1 Introduction

Let \(\Omega \subset {\mathbb {R}}^N, ~ ( N \ge 1)\) be a bounded open set with boundary \(\Omega ^c\). The main aim of the paper is to study the properties of the solutions of a class of time-fractional diffusion equations involving the so-called Riemann–Liouville (R–L) time-fractional derivative. More precisely, we consider the following initial value problem:

figure a

where \(T>0\), \(\alpha \in (0,1)\) is real number and \(\dfrac{\partial ^{1-\alpha } }{\partial t} u \) denotes the R–L time-fractional derivative of order \(1-\alpha \) of the function u formally given by

$$\begin{aligned} \frac{\partial ^{1-\alpha }}{\partial t} f (t):= \frac{\mathrm {d}}{\mathrm {d}}t \left( {\mathcal {J}}^\alpha f\right) (t), \quad t >0, \end{aligned}$$
(1.1)

where the Riemann–Liouville fractional integral operator \(\mathcal J^\alpha : L^2(0,T) \rightarrow L^2(0,T)\) is defined by the formula (see, e.g., [1])

$$\begin{aligned} ({\mathcal {J}}^\alpha f) (t) := {\left\{ \begin{array}{ll} \dfrac{1}{\Gamma (\alpha )} \displaystyle \int \limits _0^t \tau ^{\alpha -1} f(t-\tau ) \mathrm {d}\tau , &{}\quad 0< \alpha <1, \\ f(t), &{}\quad \alpha =0, \end{array}\right. } \end{aligned}$$
(1.2)

and \(\Gamma (\cdot )\) is the Gamma function. The operator \({\mathcal {A}}\) is a linear, positive definite, self-adjoint operator with compact inverse in \(L^2(\Omega )\), \(u = u(x, t)\) is the state of the unknown function and \(u_0(x)\) is a given function. The function F is a nonlinear source term which appears in some physical phenomena [2,3,4].

When \(\alpha = 1\) and \({\mathcal {A}} = -\Delta \) problem \({{\mathbb {P}}}\) describes the nonlinear heat Eq. [2, 5,6,7]

$$\begin{aligned} \dfrac{\partial }{\partial t} u(x,t) -\Delta u(x,t)= F(u). \end{aligned}$$
(1.3)

If \(\alpha \in (0,1)\), Problem \({{\mathbb {P}}}\) is called an initial value problem for the semilinear time-fractional diffusion equation; we refer the reader to [3, 8,9,10] and the references therein. Many important physical models and practical problems require one to consider the diffusion model with a fractional derivative rather than a classical one, like physical models considering memory effects [2,3,4, 11,12,13] and some corresponding engineering problems [2, 3, 14, 15] with power-law memory (non-local effects) in time [4, 8, 16,17,18,19,20]. For nonlinearities of power-type \(F(u)=|u|^{p-1}u\) for \(p \ge 1\), Bruno de Andrade et al. [3] considered the fractional reaction–diffusion equation to discuss the global well-posedness and asymptotic behavior of solutions; see also [7, 21] and the references therein. Studies of logarithmic nonlinearity have a long history in physics as they occur naturally in inflation cosmology, quantum mechanics, and nuclear physics [22] and PDEs with logarithmic nonlinearity have attracted many authors; see [23,24,25,26] and the references therein.

Results on initial value problems for R–L time-fractional diffusion equation with logarithmic nonlinearity are quite limited. The solution operator of our problem \(E_{\alpha ,1}\left( - {\mathcal {A}} t^{\alpha } \right) \) brings some difficulties in estimating and analyzing the solution (existence and regularity estimate of the solutions). We consider the model with the source terms \(F_p(u) = \eta V_p(u) \log |u|\) and \(V_p(u) = |u|^{p-2} u, ~ p\ge 2, \eta >0\) (locally Lipschitz type). To present the properties of the solutions in \(W^{s,q}(\Omega )\), we need to consider the Lipschitz properties of the source function (both global Lipschitz property and local Lipschitz property). Based on the conditions of the constants sq depending on the dimensions \(N \ge 1\) and the constant \(s>0\), we set up the Sobolev embeddings \({\mathbb {X}}^{s}(\Omega ) \hookrightarrow W^{s,q}(\Omega ) \hookrightarrow L^p(\Omega )\) (see the definition of the spaces \(W^{s,q}(\Omega )\) and \({\mathbb {X}}^{s}(\Omega )\) in (2.3) and (2.7) below).

In Sect. 2, we present some basic definitions and the setting for our work. Moreover, we obtain a precise representation of solutions using Mittag–Leffler operators. In Sect. 3, we first present local well-posedness results when the source term satisfies a global Lipschitz condition. Also local existence, continuation of solutions and finite time blowup results are presented when the source terms are logarithmic functions.

2 Notations and preliminaries

2.1 Relevant notations and the functional spaces

Given two positive quantities yz, we write \(y \lesssim z\) if there exists a constant \(C > 0\) such that \(y \le Cz\). Let us recall that the spectral problem

$$\begin{aligned} {\left\{ \begin{array}{ll} {\mathcal {A}} \phi _j(x) =\lambda _j \phi _j(x), &{}\quad x \in \Omega , \quad \sigma \in (0,1],\\ \phi _j(x)=0, &{}\quad x \in \partial \Omega , \end{array}\right. } \end{aligned}$$
(2.1)

admits a family of eigenvalues

$$\begin{aligned} 0 < \lambda _1 \le \lambda _2 \le \lambda _3 \le \cdots \le \lambda _j \le \cdots \nearrow \infty . \end{aligned}$$

Given a Banach space B, let C([0, T]; B) be the set of all continuous functions which map [0, T] into B. The norm of the function space \(C^k ([0, T ]; B),\) for \(0 \le k \le \infty \) is denoted by

$$\begin{aligned} \Vert v\Vert _{C^k ([0, T ]; B)} = \sum _{i=0}^k \sup _{t\in [0, T ]} \big \Vert v^{(i)} (t) \big \Vert _{B} < \infty . \end{aligned}$$
(2.2)

For any real numbers \(s>0\) and \(1 \le p < \infty \), we recall the fractional Sobolev-type spaces \(W^{s,p}(\Omega )\) via the Gagliardo approach (also called Aronszajn or Slobodeckij spaces). Fix a number \(s \in (0,1)\) and for any \(p \in [1,\infty )\), define \(W^{s,p}(\Omega )\) as follows

$$\begin{aligned} W^{s,p}(\Omega ) = \left\{ v \in L^p(\Omega ) \quad \hbox {s.t.} \quad \frac{\left| v(x) - v(y)\right| }{\left| x-y\right| ^{\frac{N+ps}{p}}} \in L^p(\Omega \times \Omega )\right\} . \end{aligned}$$
(2.3)

