expansion

Jβ(r) ∼ r−1/2eir
∞∑
j=0

b jr
− j + r−1/2e−ir

∞∑
j=0

d jr
− j , r ≥ 1 (2.2)
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for suitable coefficients b j and d j with b0, d0 
= 0. Note that when β is a positive
integer, (2.2) is given in [20, (15), p.338]. For general β, we refer it to [23, (1). 7.21,
p.199].

Then there exists an error terms EN ,1(r), EN ,2(r) and E(r) such that for any given
N ≥ 1 and r ≥ 1,

Jβ(r)

= r−1/2eir

⎛
⎝N−1∑

j=0

b j r
− j + EN ,1(r)

⎞
⎠+ r−1/2e−ir

⎛
⎝N−1∑

j=0

d jr
− j + EN ,2(r)

⎞
⎠+ E(r), (2.3)

where

∣∣∣∣∣
(

d

dr

)k

EN ,1(r)

∣∣∣∣∣+
∣∣∣∣∣
(

d

dr

)k

EN ,2(r)

∣∣∣∣∣+
∣∣∣∣∣
(

d

dr

)k

E(r)

∣∣∣∣∣ ≤ Ckr
−N−k (2.4)

for all k ∈ Z+. We rewrite (2.1) as

m̂α(ξ) = ϕ(|ξ |)m̂α(ξ) + (1 − ϕ(|ξ |))m̂α(ξ)

= [ϕ(|ξ |)m̂α(ξ) + E(|ξ |)]
+
[
e2π i |ξ |EN ,1(|ξ |) + e−2π i |ξ |EN ,2(|ξ |)

]

+ |ξ |−(n−1)/2−α
[
e2π i |ξ |a1(|ξ |) + e−2π i |ξ |a2(|ξ |)

]
, (2.5)

where

E(r) = (2π)1/2c(π, α)(1 − ϕ(r))r−(n−2)/2−αE(2πr),

EN ,�(r) = c(π, α)EN ,�(2πr)(1 − ϕ(r))r−(n−1)/2−α, � = 1, 2,

a1(r) = c(π, α)

N−1∑
j=0

b j (2πr)
− j (1 − ϕ(r)),

a2(r) = c(π, α)

N−1∑
j=0

d j (2πr)
− j (1 − ϕ(r)) (2.6)

with c(π, α) = 2−1/2π−α+1/2. Here ϕ ∈ C∞
0 (R) is an even function, identi-

cally equals 1 on B(0, M) and supported on B(0, 2M), where M = M(N ) is
large enough such that |a2(r)| ≥ clow > 0 for |r | ≥ M . Then we can split the
Fourier multiplier of the operator Mα

1 into three parts as in (2.5) above. Firstly, we
note that ϕ(|ξ |)m̂α(ξ) is smooth and compactly supported and E(|ξ |) ∈ S (Rn).
It is seen that supt>0 |m̂α(t D)ϕ(t |D|) f | and supt>0 |E(t |D|) f | are bounded by the
Hardy–Littlewood maximal function. Then for p > 1,
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∥∥∥∥sup
t>0

|m̂α(t D)ϕ(t |D|)) f |
∥∥∥∥
L p(Rn)

+
∥∥∥∥sup
t>0

|E(t |D|) f |
∥∥∥∥
L p(Rn)

≤ C‖ f ‖L p(Rn).

(2.7)

Secondly, we define

EN f (x, t) =
∫
Rn

e2π i(x ·ξ+t |ξ |)EN ,1
(
t |ξ |) f̂ (ξ) dξ +

∫
Rn

e2π i(x ·ξ−t |ξ |)EN ,2
(
t |ξ |) f̂ (ξ) dξ.

Then we have the following lemma.

Lemma 2.1 Let p ≥ 2. There exists a constant C > 0 such that

∥∥∥∥∥ sup
t∈[1,2]

|EN f (·, t)|
∥∥∥∥∥
L p(Rn)

≤ C‖ f ‖L p(Rn), (2.8)

when

N > −n − 2

p
− Re α.

The proof of Lemma 2.1 is based on the following elementary result (see [17,
Lemma 2.4.2]).

Lemma 2.2 Let F be a smooth function defined on R
n × [1, 2]. Then for p > 1 and

1/p + 1/p′ = 1,

∥∥∥∥∥ sup
1≤t≤2

|F(·, t)|
∥∥∥∥∥
L p(Rn)

≤ Cp

(
‖F(·, 1)‖L p(Rn) + ‖F‖1−1/p

L p(Rn×[1,2]) ‖∂t F‖1/pL p(Rn×[1,2])
)

.