For \(0<s<1\), it can be said that \(W^{s,p}(\Omega )\) is an intermediate Banach space between \(L^p(\Omega )\) and \(W^{1,p}(\Omega )\), endowed the corresponding norm

$$\begin{aligned} \big \Vert v\big \Vert _{W^{s,p}(\Omega )} = \left( \int \limits _{\Omega } |v|^p\mathrm {d}x + \int \limits _{\Omega }\int \limits _{\Omega } \frac{\left| v(x) - v(y)\right| ^p}{\left| x-y\right| ^{N+sp}} \mathrm {d}x \mathrm {d}y \right) ^{\frac{1}{p}}, \end{aligned}$$
(2.4)

where the seminorm

$$\begin{aligned} \big |v\big |_{W^{s,p}(\Omega )} = \left( \int \limits _{\Omega }\int \limits _{\Omega } \frac{\left| v(x) - v(y)\right| ^p}{\left| x-y\right| ^{N+sp}} \mathrm {d}x \mathrm {d}y \right) ^{\frac{1}{p}}, \end{aligned}$$
(2.5)

denotes the Gagliardo (semi)norm of v. For \(p=2\) in (2.3), together with the norm \(\left\| \cdot \right\| _{W^{s,2}(\Omega )}\) the space becomes a Hilbert space. Let us also set \( W_0^{s,2} (\Omega ) = \overline{C_c^\infty (\Omega )}^{W^{s,2} (\Omega )}.\) It is well known that if \(\Omega \) is bounded, then we have the following continuous embeddings:

$$\begin{aligned} W_0^{s,2} (\Omega ) \hookrightarrow {\left\{ \begin{array}{ll} L^{\frac{2N}{N-2s}}(\Omega ), &{}\quad \hbox {if} \quad s< \frac{N}{2}, \\ L^{p}(\Omega ), &{}\quad \hbox {if} \quad s = \frac{N}{2}, \\ C^{0,s-\frac{N}{2}}(\Omega ), &{}\quad \hbox {if} \quad s > \frac{N}{2}; \end{array}\right. } \end{aligned}$$
(2.6)

for more details on fractional Sobolev spaces see [17, 27] and the references therein.

For each number \(s\ge 0\), we define

$$\begin{aligned} {\mathbb {X}}^{s}( \Omega ):= \left\{ v = \sum _{j=1}^\infty v_j \phi _j \in L^2(\Omega ): \left\| v\right\| _{{\mathbb {X}}^s(\Omega )}^2 = \sum _{j=1}^\infty v_j^2 \lambda _j^{s} <\infty \right\} , \quad v_j = \int \limits _\Omega v(x) \phi _j(x)\mathrm{d}x. \end{aligned}$$
(2.7)

Let us denote by \(H^s(\Omega )\) the Sobolev–Slobodecki space \(W^{s,p}(\Omega )\) when \(p=2\), and by \(H^s_0(\Omega )\) the closure of \(C_c^\infty (\Omega )\) in \(H^s(\Omega )\). Throughout this paper, \(\Omega \) is assumed to be smooth enough such that \(C_c^\infty ( \Omega )\) is dense in \(H^s( \Omega )\) for \(0<s< \frac{1}{2}\). This guarantees \(H_0^s(\Omega )=H^{s}(\Omega )\). Moreover, it is well-known that

$$\begin{aligned} {\mathbb {X}}^{s}( \Omega ) = \left\{ \begin{array}{lllccc} H_0^{s}( \Omega ), &{}&{} \text {for } 0 \le s<\frac{1}{2},\\ H_{00}^{1/2} ( \Omega ) \subsetneqq H_0^{1/2}( \Omega ), &{}&{} \text {for } s= \frac{1}{2}, \\ H_0^{s}( \Omega ), &{}&{} \text {for } \frac{1}{2}< s \le 1,\\ H_{0}^{1} ( \Omega )\cap H^s( \Omega ), &{}&{} \text {for } 1 < s \le 2, \end{array} \right. \end{aligned}$$

where we denote by \(H_{00}^{1/2} ( \Omega )\) the Lions–Magenes space. Let \({\mathbb {X}} ^{-s}( \Omega )\) be the duality of \( {\mathbb {X}} ^{s} \) which corresponds to the dual inner product \(\left( \cdot ,\cdot \right) _{-s,s}\). Then, the operator \({\mathcal {A}}^s: {\mathbb {X}}^{s}( \Omega ) \rightarrow {\mathbb {X}} ^{-s} (\Omega ) \) of the fractional power s can be defined by

$$\begin{aligned} {\mathcal {A}}^s v := \sum _{j=1}^\infty \lambda _j^s \left( v, \phi _j \right) _{-s,s} \phi _j, \quad \forall v \in {\mathbb {X}} ^{s}. \end{aligned}$$

The above settings can be found in [28] (Sect. 3) and [29] (Sect. 2). In the next lemmas, we present some useful embeddings between the spaces mentioned above.

Lemma 2.1

Given \(1 \le p , p' < \infty \), \(0 \le s \le s' <\infty \) and \(s' - \frac{N}{p'} \ge s - \frac{N}{p}\). Then

$$\begin{aligned} W^{s',p'}(\Omega ) \hookrightarrow W^{s,p}(\Omega ). \end{aligned}$$
(2.8)

Lemma 2.2

Let \(0\le s \le s' \le 2\) and let \(H^{-s}( \Omega )\) be the dual space of \(H_0^s( \Omega )\). Then the following embeddings hold

$$\begin{aligned} {\mathbb {X}} ^s( \Omega ) \hookrightarrow L^2( \Omega ) \hookrightarrow {\mathbb {X}} ^{-s}( \Omega ), \end{aligned}$$
(2.9)

and

$$\begin{aligned} {\mathbb {X}} ^{s'} ( \Omega ) \hookrightarrow {\mathbb {X}} ^s ( \Omega ) \hookrightarrow H^s( \Omega ) \hookrightarrow L^2(\Omega ) \hookrightarrow H^{-s}( \Omega ) \hookrightarrow {\mathbb {X}} ^{-s} ( \Omega ) \hookrightarrow {\mathbb {X}} ^{-s'}( \Omega ). \end{aligned}$$
(2.10)

2.2 Properties of Mittag–Leffler functions and some related results

The Mittag–Leffler function is defined by (see [30])

$$\begin{aligned} E_{\alpha ,\alpha '} (z)= \sum _{j=0}^\infty \frac{z^j}{\varGamma (\alpha j + \alpha ')},\quad z \in {\mathbb {C}}, \end{aligned}$$
(2.11)

where \(\alpha >0\) and \(\alpha ' \in {\mathbb {R}}\) are arbitrary constants, \(\varGamma \) is the usual gamma function.

Next, we give some properties of the Mittag–Leffler function. Let \(\alpha '\in {\mathbb {R}},\) and \(\alpha \in (0,2)\), we have:

$$\begin{aligned} \left| E_{\alpha ,\alpha '} (-z)\right| \le \frac{C}{1+|z|}, \quad \tau \le \arg (z) \le \pi , \end{aligned}$$

where \(C>0\) depends on \(\alpha , \alpha ',\tau \) and \(\frac{\pi \alpha '}{2}< \tau < \min \{\pi ,\pi \alpha '\}\) (see e.g. [30]).