Proof of Lemma 2.1 We fix a function ϕ as in (2.5). Let ψ(r) := ϕ(r) − ϕ(2r) and
ψ j (r) := ψ(2− j r), for j ≥ 1. So we have

1 ≡ ϕ(r) +
∑
j≥1

ψ j (r), r ≥ 0. (2.9)

For j ≥ 1, define

EN , j f (x, t) =
∫
Rn

(
e2π i(x ·ξ+t |ξ |)EN ,1

(
t |ξ |)+ e2π i(x ·ξ−t |ξ |)EN ,2

(
t |ξ |))ψ j (t |ξ |) f̂ (ξ)dξ.
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To prove (2.8), it suffices to show that there exists a constant δ > 0 such that for all
j ≥ 1,

∥∥∥∥∥ sup
1≤t≤2

|EN , j f (·, t)|
∥∥∥∥∥
L p(Rn)

≤ C2−δ j‖ f ‖L p(Rn). (2.10)

Let us prove (2.10) by using Lemma 2.2. First, for each fixed t ∈ [1, 2], EN , j f are
the sum of two Fourier integral operators of order −(n− 1)/2−Re α − N with phase
x · ξ ± t |ξ |. By [20, Theorem 2, Chapter IX] and the fact that eit

√−� is local at scale
t , we have

sup
1≤t≤2

∥∥EN , j f (·, t)
∥∥
L p(Rn)

≤ C2−((n−1)/2+Re α+N ) j2(n−1)(1/2−1/p) j‖ f ‖L p(Rn),

(2.11)

see also [16, Corollary 2.4]. Next, we write ∂tEN , j f (x, t) as the sum of following
terms,

±2π i t−1
∫

e2π i(x ·ξ±t |ξ |)t |ξ |EN ,1
(
t |ξ |)ψ j (t |ξ |) f̂ (ξ)dξ ;

±2π i t−1
∫

e2π i(x ·ξ±t |ξ |)t |ξ |EN ,2
(
t |ξ |)ψ j (t |ξ |) f̂ (ξ)dξ ;

t−1
∫

e2π i(x ·ξ±t |ξ |)t |ξ |(EN ,1ψ j )
′(t |ξ |) f̂ (ξ)dξ ;

t−1
∫

e2π i(x ·ξ±t |ξ |)t |ξ |(EN ,2ψ j )
′(t |ξ |) f̂ (ξ)dξ.

By (2.4), we see that for each fixed t ∈ [1, 2], they are Fourier integral operators of
order no more than −(n − 1)/2 − Re α − N + 1. By [20, Theorem 2, Chapter IX]
again,

sup
1≤t≤2

∥∥∂tEN , j f (·, t)
∥∥
L p(Rn)

≤ C2−((n−1)/2+Re α+N−1) j2(n−1)(1/2−1/p) j‖ f ‖L p(Rn).

(2.12)

Lemma 2.2, together with (2.11) and (2.12), gives

∥∥∥∥∥ sup
1≤t≤2

|EN , j f (·, t)|
∥∥∥∥∥
L p(Rn)

≤ C2−((n−1)/2+Re α+N−1/p) j2(n−1)(1/2−1/p) j‖ f ‖L p(Rn).

Choosing N > −(n − 2)/p−Re α and letting δ = N + (n − 2)/p+Re α, we obtain
estimate (2.10). The proof of Lemma 2.1 is complete. 
�

Finally, we define

At f (x) =
∫
Rn

(
e2π i(x ·ξ+t |ξ |)a1(t |ξ |) + e2π i(x ·ξ−t |ξ |)a2(t |ξ |)

)
f̂ (ξ) dξ. (2.13)
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From (2.5), (2.7) and Lemma 2.2, we see that the L p-boundness of the operator
Mα

t reduces to boundedness of the operator At on Sobolev spaces, which will be
investigated in Sect. 3 below.

3 Proof of (i) of Theorem 1.1

To prove (i) of Theorem 1.1, we need to show the following proposition.

Proposition 3.1 Let n ≥ 2 and p ≥ 2. Suppose

∥∥Mα
1 f
∥∥
L p(Rn)

≤ C‖ f ‖L p(Rn) (3.1)

holds for some α ∈ C. Then, we have

Re α ≥ −n − 1

p
.

Let us prove Proposition 3.1. Fix N > −(n − 2)/p − Re α as in Lemma 2.1. By
(2.5), (2.7) and Lemma 2.1, we see that the proof of Proposition 3.1 reduces to the
following lemma.

Lemma 3.2 Let n ≥ 2 and 1 < p < ∞. Let A1 be an operator given in (2.13).
Suppose

‖A1 f ‖L p(Rn) ≤ C‖ f ‖Ws,p(Rn) (3.2)

holds for some s ∈ R. Then, we have

s ≥ (n − 1)

∣∣∣∣12 − 1

p

∣∣∣∣ .

Proof Let γ̂β(ξ) := (1+ |ξ |2)−β/2 with β > (n − 1)/2. Recall that ϕ is a function in
(2.5). Let w belong to S0 (a symbol of order zero) satisfying |w(r)| ≥ c > 0 on R for
some constant c. Moreover, w equals

(∑N−1
j≥0 d jr− j

)−1 on supp (1 − ϕ), and equals
constant near zero. Assume that χ(ξ) ∈ C∞(Rn\{0}) is homogeneous of order 0 and
vanishes if | ξ

|ξ | − v1| ≥ 10−2, where v1 := (1, 0, . . . , 0). Define

f̂β,R(ξ) = w(|ξ |)ϕR(|ξ |)χ(ξ)γ̂β(ξ),

where ϕR(·) := ϕ(·/R), and R is a large positive number. Since w(|ξ |) ∈ S0 and χ is
a Hörmander multiplier, w(|D|) and χ(D) are bounded on L p(Rn). And ϕR(|D|) is
bounded on L p(Rn) uniformly in R. So we have

‖ fβ,R‖Ws,p(Rn) = ‖w(|D|)ϕR(|D|)χ(D)γβ−s‖L p(Rn) ≤ C‖γβ−s‖L p(Rn), (3.3)
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where C > 0 is a constant independent of R. On the other hand, it follows by [6,
Proposition 1.2.5] that

|γβ−s(x)| ≤
{
C |x |−n+β−s if |x | ≤ 2,
Ce−|x |/2 if |x | ≥ 2

when 0 < β − s < n. From this, we see that ‖ fβ,R‖Ws,p(Rn) < ∞ whenever 0 <

β − s < n and (−n + β − s)p > −n.
Now we turn to estimate ‖A1 fβ,R‖L p(Rn). By using polar coordinate,

∫
Rn

e2π i(x ·ξ+|ξ |)a1(ξ) f̂β,R(ξ) dξ

=
∫ ∞

0

∫
Sn−1

e2π i(x ·rθ+r)a1(r)w(r)χ(θ)(1 + r2)−β/2rn−1ϕR(r) dσ(θ)dr

=
∫ ∞

0
e2π ir χ̂dσ(−r x)a1(r)w(r)(1 + r2)−β/2rn−1ϕR(r) dr . (3.4)

Note that χ(ξ) vanishes if | ξ
|ξ | − v1| ≥ 10−2. By the expansion in [20, p. 360], we can

write that for |x | ≥ 1 and | x
|x | − v1| ≤ 10−2,

χ̂dσ(−x) = e2π i |x |h(−x) + e(−x), (3.5)

where e belongs to S−∞ and h ∈ S−(n−1)/2 can be splitted into two terms:

h(x) = c0|x |−(n−1)/2χ(−x/|x |) + ẽ(x), ẽ ∈ S−(n+1)/2 (3.6)

for all |x | ≥ 1. Hence, if | x
|x | − v1| ≤ 10−2, we then have

∫
Rn

e2π i(x ·ξ+|ξ |)a1(ξ) f̂β,R(ξ) dξ

=
∫ ∞

0
e2π ir(|x |+1)h(−r x)a1(r)w(r)(1 + r2)−β/2rn−1ϕR(r) dr

+
∫ ∞

0
e2π ir e(−r x)a1(r)w(r)(1 + r2)−β/2rn−1ϕR(r) dr . (3.7)

From (2.6), we have that a1 = 0 near the origin. Since β > (n − 1)/2, we see that if
| x
|x | − v1| ≤ 10−2 and 1/2 ≤ |x | ≤ 2,

∣∣∣∣
∫
Rn

e2π i(x ·ξ+|ξ |)a1(ξ) f̂β,R(ξ) dξ

∣∣∣∣ ≤ C (3.8)

for some constant C > 0 independent of R.
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Next we calculate

∫
Rn

e2π i(x ·ξ−|ξ |)a2(ξ) f̂β,R(ξ) dξ

when | x
|x | − v1| ≤ 10−2 and 1 < |x | ≤ 1 + ε ( ε > 0 is a small constant that will be

chosen later). As (3.4) and (3.7), we write

∫
Rn

e2π i(x ·ξ−|ξ |)a2(ξ) f̂β,R(ξ) dξ

= C
∫ ∞

0

∫
Sn−1

e2π i(x ·rθ−r)(1 − ϕ(r))χ(θ)(1 + r2)−β/2rn−1ϕR(r) dσ(θ)dr

= C
∫ ∞

0
e−2π ir χ̂dσ(−r x)(1 − ϕ(r))(1 + r2)−β/2rn−1ϕR(r) dr

= C
∫ ∞

0
e2π ir(|x |−1)h(−r x)(1 − ϕ(r))(1 + r2)−β/2rn−1ϕR(r) dr

+ C
∫ ∞

0
e−2π ir e(−r x)(1 − ϕ(r))(1 + r2)−β/2rn−1ϕR(r) dr .