Lemma 2.3

(See [30, 31]) For \(0< \alpha _1<\alpha _2 <1\) and \(\alpha \in [\alpha _1,\alpha _2],\) there exist positive constants \({\underline{C}}, {\overline{C}},\) such that

$$\begin{aligned}&\mathrm{(a)}\quad E_{\alpha ,1} (-z)>0, \quad \hbox {for any} \quad z>0; \end{aligned}$$
(2.12a)
$$\begin{aligned}&\mathrm{(b)}\quad \dfrac{{\underline{C}}}{1+z} \le E_{\alpha ,\alpha '}(-z) \le \dfrac{{\overline{C}}}{1+z}, \quad \hbox {for} \quad \alpha ' \in \mathbb R,~~ z>0. \end{aligned}$$
(2.12b)

Lemma 2.4

(See [31]) Let \(\alpha , \lambda , \gamma \) are positive constants, and for every \(t>0, n \in {\mathbb {N}}\), we have

$$\begin{aligned}&\mathrm{(a)} \quad \frac{\mathrm {d}^{n}}{\mathrm {d} t^n} \left[ E_{\alpha ,1}(-\lambda t^\alpha )\right] =-\lambda t^{\alpha - n} E_{\alpha ,\alpha - n +1} (-\lambda t^\alpha ); \end{aligned}$$
(2.13a)
$$\begin{aligned}&\mathrm{(b)} \quad \left| \lambda ^{\gamma } t^{\alpha -1} E_{\alpha ,\alpha '} (-\lambda t^\alpha ) \right| \le C t^{\alpha -1- \alpha \gamma }. \end{aligned}$$
(2.13b)

Lemma 2.5

(See [32]) The following equality holds

$$\begin{aligned} E_{\alpha ,1}(-z) = \int \limits _0^\infty {\mathcal {M}}_\alpha (s) e^{-zs} \mathrm {d}s, \quad \hbox {for}\quad z \in {\mathbb {C}}, \end{aligned}$$
(2.14)

where we recall the definition of the Wright-type function

$$\begin{aligned} {\mathcal {M}}_\alpha (s) := \sum _{j=0}^\infty \frac{s^j}{j!\varGamma (-\alpha j + 1-\alpha )}, \quad 0< \alpha <1. \end{aligned}$$
(2.15)

Moreover, \({\mathcal {M}}_\alpha (s)\) is a probability density function, that is,

$$\begin{aligned} {\mathcal {M}}_\alpha (s) \ge 0, \quad \hbox {for}~ s>0; \quad \hbox {and} \quad \int \limits _0^\infty {\mathcal {M}}_\alpha (s) \mathrm {d} s =1. \end{aligned}$$
(2.16)

Lemma 2.6

(See [3], expression (6), for \({\mathcal {A}} = -\Delta \)) The function u is a mild solution of \({{\mathbb {P}}}\) if \(u \in C([0, T];L^2(\Omega ))\) and satisfies the following integral equation

$$\begin{aligned} u(t)=E_{\alpha ,1}(-t^\alpha {\mathcal {A}} )u_0 + \int \limits _0^t E_{\alpha ,1}(-(t-\tau )^\alpha {\mathcal {A}} ) F(u)(\tau ) \mathrm {d}\tau \end{aligned}$$
(2.17)

for all \(t <T\), and \(\alpha \in (0,1)\).

Lemma 2.7

(a) (Weakly singular Grönwall’s inequality, see [33], Theorem 1.2, page 2) Let \(a,b, \beta , \beta '\) be non-negative constants and \(\beta , \beta ' <1\). Assume that \(\varphi \in L^1[0,T]\) satisfies

$$\begin{aligned} \varphi (t) \le a t^{-\beta } + b \int \limits _0^t (t-s)^{-\beta '} \varphi (s) \mathrm {d} s, \quad \hbox {for a.e.}\quad t \in (0,T]. \end{aligned}$$
(2.18)

Then there exists a constant \(C(b, \beta ', T )\) such that

$$\begin{aligned} \varphi (t) \le C(b,\beta ', T ) \frac{at^{-\beta }}{1-\beta }, \quad \hbox {for a.e.}\quad t \in (0,T]. \end{aligned}$$
(2.19)

(b) (Fractional Grönwall’s inequality, see [34], Corollary 2) Assume \(\beta >0\), \(\varphi \) is nonnegative, locally integrable, and

$$\begin{aligned} \varphi (t) \le a + b \int \limits _0^t (t-\tau )^{\beta -1} \varphi (s) \mathrm {d}s, \end{aligned}$$

on (0, T), where a, b are positive constants. Then,

$$\begin{aligned} \varphi (t) \le a E_{\beta ,1} \big (b\Gamma (\beta )t^\beta \big ), \quad \text {on } (0,T). \end{aligned}$$

Lemma 2.8

(a) For \(z >0\), then there exists a constant \(C>0\) depending on \(\theta \) such that

$$\begin{aligned} {\left\{ \begin{array}{ll} \big |\log z \big | \le C z^{-\theta }, &{}\quad \hbox {for}\quad \theta>0,\quad 0< z <1, \\ \big |\log z \big | \le Cz^{\theta }, &{} \quad \hbox {for}\quad \theta >0,\quad z\ge 1. \end{array}\right. } \end{aligned}$$
(2.20)

(b) (Hölder’s inequality for negative exponents) (see [35]) Let \(k'<0\), and \(k \in {\mathbb {R}}\) be such that \(\frac{1}{k'} + \frac{1}{k} = 1\) and \(f(x),g(x) \ge 0, ~ \forall x \in \Omega \) are Lebesgue measurable functions. Then

$$\begin{aligned} \int \limits _{\Omega } fg \mathrm {d}x \ge \left( \int \limits _{\Omega }|f|^{k'} \mathrm {d}x \right) ^{\frac{1}{k'}} \left( \int \limits _{\Omega } |g|^{k} \mathrm {d}x\right) ^{\frac{1}{k}}. \end{aligned}$$
(2.21)

Proof

The proof of inequalities (2.20) and (2.21) are elementary, so we omit them here. \(\square \)

Lemma 2.9

(See [17, 27]) Let \(\Omega \subset {\mathbb {R}}^N\), \(k,m \in {\mathbb {N}}\) with \(k \ge m\) satisfying \((k-m)p <N\) and \(1\le p <\infty \). Then we have the following Sobolev embeddings

$$\begin{aligned} \left. \begin{array}{llll} (SE1): &{} W^{k,p}(\Omega ) \hookrightarrow W^{m,q}(\Omega ),&{}\quad \hbox {for}&{}\quad 1\le q< p^*_{k,m}, \\ (SE2): &{} {\mathbb {X}}^{s}(\Omega ) \hookrightarrow H^{s}(\Omega ),&{}\quad \hbox {for}&{}\quad s>0,\\ (SE3): &{} L^p(\Omega ) \hookrightarrow {\mathbb {X}}^{s} (\Omega ),&{}\quad \hbox {for}&{}\quad -\frac{N}{2}< s \le 0, \quad p \ge 2^*_s, \\ (SE4): &{}{\mathbb {X}}^{s}(\Omega ) \hookrightarrow L^p(\Omega ), &{}\quad \hbox {for}&{}\quad 0\le s < \frac{N}{2}, \quad p \le 2^*_s, \end{array}\right\} \end{aligned}$$
(2.22)

where \(p^*_{k,m}, 2^*_s\) are the so-called fractional Sobolev exponents, given by

$$\begin{aligned} \frac{1}{p^*_{k,m}} = \frac{1}{p} + \frac{m}{N} - \frac{k}{N}, \quad \hbox {and}\quad \frac{1}{2^*_s} = \frac{1}{2} - \frac{s}{N}. \end{aligned}$$
(2.23)

3 Main results

3.1 The case when the source terms are globally Lipchitz functions

In this section, we will study the existence and uniqueness of mild solutions to problem \({{\mathbb {P}}}\). First we assume the global Lipschitz continuity and the time Hölder continuity on the nonlinear term. More precisely, we suppose that \(F:{\mathbb {X}}^{p}(\Omega ) \rightarrow {\mathbb {X}}^{q}(\Omega )\), \(F(0)=0\), and

$$\begin{aligned} \big \Vert F( v_1)-F( v_2) \big \Vert _{{\mathbb {X}}^{q}(\Omega )} \le K \big \Vert v_1- v_2 \big \Vert _{{\mathbb {X}}^{p}(\Omega )}, \end{aligned}$$
(3.1)

where \(K:[0,T] \rightarrow {\mathbb {R}}_+\) and pq are real numbers.