The second term is bounded since e ∈ S−∞. Now we use (3.6) to write

∫
Rn

e2π i(x ·ξ−|ξ |)a2(ξ) f̂β,R(ξ) dξ

= C
∫ ∞

0
e2π ir(|x |−1)

[
c0(r |x |)− n−1

2 χ(x/|x |) + ẽ(−r x)
]

(1 − ϕ(r))(1 + r2)−β/2rn−1ϕR(r) dr + O(1).

To continue, we need the following result.

Lemma 3.3 Let g be a function satisfying |g(k)(r)| ≤ Crm−k, r ≥ 1 for some m ∈ R

and for all k ∈ Z+. Then for all τ 
= 0, we have

∣∣∣∣
∫ ∞

0
e2π irτ g(r)(1 − ϕ(r))ϕR(r) dr

∣∣∣∣ ≤ C |τ |−m−1 (3.9)

for some constant C > 0 independent of R and τ .

Proof By (2.9), we write

∫ ∞

0
e2π irτ g(r)(1 − ϕ(r))ϕR(r) dr =

∑
j≥1

∫ ∞

0
e2π irτ g(r)ψ j (r)ϕR(r) dr .
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For each j and N , integration by parts shows

∣∣∣∣
∫ ∞

0
e2π irτ g(r)ψ j (r)ϕR(r) dr

∣∣∣∣
= (2π)N |τ |−N

∣∣∣∣∣
∫ ∞

0
e2π irτ

(
d

dr

)N (
g(r)ψ j (r)ϕR(r)

)
dr

∣∣∣∣∣
≤ C |τ |−N

∫
2 j−1≤r≤2 j+1

rm−Ndr

≤ C |τ |−N2 j(m−N+1), (3.10)

where we applied the condition on g and for all k ∈ Z+
∣∣∣∣ d

k

drk
(
ϕR(r)

)∣∣∣∣ ≤ Ckr
−k

for some constant Ck > 0 independent of R and r .
Set N = 0 for 2 j ≤ |τ |−1, and N > m + 1 otherwise. From this, it follows that

∣∣∣∣
∫ ∞

0
e2π irτ g(r)(1 − ϕ(r))ϕR(r) dr

∣∣∣∣
≤ C

∑
2 j≤|τ |−1

2 j(m+1) + C
∑

2 j≥|τ |−1

|τ |−N2 j(m−N+1)

≤ C |τ |−m−1.

This proves Lemma 3.3. 
�
Back to the proof of Lemma 3.2. By Lemma 3.3,

∫ ∞
0

e2π ir(|x |−1)ẽ(−r x)(1 − ϕ(r))(1 + r2)−β/2rn−1ϕR(r) dr = O
(∣∣|x | − 1

∣∣β−(n−1)/2
)

.

Finally, for | x
|x | − v1| ≤ 10−2 and 1 < |x | ≤ 1 + ε, let us estimate

∫ ∞

0
e2π ir(|x |−1)(r |x |)− n−1

2 (1 − ϕ(r))(1 + r2)−β/2rn−1ϕR(r) dr .

Note that by Lemma 3.3 again,

|x |− n−1
2

∫ ∞

0
e2π ir(|x |−1)(1 − ϕ(r))r

n−1
2 ((1 + r2)−β/2 − r−β)ϕR(r) dr

= O
(∣∣|x | − 1

∣∣β−(n−1)/2+1
)

.
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For the term |x |− n−1
2
∫∞
0 e2π ir(|x |−1)(1 − ϕ(r))r−β+ n−1

2 ϕR(r) dr , we use scaling to
obtain that if −β + n−1

2 > −1,

|x |− n−1
2

∫ ∞

0
e2π ir(|x |−1)(1 − ϕ(r))r−β+ n−1

2 ϕR(r) dr

= |x |− n−1
2

∫ ∞

0
e2π ir(|x |−1)r−β+ n−1

2 ϕR(r) dr + O(1)

= |x |− n−1
2 (|x | − 1)β− n+1

2

∫ ∞

0
e2π ir r−β+ n−1

2 ϕ

(
r

(|x | − 1)R

)
dr + O(1).

Note that 1 < |x | ≤ 1 + ε. When β > n−1
2 and −β + n−1

2 > −1,

lim
R→∞

∫ ∞

0
e2π ir r−β+ n−1

2 ϕ

(
r

(|x | − 1)R

)
dr = C0,

where C0 is a non-zero constant. Hence, there exist C > 0 and ε1 ∈ (0, 1/2) such that
if 1 < |x | ≤ 1 + ε1,

lim inf
R→∞ |x |− n−1

2

∣∣∣∣
∫ ∞

0
e2π ir(|x |−1)(1 − ϕ(r))r−β+ n−1

2 ϕR(r) dr

∣∣∣∣ ≥ C
∣∣|x | − 1

∣∣β− n+1
2 .

Furthermore, we can find 0 < ε ≤ ε1 such that for 1 < |x | ≤ 1 + ε,

lim inf
R→∞

∣∣∣∣
∫
Rn

e2π i(x ·ξ−|ξ |)a2(ξ) f̂β,R(ξ) dξ

∣∣∣∣
≥ C

∣∣|x | − 1
∣∣β− n+1

2 − O
(∣∣|x | − 1

∣∣β−(n−1)/2+1
)

≥ C

2

∣∣|x | − 1
∣∣β− n+1

2 .

This, together with (3.8), tells us

lim inf
R→∞ ‖A1 fβ,R‖L p(�ε) ≥ ‖ lim inf

R→∞ |A1 fβ,R | ‖L p(�ε) = ∞, (3.11)

if β > n−1
2 ,−β + n−1

2 > −1, and
(
β − n+1

2

)
p ≤ −1. Here we applied Fatou’s lemma

and �ε := {x ∈ R
n : | x

|x | − v1| ≤ 10−2,1 < |x | ≤ 1 + ε}.

123



Lp bounds for Stein’s spherical maximal operators

Therefore, we have supR>0 ‖ fβ,R‖Ws,p(Rn) < ∞ and lim inf
R→∞ ‖A1 fβ,R‖L p(Rn) =

∞ provided that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 < β − s < n,

(−n + β − s)p > −n,

β > n−1
2 ,

−β + n−1
2 > −1,(

β − n+1
2

)
p ≤ −1,

(3.12)

which is solvable when

− (n + 1)/2 < s < (n − 1)(1/p − 1/2). (3.13)

Hence, if (3.2) holds, then we must have s ≥ (n − 1)(1/p− 1/2) or s ≤ −(n + 1)/2.
However, once (3.2) holds for some s0 ≤ −(n + 1)/2, it holds for all s ≥ s0, which
is in contradiction with (3.13). So the only possible range of s where (3.2) holds is
s ≥ (n − 1)(1/p − 1/2). By duality,

‖(A1)
∗ f ‖L p′ (Rn)

≤ C‖ f ‖Ws,p′ (Rn)
.

Because (A1)
∗ is essentially the same asA1, wemust have s ≥ (n−1)(1/p′−1/2) =

(n − 1)(1/2 − 1/p) by the previous counterexample. This proves Lemma 3.2, and
then the proof of Proposition 3.1 is complete. 
�

Next, let us prove the following result.

Proposition 3.4 Let n ≥ 2 and p ≥ 2. Suppose

∥∥∥∥∥ sup
1≤t≤2

|Mα
t f |

∥∥∥∥∥
L p(Rn)

≤ C‖ f ‖L p(Rn) (3.14)

holds for some α ∈ C. Then, we have

Re α ≥ 1

p
− n − 1

2
.

Let us prove Proposition 3.4. Fix N > −(n − 2)/p − Re α as in Lemma 2.1. By
(2.7) and Lemma 2.1, the proof of Proposition 3.4 reduces to show the following
lemma.

Lemma 3.5 Let n ≥ 2 and p > 1. Suppose

∥∥∥∥∥ sup
1≤t≤2

|At f |
∥∥∥∥∥
L p(Rn)

≤ C‖ f ‖Ws,p(Rn) (3.15)

holds for some s ∈ R. Then, we have s ≥ 1/p.
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Proof Let δ > 0 be a small number to be chosen later, and denote ξ = (ξ1, ξ
′) ∈ R

n .
For a given large j ∈ N, we let f̂ ≥ 0 be a smooth cut-off of the set

{
(ξ1, ξ

′) ∈ R
n : |ξ1 − 2 j | ≤ δ2 j−1, |ξ ′| ≤ δ2 j/2

}
(3.16)

such that
∣∣∂β

ξ f̂ (ξ)
∣∣ ≤ Cδ,β2− j |β ′|/22− j |β1| for any β = (β1, β

′) ∈ Z
n+. By a simple

calculation, we see that

|ξ | − ξ1 ≤ Cδ2 (3.17)

in the support of f̂ . Let j be large enough such that (1− ϕ(t |ξ |)) f̂ (ξ) = f̂ (ξ) for all
t ∈ [1, 2], ξ ∈ R

n and

inf
ξ∈supp f̂

|a2(ξ)| ≥ clow > 0. (3.18)

Note by [20, Chapter IX, Section 4] we have

sup
1≤t≤2

∣∣∂β
ξ

(
e2π i t(|ξ |−ξ1)a1(t |ξ |) f̂ (ξ)

)∣∣ ≤ Cδ,β2
− j |β ′|/22− j |β1|.