Our results in this section present the local well-posedness of the problem. Here, \( {\mathbb {Z}}_{\beta ,d}((0,T];{\mathbb {X}}^q(\Omega ))\) denotes the weighted space of all functions \(v\in C ((0,T];{\mathbb {X}}^q(\Omega ))\) such that

$$\begin{aligned} \Vert v\Vert _{{\mathbb {Z}}_{\beta ,d}((0,T];{\mathbb {X}}^q(\Omega ))}: = \sup _{t\in (0,T]} t^{\beta } e^{-d t} \Vert v(t,\cdot )\Vert _{{\mathbb {X}}^q(\Omega )} <\infty \end{aligned}$$

where \(\beta>0,~d>0\). First we state the following lemma which will be useful in our main results. (This lemma can be found in [36], Lemma 8, page 9.)

Lemma 3.1

Let \(a>-1\), \(b>-1\) such that \(a+b \ge -1\), \(h>0\) and \(t\in [0,T]\). For \(\mu >0\), the following limit holds

$$\begin{aligned} \lim \limits _{\mu \rightarrow \infty } \left( \sup _{t\in [0,T]} t^{h} \int \limits _0^1 s^{a} (1-s)^{b} e^{ -\mu t (1-s)} \mathrm {d}s \right) = 0. \end{aligned}$$

Now, we are in the position to introduce the main contributions of this work. Our main results address the existence and regularity of the mild solution.

Theorem 3.1

Let \(0<\beta <1 \). Assume that \(q-p <\min \left\{ \frac{2(1-\beta )}{\alpha },\frac{2\beta }{\alpha } \right\} \). Let \(u_0 \in {\mathbb {X}}^{q-2\gamma }(\Omega )) \) for any \(0<\gamma <\min \left\{ \frac{\beta }{\alpha };1\right\} \). Then Problem \({{\mathbb {P}}}\) has a unique solution u in \({\mathbb {Z}}_{\beta ,d_0}((0,T];{\mathbb {X}}^q(\Omega ))\) with some \(d_0>0\). Moreover, there exist positive constant C independently of tx and for \(1/2<\beta <1\), \(1-\beta<\alpha <1/2\) such that

$$\begin{aligned} \big \Vert u(\cdot ,t) \big \Vert _{ {\mathbb {X}}^p(\Omega )) } \le C t^{-\beta } e^{ d t} \big \Vert u_0 \big \Vert _{ {\mathbb {X}}^{q-2\gamma }(\Omega ) }. \end{aligned}$$
(3.2)

Proof

Define the mapping \({\mathfrak {B}}: \mathbb Z_{\beta ,d}((0,T];{\mathbb {X}}^p(\Omega )) \rightarrow \mathbb Z_{\beta ,d}((0,T];{\mathbb {X}}^p(\Omega )) \), \(d>0\), by

$$\begin{aligned} {\mathfrak {B}} w (t)&:=E_{\alpha ,1}(-t^\alpha {\mathcal {A}} )u_0 + \int \limits _0^t E_{\alpha ,1}(-(t-\tau )^\alpha {\mathcal {A}} ) F(w)(\tau )\mathrm {d}\tau . \end{aligned}$$
(3.3)

In what follows, we shall prove the existence of a unique solution of Problem \({{\mathbb {P}}}\). This is based on the Banach principal argument. First, since \(0<\gamma <1\), we have

$$\begin{aligned} \Big \Vert E_{\alpha ,1}(-t^\alpha {\mathcal {A}} )u_0 \Big \Vert _{{\mathbb {X}}^p(\Omega ))}^2&= \sum _{j=1}^\infty \left( u_0, \phi _j\right) ^2 \left( E_{\alpha ,1}\left( - \lambda _j t^{\alpha } \right) \right) ^2 \lambda _j^{p}\nonumber \\&\le \sum _{j=1}^\infty \left( u_0, \phi _j\right) ^2 \frac{C^2}{(1+\lambda _j t^\alpha )^{2\gamma }} \lambda _j^{p} \le C^2 t^{-2\alpha \gamma } \sum _{j=1}^\infty \left( u_0, \phi _j\right) ^2 \lambda _j^{p-2\gamma }. \end{aligned}$$
(3.4)

It follows from the condition \(\beta >\alpha \gamma \) that

$$\begin{aligned} t^\beta e^{-dt}\Big \Vert E_{\alpha ,1}(-t^\alpha {\mathcal {A}} )u_0 \Big \Vert _{{\mathbb {X}}^p(\Omega ))} \le C t^{\beta -\alpha \gamma } \Vert u_0\Vert _{{\mathbb {X}}^{p-2\gamma }(\Omega ))} \le C T^{\beta -\alpha \gamma } \Vert u_0\Vert _{{\mathbb {X}}^{p-2\gamma }(\Omega ))}. \end{aligned}$$
(3.5)

From the latter inequality, we deduce that \(u_0 \in \mathbb Z_{\beta ,d}((0,T];{\mathbb {X}}^p(\Omega ))\). Indeed, for \(w_1,w_2\in {\mathbb {Z}}_{\beta ,d}((0,T];{\mathbb {X}}^p(\Omega )) \), we have

$$\begin{aligned}&\big \Vert {\mathfrak {B}} w_1 - {\mathfrak {B}} w_2 \big \Vert _{\mathbb Z_{\beta ,d}((0,T];{\mathbb {X}}^p(\Omega )) } \nonumber \\&\quad = \sup _{t\in (0,T]} t^{\beta } e^{-d t} \Big \Vert \int \limits _0^t E_{\alpha ,1}( - (t-\tau )^\alpha {\mathcal {A}}) \big [ F(w_1(\tau )) - F(w_2 (\tau )) \big ] \mathrm {d}\tau \Big \Vert _{{\mathbb {X}}^p(\Omega )} \nonumber \\&\quad \le \sup _{t\in (0,T]} t^{\beta } e^{-d t} \int \limits _0^t \Big \Vert E_{\alpha ,1}( - (t-\tau )^\alpha {\mathcal {A}}) \big [ F(w_1(\tau )) - F(w_2 (\tau )) \big ] \Big \Vert _{{\mathbb {X}}^p(\Omega )} \mathrm {d}\tau \nonumber \\&\quad \le C \sup _{t\in (0,T]} t^{\beta } e^{-d t} \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \Big \Vert F(w_1(\tau )) - F(w_2(\tau )) \Big \Vert _{{\mathbb {X}}^q(\Omega )} \mathrm {d}\tau \nonumber \\&\quad \le CK \big \Vert v_1 - v_2 \big \Vert _{\mathbb Z_{\beta ,d}((0,T];{\mathbb {X}}^p(\Omega )) } \sup _{t\in (0,T]} t^{\beta } \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \tau ^{-\beta } e^{ -d (t-\tau )} \mathrm {d}\tau . \end{aligned}$$
(3.6)