Then for 1 ≤ t ≤ 2 and x1 > 0, we use integration by parts to bound that

∣∣∣∣
∫
Rn

e2π i(x ·ξ+t |ξ |)a1(t |ξ |) f̂ (ξ) dξ

∣∣∣∣
=
∣∣∣∣
∫
Rn

e2π i(x+tv1)·ξ
(
e2π i t(|ξ |−ξ1)a1(t |ξ |) f̂ (ξ)

)
dξ

∣∣∣∣
≤ Cδ2

− j N2 j n+1
2 (x1 + t)−N ≤ Cδ2

− j N2 j n+1
2 , (3.19)

where v1 = (1, 0, . . . , 0), N ≥ 1 and the constant Cδ is independent of j and t .
As for

∫
Rn e2π i(x ·ξ−t |ξ |)a2(t |ξ |) f̂ (ξ) dξ with 1 ≤ t ≤ 2, we split it into three terms

∫
Rn

e2π i(x ·ξ−t |ξ |)a2(t |ξ |) f̂ (ξ) dξ

=
∫
Rn

e2π i(x−tv1)·ξ (e2π i t(−|ξ |+ξ1) − 1
)
a2(t |ξ |) f̂ (ξ) dξ

+
∫
Rn

(e2π i(x−tv1)·ξ − 1)a2(t |ξ |) f̂ (ξ) dξ

+
∫
Rn

a2(t |ξ |) f̂ (ξ) dξ. (3.20)

By (3.17), the first term of (3.20) is bounded by

C
∫
Rn

∣∣t(−|ξ | + ξ1)
∣∣ f̂ (ξ) dξ ≤ Cδ2

∫
Rn

f̂ (ξ) dξ ≤ Cδn+22 j(n+1)/2.
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If |x1 − t | ≤ δ2− j and |x ′| ≤ 2− j/2, by the support condition (3.16) of f̂ , we have

∣∣(x − tv1) · ξ
∣∣ ≤ Cδ, for all ξ ∈ supp f̂ ,

which implies the second term of (3.20) is bounded by

C
∫
Rn

∣∣(x − tv1) · ξ
∣∣ f̂ (ξ) dξ ≤ Cδ

∫
Rn

f̂ (ξ) dξ ≤ Cδn+12 j(n+1)/2.

By (3.18), we have

∣∣∣∣
∫
Rn

a2(t |ξ |) f̂ (ξ) dξ

∣∣∣∣ ≥ clow
2

∫
Rn

f̂ (ξ) dξ ≥ CLδn2 j n+1
2 .

Then by (3.20) and the above estimates, if δ ≤ min{ CL
2CU

, 1}, we have
∣∣∣∣
∫
Rn

e2π i(x ·ξ−t |ξ |)a2(t |ξ |) f̂ (ξ) dξ

∣∣∣∣
≥
∣∣∣∣
∫
Rn

a2(t |ξ |) f̂ (ξ) dξ

∣∣∣∣− CU δn+12 j n+1
2 ≥ CL

2
δn2 j n+1

2 (3.21)

if |x1 − t | ≤ δ2− j and |x ′| ≤ 2− j/2. It then follows from (3.19) and (3.21) that

sup
1≤t≤2

|At f | ≥ CL

2
δn2 j n+1

2 − Cδ2
− j N2 j n+1

2 ≥ CL

4
δn2 j n+1

2 , (3.22)

when 1 ≤ x1 ≤ 2, |x ′| ≤ 2− j/2 and j ≥ 1
N log2(

4Cδ

δnCL
+ 1).

Assume (3.15) is true. Then from the definition of f and (3.22), we have

CL

4
δn2(n+1) j/2−(n−1) j/(2p) ≤

∥∥∥∥∥ sup
1≤t≤2

|At f |
∥∥∥∥∥
L p(Rn)

≤ C‖ f ‖Ws,p(Rn) ≤ Cδ2
s j2(n+1) j/2−(n+1) j/(2p). (3.23)

Let j → ∞, then we obtain s ≥ 1/p. This proves Lemma 3.5, and then the proof of
Proposition 3.4 is complete. 
�

We finally present the endgame in the

Proof of (i) of Theorem 1.1 This is a consequence of Proposition 3.1 and Proposi-
tion 3.4. 
�
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4 Proof of (ii) of Theorem 1.1

In this section, we give a criterion that allows us to derive L p-boundedness for the
maximal operator Mα on R

n, n ≥ 2. As a consequence, (ii) of Theorem 1.1 follows
readily by applying the result ofGuth,Wang andZhang [7] on local smoothing estimate
on R

2. More precisely, we have the following result.

Proposition 4.1 Let n ≥ 2 and p > 2. If the local smoothing estimate

∥∥∥eit√−� f
∥∥∥
L p(Rn×[1,2]) ≤ Cn,p‖ f ‖Ws,p(Rn) (4.1)

holds for some s ∈ R, then we have

∥∥∥∥sup
t>0

|Mα
t f |

∥∥∥∥
L p(Rn)

≤ Cn,p,α‖ f ‖L p(Rn) (4.2)

whenever Re α > max
{− (n − 1)/p, s − (n − 1)/2 + 1/p

}
.

The proof of Proposition 4.1 is inspired by [10]. Let ϕ and {ψ j } j be functions in
(2.9). We write

M̂α
t f (ξ) = ϕ(t |ξ |)m̂α(tξ) f̂ (ξ) +

∑
j≥1

ψ j (t |ξ |)m̂α(tξ) f̂ (ξ)

=: M̂α
0,t f (ξ) +

∑
j≥1

M̂α
j,t f (ξ). (4.3)

To prove Proposition 4.1, the first strategy is to show that if one modifies the definition
so that for each operator Mα

j,t , the supremum is taken over 1 ≤ t ≤ 2, then the
resulting maximal function is bounded on L p(Rn).

Lemma 4.2 Let n ≥ 2 and p > 2. Under the assumption (4.1) of Proposition 4.1,
there exist δ > 0 and C > 0, such that for all j ≥ 1,

∥∥∥∥∥ sup
t∈[1,2]

|Mα
j,t f |

∥∥∥∥∥
L p(Rn)

≤ C2−δ j‖ f ‖L p(Rn), (4.4)

if Re α > max
{− (n − 1)/p, s − (n − 1)/2 + 1/p

}
.

Proof By (2.5), (2.7) and (2.10), it suffices to show

∥∥∥∥∥ sup
t∈[1,2]

|A j,t f |
∥∥∥∥∥
L p(Rn)

≤ C2[max{(n−1)(1/2−1/p), s+1/p}] j‖ f ‖L p(Rn), (4.5)
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where Â j,t f (ξ) = ψ j (t |ξ |)Ât f (ξ) and At f is defined in (2.13). By (2.6), we can
write

A j,t f (x) = C
N−1∑
�=0

∫
Rn

(
b�e

2π i(x ·ξ+t |ξ |) + d�e
2π i(x ·ξ−t |ξ |)) |tξ |−�ψ j (t |ξ |) f̂ (ξ) dξ,

which is a linear combination of

T�, j f (x, t) :=
∫
Rn

e2π i(x ·ξ±t |ξ |)|tξ |−�ψ j (t |ξ |) f̂ (ξ) dξ, � = 0, 1, . . . , N − 1.

Hence, the proof of (4.5) reduces to showing that

∥∥∥∥∥ sup
t∈[1,2]

|T0, j f (·, t)|
∥∥∥∥∥
L p(Rn)

≤ C2[max{(n−1)(1/2−1/p), s+1/p}] j‖ f ‖L p(Rn), j ≥ 1.

(4.6)

Now we apply Lemma 2.2 to deal with (4.6). First, it follows from [20, Theorem
2, Chapter IX] that

‖T0, j f (·, 1)‖L p(Rn) ≤ C2(n−1)(1/2−1/p) j‖ f ‖L p(Rn). (4.7)

Next, we observe that for any 1 ≤ t ≤ 2 and j ≥ 1, there holds

∣∣∂β
ξ

(
ψ j (t |ξ |))∣∣ ≤ C(1 + |ξ |)−|β|,

where β is any multi-index. So ψ j (t | · |) ∈ S0 uniformly 1 ≤ t ≤ 2 and j ≥ 1, hence

∫
Rn

∣∣∣∣
∫
Rn

e2π i(x ·ξ±t |ξ |)ψ j (t |ξ |) f̂ (ξ) dξ

∣∣∣∣
p

dx

≤ C
∫
Rn

∣∣∣∣
∫
Rn

e2π i(x ·ξ±t |ξ |)ψ̃ j (ξ) f̂ (ξ) dξ

∣∣∣∣
p

dx, (4.8)

where constant C is independent of t and j . Here ψ̃ j equals to 1 if |ξ | ∈
[2 j−2M, 2 j+1M] and vanishes if |ξ | /∈ [2 j−3M, 2 j+2M], so that ψ̃ j equals to 1
on the support of ψ j (t | · |) when 1 ≤ t ≤ 2. Then we apply our assumption (4.1) on
local smoothing estimate to (4.8) to obtain

‖T0, j f ‖L p(Rn×[1,2]) ≤ C2s j‖ f ‖L p(Rn),

and by the same token, the operator

∂t T0, j (x, t) =
∫
Rn

e2π i(x ·ξ±t |ξ |)(± 2π i |ξ |ψ j (t |ξ |) + |ξ |ψ ′
j (t |ξ |)) f̂ (ξ) dξ.
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satisfies

‖∂t T0, j f ‖L p(Rn×[1,2]) ≤ C2(s+1) j‖ f ‖L p(Rn).