We derive the estimate

$$\begin{aligned} \big \Vert {\mathfrak {B}} w_1 - {\mathfrak {B}} w_2 \big \Vert _{\mathbb Z_{\beta ,d}((0,T];{\mathbb {X}}^p(\Omega )) }&\le {\mathscr {L}}_d \big \Vert v_1 - v_2 \big \Vert _{{\mathbb {Z}}_{\beta ,d}((0,T];{\mathbb {X}}^p(\Omega )) }, \end{aligned}$$

where

$$\begin{aligned} {\mathscr {L}}_d = t^{\beta } \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \tau ^{-\beta } e^{ -d (t-\tau )} \mathrm {d}\tau . \end{aligned}$$

From the conditions of \(\alpha ,\beta , p, q\), we find that

$$\begin{aligned} \beta -\frac{\alpha (q-p)}{2}>0,\quad -\frac{\alpha (q-p)}{2}>-1,\quad -\beta>-1, \quad -\frac{\alpha (q-p)}{2}-\beta >-1. \end{aligned}$$

Applying Lemma 3.1, we obtain that

$$\begin{aligned} \lim \limits _{d\rightarrow \infty } {\mathscr {L}}_d&:= K \lim \limits _{\mu \rightarrow \infty } \left( \sup _{t\in (0,T]} t^{\beta } \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \tau ^{-\beta } e^{ -(t-\tau )d } \mathrm {d}\tau \right) \nonumber \\&= K \lim \limits _{d\rightarrow \infty } \left( \sup _{t\in (0,T]} t^{\beta -\frac{\alpha (q-p)}{2}} \int \limits _0^1 (1-\tau )^{-\frac{\alpha (q-p)}{2}} \tau ^{-\beta } e^{ - t(1-\tau )d} \mathrm {d}\tau \right) \nonumber \\&= 0. \end{aligned}$$
(3.7)

Hence, there exists a positive \(d>0\) such that \({\mathfrak {B}}\) is a contraction mapping on \(\mathbb Z_{\beta ,d_0}((0,T];{\mathbb {X}}^p(\Omega )) \). This together with (3.5) leads to \({\mathfrak {B}} w \in \mathbb Z_{\beta ,d_0}((0,T];{\mathbb {X}}^p(\Omega )) \) if \(w \in \mathbb Z_{\beta ,d_0}((0,T];{\mathbb {X}}^p(\Omega )) \). Hence, we conclude that \({\mathfrak {B}}\) has a fixed point u in \(\mathbb Z_{\beta ,d_0}((0,T];{\mathbb {X}}^p(\Omega )) \), i.e, u is a unique mild solution of Problem \({{\mathbb {P}}}\).

This and the technique in (3.6) yields

$$\begin{aligned} \big \Vert u(t,\cdot ) \big \Vert _{ {\mathbb {X}}^{p}(\Omega ) }&\le \Big \Vert E_{\alpha ,1}(-t^\alpha {\mathcal {A}} )u_0 \Big \Vert _{{\mathbb {X}}^p(\Omega ))} + \int \limits _0^t \Big \Vert E_{\alpha ,1}( - (t-\tau )^\alpha {\mathcal {A}}) F(u(\tau )) \Big \Vert _{ {\mathbb {X}}^{p}(\Omega )} \mathrm {d}\tau \nonumber \\&\le C t^{-\alpha \gamma } \Vert u_0\Vert _{{\mathbb {X}}^{p-2\gamma }(\Omega ))} + CK \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \big \Vert u(\tau )) \big \Vert _{ {\mathbb {X}}^{p}(\Omega )} \mathrm {d}\tau . \end{aligned}$$
(3.8)

Multiplying both sides to \(t^{\beta } e^{-dt}\), we find that

$$\begin{aligned} t^{\beta } e^{-dt} \big \Vert u(t,\cdot ) \big \Vert _{ {\mathbb {X}}^{p}(\Omega ) } \le C e^{-dt} t^{\beta -\alpha \gamma } \Vert u_0\Vert _{{\mathbb {X}}^{p-2\gamma }(\Omega ))}+ CKt^{\beta } e^{-dt} \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \big \Vert u(\tau )) \big \Vert _{ {\mathbb {X}}^{p}(\Omega )} \mathrm {d}s. \end{aligned}$$
(3.9)

By applying the Hölder inequality, and then using \(e^{-2d(t-\tau )}<1\), we can find some positive constant \({\mathscr {M}}\) such that

$$\begin{aligned}&t^{\beta } e^{-dt} \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \big \Vert u(\tau )) \big \Vert _{ {\mathbb {X}}^{p}(\Omega )} \mathrm {d}\tau \nonumber \\&\quad \le \left( t^{2\beta } \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \tau ^{-2\beta } e^{-2d(t-\tau )} \mathrm {d}\tau \right) ^{\frac{1}{2}} \left( \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \Big ( \tau ^{ \beta } e^{-d \tau } \big \Vert u(s,\cdot )) \big \Vert _{ {\mathbb {X}}^{p}(\Omega )} \Big )^2 \mathrm {d}\tau \right) ^{\frac{1}{2}} \nonumber \\&\quad \le \left( t^{2\beta } t^{-\frac{\alpha (q-p)}{2}} \int \limits _0^1 (1-\tau )^{-\frac{\alpha (q-p)}{2}} \tau ^{-2\beta } \mathrm {d}\tau \right) ^{\frac{1}{2}} \left( \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \Big ( \tau ^{ \beta } e^{-d \tau } \big \Vert u(\tau ,\cdot )) \big \Vert _{ {\mathbb {X}}^{p}(\Omega )} \Big )^2 \mathrm {d}\tau \right) ^{\frac{1}{2}} \nonumber \\&\quad \le {\mathscr {M}} \left( \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \Big ( \tau ^{ \beta } e^{-d \tau } \big \Vert u(\tau ,\cdot )) \big \Vert _{ {\mathbb {X}}^{\sigma }(\Omega )} \Big )^2 \mathrm {d}\tau \right) ^{\frac{1}{2}}. \end{aligned}$$
(3.10)

Taking the estimate (3.8), and (3.10) together gives that

$$\begin{aligned} {\mathscr {U}}_{\beta ,d}(t) \le 2 C^2 e^{-2dt} t^{2\beta -2\alpha \gamma } \Vert u_0\Vert ^2_{{\mathbb {X}}^{p-2\gamma }(\Omega ))} + |{\mathscr {M}} |^2 C^2K^2 \int \limits _0^t (t-\tau )^{-\frac{\alpha (q-p)}{2}} \mathscr {U}_{\beta ,d}(\tau ) \mathrm {d}\tau , \end{aligned}$$
(3.11)

where

$$\begin{aligned} {\mathscr {U}}_{\beta ,d}(t):= \Big ( t^{\beta } e^{-dt} \big \Vert u(t,\cdot ) \big \Vert _{ {\mathbb {X}}^{p}(\Omega ) } \Big )^2. \end{aligned}$$

Applying Lemma 2.7(b), we deduce that

$$\begin{aligned} {\mathscr {U}}_{\beta ,d}(t) \le 2 C^2 T^{2\beta -2\alpha \gamma } \Vert u_0\Vert ^2_{{\mathbb {X}}^{p-2\gamma }(\Omega ))} E_{1-\frac{\alpha (q-p)}{2},1} \left( |{\mathscr {M}} |^2 C^2K^2 \Gamma \left( 1-\frac{\alpha (q-p)}{2}\right) t^{1-\frac{\alpha (q-p)}{2}} \right) . \end{aligned}$$
(3.12)

The proof of Theorem 3.1 is completed. \(\square \)

3.2 The case when the source terms are locally Lipschitz functions

Next, we shall present the results when the source terms are logarithmic nonlinearities of the following type \(F_{p}(u) = \eta V_{p}(u) \log |u|\) and \(V_p(u) = |u|^{p-2}u\), for \(p \ge 2, \eta >0\).

Remark 3.1

For the source terms of polynomial type nonlinearities, i.e., \(F_p(u) = V_p(u)\) a simpler result was considered in [2, 5].

Lemma 3.2

For \(F_p(u)(x,t) = \eta V_p(u)\log |u| \in L^\infty (\Omega \times (0,T) \times {\mathbb {R}}), ~ p\ge 2, \eta >0\), there exists a positive constant C such that

$$\begin{aligned} \left| F_p(u) - F_p(w) \right|&\le C \left( \big |\log |u| \big | \left| u -w\right| + |u|^{p-2} \big |\log |u| \big | \left| u -w\right| \right) \nonumber \\&\quad + C \left( |w|^{p-2} \big |\log |u| \big | \left| u -w\right| + \left| w\right| ^{p-2} \left| u -w\right| \right) , \end{aligned}$$
(3.13)

for all \((x,t) \in \Omega \times (0,T),~ \forall u, w \in \mathbb R\).

Proof

For \((x,t) \in \Omega \times (0,T)\) and \(u,w \in {\mathbb {R}}\), we have

$$\begin{aligned} \big |F_p(u) - F_p(w) \big |&= \eta \big |V_p(u)\log |u| - V_p(w)\log |w| \big | \nonumber \\&\le \eta \left( \big |V_p(u) - V_p(w) \big | \big | \log |u| \big | + \left| V_p(u)\right| \big |\log |u| - \log |w| \big | \right) . \end{aligned}$$
(3.14)

Thanks to the results in [5], we have that

$$\begin{aligned} \big |V_p(u) - V_p(w) \big |&= \Big |u|^{p-2}u - |w|^{p-2}w\Big | \nonumber \\&\le C(1 + |u|^{p-2} + |w|^{p-2})|u-w|. \end{aligned}$$
(3.15)

Using the basic inequality \(\log (1+z) < z\) for \(z>0\), one has

$$\begin{aligned} \big |\log |u| - \log |w|\big |&= \left| \log \left| 1+\frac{|u|-|w|}{|w|}\right| \right| \nonumber \\&< \left| \log \left( 1+\frac{|u-w|}{|w|}\right) \right| < \frac{|u-w|}{|w|}. \end{aligned}$$
(3.16)

From (3.14)–(3.16), we have the proof of Lemma 3.2. \(\square \)

Theorem 3.2

(Local existence) Let \(\alpha \in \left( 0, 1\right) \), \(N\ge 1, p\ge 2,0\le s < s_2\), for \(0\le s_2 <N/2\). Let \(1 \le q \le \min \left\{ 2^\star _{s_2,s};\frac{N \theta }{N+\theta s} \right\} \) with \(2^\star _{s_2,s}\) satisfying \(\frac{1}{2^\star _{s_2,s}} = \frac{1}{2} + \frac{s}{N} - \frac{s_2}{N}\) and \(qs < N\). Let \(u_0 \in {\mathbb {X}}^{s_2}(\Omega ) \cap W^{s,q}(\Omega )\), and for the nonlinearity source of logarithmic function type

$$\begin{aligned} F_p (u) = \eta V_p(u) \log |u|,\quad \hbox {for}~~ V_p(u) = |u|^{p-2}u, \quad \hbox {with}~ p \ge 2,\eta >0, \end{aligned}$$

then there is a time constant \(T>0\) (depending only on \(u_0\)) such that Problem \({{\mathbb {P}}}\) has a unique mild solution belonging to \( C([0,T];W^{s,q}(\Omega ))\).

Remark 3.2

In Theorem 3.2, for \(N\ge 1\), and \(0\le s_2 <N/2\) let us choose \(N = 3, s_2 =1\). From the conditions

$$\begin{aligned} {\left\{ \begin{array}{ll} s < 2s_2, s \in {\mathbb {N}},\\ 1 \le q \le \frac{2N}{N+2s-2s_2}, \end{array}\right. } \hbox {this implies that}~~ {\left\{ \begin{array}{ll} s=0, \quad q \in [1,6], \quad \hbox {or}, \\ s=1, \quad q \in [1,2]. \end{array}\right. } \end{aligned}$$
(3.17)

Then, the Problem \({{\mathbb {P}}}\) has a unique mild solution \(u \in C([0,T]; L^{q}(\Omega )), ~ 1 \le q \le 6\), or \(u \in C([0,T]; W^{1,q}(\Omega ))\), for \(1 \le q \le 2\).

Proof

For \(N\ge 1, p\ge 2\), \(0< \theta \le p-1\) (\(\theta \) is defined in Lemma 2.8), we put

$$\begin{aligned}&0 \le s_2 < \min \left\{ 1; \frac{(p-1)N}{2p}\right\} , \quad s_1 = p s_2 - s^*, \end{aligned}$$
(3.18)
$$\begin{aligned}&s \in {\mathbb {N}} \quad \hbox {satisfies}\quad s < s_2, \quad 1\le q \le \min \left\{ 2^*_{s_2,s}; \frac{N \theta }{N+\theta s}\right\} , \end{aligned}$$
(3.19)
$$\begin{aligned}&\max \left\{ ps_2; Z (a,b) \right\}< s^* < \min \left\{ ps_2 + \frac{N}{2}; 1+(p-1)s_2 \right\} , \end{aligned}$$
(3.20)

where \(2^*_{s_2,s} = \frac{1}{2} + \frac{s}{N} - \frac{s_2}{N},\) and Z(ab) be defined by

$$\begin{aligned} Z(a, b) = \frac{N(2pa-qb) + 2pq (s_2 b - s a)}{2qb}, \end{aligned}$$
(3.21)

with the pairs (ab) as follows:

$$\begin{aligned}(a, b) \in \left\{ (1,1), (\theta ,1), (p-2,1), (\theta , p-1), (\theta ,p-1), (p-2, p-1)\right\} , \quad \hbox {for} ~~\theta >0.\end{aligned}$$

Let \(T>0\) and \(R>0\) to be chosen later, and we consider the following space

$$\begin{aligned} {\mathbb {W}}:=&\bigg \{u\in C([0,T]; W^{s,q}(\Omega )): u(\cdot ,0) = u_0, ~~\hbox {and}~~ \big \Vert u(\cdot ,t) - u_0\big \Vert _{W^{m,q}(\Omega )} \le R \bigg \}, \end{aligned}$$
(3.22)

for \(0<\alpha <1\), and we define the mapping \({\mathbf {M}}\) on \(\mathbb W\) by

$$\begin{aligned} {\mathbf {M}}{\mathbf {u}}(t)&= E_{\alpha ,1}(-t^\alpha {\mathcal {A}} )u_0 + \int \limits _0^t E_{\alpha ,1}(-(t-\tau )^\alpha {\mathcal {A}} ) F_p(u)(\tau ) \mathrm {d}\tau \nonumber \\&:= E_{\alpha ,1}(-t^\alpha {\mathcal {A}} )u_0 + J(F(u))(t). \end{aligned}$$
(3.23)

We show that \({\mathbf {M}}\) is invariant in \({\mathbb {W}}\) and \({\mathbf {M}}\) is a contraction.