Thus, we use Lemma 2.2 to get

∥∥∥∥∥ sup
t∈[1,2]

|T0, j f (·, t)|
∥∥∥∥∥
L p(Rn)

≤ C
(
2(n−1)(1/2−1/p) j + 2(s+1/p) j )‖ f ‖L p(Rn),

which implies estimate (4.6). 
�
Finally, we can apply Lemma 4.2 to prove Proposition 4.1.

Proof of Proposition 4.1 By (4.3) and (2.7), (4.2) reduces to

∥∥∥∥sup
t>0

|Mα
j,t f |

∥∥∥∥
L p(Rn)

≤ C2−δ j‖ f ‖L p(Rn) (4.9)

for some δ > 0. Since �p ⊆ �∞, we have

∥∥∥∥sup
t>0

|Mα
j,t f |

∥∥∥∥
L p(Rn)

≤
⎛
⎝∑

k∈Z

∥∥∥∥∥ sup
t∈[2k ,2k+1]

|Mα
j,t f |

∥∥∥∥∥
p

L p(Rn)

⎞
⎠

1/p

. (4.10)

However, it follows from Lemma 4.2 and a rescaling t → 2−k t that

∥∥∥∥∥ sup
t∈[2k ,2k+1]

|Mα
j,t f |

∥∥∥∥∥
L p(Rn)

≤ C2−δ j‖ f ‖L p(Rn). (4.11)

Then for 2k ≤ t ≤ 2k+1, there must be |ξ | ∈ [2 j−k−2M, 2 j−k+1M]. This tells us that
we can rewrite (4.11) as

∥∥∥∥∥ sup
t∈[2k ,2k+1]

|Mα
j,t f |

∥∥∥∥∥
L p(Rn)

≤ C2−δ j‖Pj−k f ‖L p(Rn).

This, together with (4.10), implies

∥∥∥∥sup
t>0

|Mα
j,t f |

∥∥∥∥
L p(Rn)

≤ C2−δ j

(∑
k∈Z

‖Pj−k f ‖p
L p(Rn)

)1/p

= C2−δ j

∥∥∥∥∥∥
(∑
k∈Z

|Pj−k f |p
)1/p

∥∥∥∥∥∥
L p(Rn)
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≤ C2−δ j

∥∥∥∥∥∥
(∑
k∈Z

|Pj−k f |2
)1/2

∥∥∥∥∥∥
L p(Rn)

since p > 2. By the Littlewood–Paley inequality [5],

∥∥∥∥∥∥
(∑
k∈Z

|Pj−k f |2
)1/2

∥∥∥∥∥∥
L p(Rn)

≤ C‖ f ‖L p(Rn).

This proves (4.9). Hence, the proof of Proposition 4.1 is complete. 
�

Remark 4.3 (i) In the dimension n ≥ 3 Gao et al. [3] obtained improved local smooth-
ing estimates for thewave equation, that is, (4.1) holdswith s = (n−1)(1/2−1/p)−σ

for all σ < 2/p − 1/2 when

p >

{ 2(3n+5)
3n+1 , for n odd;

2(3n+6)
3n+2 , for n even.

Applying Proposition 4.1, we get that (1.3) holds if Re α > α(p, n) where

α(p, n) =

⎧⎪⎨
⎪⎩
max

{
− n−1

p ,− 3
8 (n − 1) + 5−n

4p ,
4(n−1)

(3n+5)(n+3) − n2−5
(n+3)p

}
, for n odd;

max
{
− n−1

p ,− 3n−2
8 − n−6

4p ,− n−1
n+4 − n2+n−6

(n+4)p

}
, for n even.

(4.12)

The above range α in (4.12) for p > 2 is strictly wider than (1.7). However, the range
p in (4.12) is not optimal. What happens when n ≥ 3 (and p > 2) remains open.

(ii) Under the assumption (4.1) of Proposition 4.1, it follows by (4.4) that for n ≥ 2
and p > 2,

∥∥∥∥∥ sup
t∈[1,2]

|Mα
t f |

∥∥∥∥∥
L p(Rn)

≤ C‖ f ‖L p(Rn)

provided that Re α > max
{ − (n − 1)/p, s − (n − 1)/2 + 1/p

}
. It is interesting to

describe the full range of (p, q) such that

∥∥∥∥∥ sup
t∈[1,2]

|Mα
t f |

∥∥∥∥∥
Lq (Rn)

≤ C‖ f ‖L p(Rn).

For α = 0, we refer it to [9, 13–15] and the references therein.
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