\(\bullet \) Claim I If \(u_0 \in {\mathbb {X}}^{s_2}(\Omega ) \cap W^{s,q}(\Omega )\), then \({\mathbf {M}}\) is \({\mathbb {W}}\)-invariant. In fact, from Lemma 2.3(b), we have

$$\begin{aligned} \left\| E_{\alpha ,1}(- {\mathcal {A}} t^\alpha )u_0 - u_0 \right\| _{{\mathbb {X}}^{s_2}(\Omega )}^2&= \sum _{j=1}^\infty \left( u_0, \phi _j\right) ^2 \left( E_{\alpha ,1}\left( - \lambda _j t^{\alpha } \right) - 1 \right) ^2 \lambda _j^{s_2} \nonumber \\&\le 2({\overline{C}}^2 +1) \sum _{j=1}^\infty \left( u_0, \phi _j\right) ^2 \lambda _j^{s_2} \nonumber \\&\le C \left\| u_0\right\| _{{\mathbb {X}}^{s_2}(\Omega )}^2, \quad \forall t \in (0,T]. \end{aligned}$$
(3.24)

From (3.19), one has \(s < s_2\) and \( 1\le q \le 2^*_{s_2,s}\), and we have that \({\mathbb {X}}^{s_2}(\Omega ) \hookrightarrow H^{s_2}(\Omega ) \hookrightarrow W^{s,q}(\Omega )\) and then, we conclude from (3.24) that

$$\begin{aligned} \left\| E_{\alpha ,1}\left( - {\mathcal {A}} t^{\alpha } \right) u_{0} - u_0 \right\| _{W^{s,q}(\Omega )} \le C \left\| u_0\right\| _{\mathbb X^{s_2}(\Omega )}, \quad t \in (0,T]. \end{aligned}$$
(3.25)

From (3.20), we have \(ps_2< s^* < 1+ (p-1)s_2\), this implies that \(0< s_2 - s_1 <1\) and for \(ps_2< s^* < p s_2 + \frac{N}{2},~\) or \(~- \frac{N}{2}< p s_2 - s^* < 0\) thus \(-\frac{N}{2}< s_1 < 0.\) Taking \(\frac{1}{2^*_{s_1} } = \frac{1}{2} - \frac{s_1}{N}\) and combine with Lemma 2.9, we obtain \(L^{2^*_{s_1}}(\Omega ) \hookrightarrow {\mathbb {X}}^{s_1}(\Omega )\). Using Lemma 2.3(b), we have for \(t \in (0,T]\)

$$\begin{aligned} \big \Vert J(F(u))(t) \big \Vert _{{\mathbb {X}}^{s_2}(\Omega )}&\le \int \limits _0^t \left\| E_{\alpha ,1}(-(t-\tau )^\alpha {\mathcal {A}} ) F_p(u)(\tau ) \right\| _{{\mathbb {X}}^{s_2}(\Omega )} \mathrm {d}\tau \nonumber \\&\le \int \limits _0^t \left( \sum _{j=1}^\infty \lambda _j^{s_2 - s_1} \left( F_p(u)(\cdot ,\tau ), \phi _j\right) ^2 \lambda _j^{s_1} \left( \frac{{\overline{C}}}{1+\lambda _j(t-\tau )^\alpha }\right) ^2 \right) ^{\frac{1}{2}} \mathrm {d}\tau \nonumber \\&\le \frac{{\overline{C}}}{ \lambda _1^{\frac{2-s_2 + s_1}{2}}} \int \limits _0^t (t -\tau )^{-\alpha } \big \Vert F_{p}(u)(\cdot ,\tau )\big \Vert _{\mathbb X^{s_1}(\Omega )} \mathrm {d}\tau \nonumber \\&\le C \int \limits _0^t (t -\tau )^{-\alpha } \big \Vert F_{p}(u)(\cdot ,\tau )\big \Vert _{L^{2^*_{s_1}}(\Omega )} \mathrm {d}\tau . \end{aligned}$$
(3.26)

Let us set \(\Omega ^-:= \{x\in \Omega : |u(x)| < 1\}\) and \(\Omega ^+:= \{x\in \Omega : |u(x)| \ge 1\}\). Using Hölder’s inequality, we have

$$\begin{aligned}&\int \limits _{\Omega } \big |F_p(u)\big |^{2^*_{s_1}} \mathrm {d}x \le \eta ^{2^*_{s_1}} \int \limits _{\Omega } \left| u\right| ^{(p-1)2^*_{s_1}} \big |\log |u | \big |^{2^*_{s_1}} \mathrm {d}x \nonumber \\&\quad \le C \left( \int \limits _{\Omega } \left| \log \big |u\big | \right| ^{p 2^*_{s_1}} \mathrm {d}x \right) ^{\frac{1}{p}} \left( \int \limits _{\Omega } \big |u\big |^{p2^*_{s_1}} \mathrm {d}x \right) ^{\frac{p-1}{p}} \nonumber \\&\quad \le C \left( \int \limits _{\Omega ^-} \big |\log |u|\big |^{p 2^*_{s_1} } \mathrm {d}x + \int \limits _{\Omega ^+ } \big |\log |u|\big |^{p 2^*_{s_1}} \mathrm {d}x \right) ^{\frac{1}{p}} \left( \int \limits _{\Omega } \big |u\big |^{p 2^*_{s_1}} \mathrm {d}x\right) ^{\frac{p-1}{p}} \nonumber \\&\quad \le C \left( \left( \int \limits _{\Omega ^-} \big |\log |u|\big |^{p 2^*_{s_1} } \mathrm {d}x \right) ^{\frac{1}{p}} + \left( \int \limits _{\Omega ^+ } \big |\log |u|\big |^{p 2^*_{s_1}} \mathrm {d}x \right) ^{\frac{1}{p}} \right) \left( \int \limits _{\Omega } \big |u\big |^{p 2^*_{s_1}} \mathrm {d}x\right) ^{\frac{p-1}{p}}, \end{aligned}$$
(3.27)

where we have used the elementary inequality \((a+b)^c \le a^c+b^c\), for \(0<c<1\). From the inequality (2.20) for \(|u(x)|<1, ~ \forall x \in \Omega \), by applying Lemma 2.8b) for \(k' = -\frac{1}{p2_{s_1}^*} <0\), we have

$$\begin{aligned} \left( \int \limits _{\Omega ^-} \big |\log |u|\big |^{p 2_{s_1}^* } \mathrm {d}x \right) ^{\frac{1}{p}}&\le C \left( \int \limits _{\Omega ^-} \big |u(x)\big |^{- p\theta 2_{s_1}^*} \mathrm {d}x \right) ^{\frac{1}{p}} \nonumber \\&\le C\left( \left( \int \limits _{\Omega ^-} \big |u(x)\big |^{-p\theta 2_{s_1}^* } \mathrm {d}x \right) ^{-\frac{1}{p 2_{s_1}^*}} \right) ^{- 2_{s_1}^*} \nonumber \\&\le C \left( \left( \int \limits _{\Omega ^-} |u(x)|^{\theta } \mathrm {d}x\right) \left( \int \limits _{\Omega ^-} 1 \mathrm {d}x \right) ^{-\frac{1 +p 2_{s_1}^*}{p 2_{s_1}^*}} \right) ^{- 2_{s_1}^*} \nonumber \\&\le C \big \Vert u\big \Vert _{L^\theta (\Omega )}^{-\theta 2_{s_1}^*} |\Omega |^{\frac{1 +p 2_{s_1}^*}{p }}, \end{aligned}$$
(3.28)

From the inequality (2.20) for \(|u(x)| \ge 1\), we have

$$\begin{aligned} \left( \int \limits _{\Omega ^+} \big |\log |u|\big |^{p 2_{s_1}^*} \mathrm {d}x \right) ^{\frac{1}{p}} \le C \left( \int \limits _{\Omega ^+} \big |u(x)\big |^{p\theta 2_{s_1}^*} \mathrm {d}x \right) ^{\frac{1}{p}} \le C \big \Vert u\big \Vert _{L^{p\theta 2_{s_1}^*}(\Omega )}^{\theta 2_{s_1}^*}. \end{aligned}$$
(3.29)

From (3.27), (3.28) and (3.29), we conclude that

$$\begin{aligned}&\big \Vert F_{p}(u) \big \Vert _{L^{2^*_{s_1}}(\Omega )} \le C\left( \big \Vert u\big \Vert _{L^\theta (\Omega )}^{-\theta } + \big \Vert u\big \Vert _{L^{p\theta 2^*_{s_1}}(\Omega )}^{\theta } \right) \big \Vert u\big \Vert _{L^{p 2_{s_1}^* }(\Omega )}^{p-1}. \end{aligned}$$
(3.30)

For \(s>0, qs <N\), and \(q < \frac{N\theta }{N+\theta s}\), this implies that \(q^*_s \le \theta \) with \(q^*_s\) satisfies

$$\begin{aligned}\frac{1}{q^*_s} = \frac{1}{q} - \frac{s}{N},\end{aligned}$$

we deduce from Lemma 2.9 that the following Sobolev embedding holds \(L^{\theta }(\Omega ) \hookrightarrow W^{s,q}(\Omega )\). Then we get that

$$\begin{aligned} \big \Vert u\big \Vert _{W^{s,q}(\Omega )} \le C \big \Vert u\big \Vert _{L^{\theta }(\Omega )}, \end{aligned}$$

and for \(\theta >0\), we have that

$$\begin{aligned} \big \Vert u\big \Vert _{L^{\theta }(\Omega )}^{-\theta } \le C \big \Vert u\big \Vert _{W^{s,q}(\Omega )}^{-\theta }. \end{aligned}$$

From (3.21), the constant \(s^* > Z(1,1),\) [for Z(1, 1) defined in (3.21)] and observe that

$$\begin{aligned} p 2^*_{s_1} = \frac{2Np}{N-2s_1} = \frac{2Np}{N+2s^* -2 p s_2} < \frac{2Np}{N+2 Z(1,1) -2 p s_2} = \frac{Nq}{N-sq} =q^*_s, \end{aligned}$$
(3.31)

then we also obtain \(W^{s,q}(\Omega ) \hookrightarrow L^{p2^*_{s_1}}(\Omega )\). For \(s^* > Z(\theta ,1)\) [for \(Z(\theta ,1)\) defined in (3.21)], we infer that

$$\begin{aligned} p \theta 2^*_{s_1} = p \theta \frac{2N}{N-2s_1} = \frac{2Np}{N+2s^* -2 p s_2} = p \theta \frac{2N}{N+2 Z(\theta ,1) -2 p s_2} \le q^*_s, \end{aligned}$$

this implies that \(W^{s,q}(\Omega ) \hookrightarrow L^{p \theta 2^*_{s_1} }(\Omega )\). This implies that

$$\begin{aligned} \left\| F_p(u) \right\| _{L^{2^*_{s_1}}(\Omega )} \le C\left( \big \Vert u\big \Vert _{W^{s,q}(\Omega )}^{-\theta } + \big \Vert u\big \Vert _{W^{s,q}(\Omega )}^{\theta } \right) \big \Vert u\big \Vert _{W^{s,q}(\Omega )}^{p-1}, \end{aligned}$$

and from (3.26), and for \(0< \theta <p-1\), we have

$$\begin{aligned} {\underline{\hbox {The (RHS) of}}}\; (3.26)&\le C \int \limits _0^t (t -\tau )^{-\alpha } \left( \left\| u(\cdot ,\tau )\right\| _{W^{s,q}(\Omega )}^{-\theta } + \big \Vert u(\cdot ,\tau )\big \Vert _{W^{s,q}(\Omega )}^{\theta } \right) \big \Vert u(\cdot ,\tau )\big \Vert _{W^{s,q}(\Omega )}^{p-1} \mathrm {d}\tau \nonumber \\&\le C \int \limits _0^t (t -\tau )^{-\alpha } \left( \left\| u(\cdot ,\tau )\right\| _{W^{s,q}(\Omega )}^{p-1-\theta } + \big \Vert u(\cdot ,\tau )\big \Vert _{W^{s,q}(\Omega )}^{p-1+\theta } \right) \mathrm {d}\tau \nonumber \\&\le C \left( \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) \int \limits _0^t (t -\tau )^{-\alpha } \mathrm {d}\tau \nonumber \\&\le C \left( \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) \frac{t^{1-\alpha }}{1-\alpha }, \end{aligned}$$
(3.32)

where from (3.22), we have that \(\big \Vert u(\cdot ,\tau )\big \Vert _{W^{s,q}(\Omega )} \le R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )}\), for all \(\tau \in [0,T]\). From (3.26), (3.32), we obtain that for \(t \in (0,T]\)

$$\begin{aligned} \big \Vert J(F(u))(t) \big \Vert _{{\mathbb {X}}^{s_2}(\Omega )} \le C \left( \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) t^{1-\alpha }. \end{aligned}$$
(3.33)

For the constants sq satisfying (3.19), we have that \({\mathbb {X}}^{s_2}(\Omega ) \hookrightarrow W^{s,q}(\Omega )\) and \(\alpha \in (0,1)\), and for all \(t \in [0,T]\), we get

$$\begin{aligned} \big \Vert J(F(u))(t) \big \Vert _{W^{s,q}(\Omega )} \le C \left( \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) T^{1- \alpha }. \end{aligned}$$
(3.34)

Hence, from (3.24) and (3.34), for every \(t\in (0, T]\),

$$\begin{aligned}&\left\| {\mathbf {M}}{\mathbf {u}}(t) - u_0 \right\| _{ W^{s,q}(\Omega )} \nonumber \\&\quad \le C \left\| u_0\right\| _{{\mathbb {X}}^{s_2}(\Omega )} + C\left( \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) T^{1-\alpha }. \end{aligned}$$
(3.35)

Therefore we see that if \( R = 2 C \left\| u_0\right\| _{\mathbb X^{s_2}(\Omega )} \) and for the constant \(C>0\), \(\theta < p-1\) such that

$$\begin{aligned} R \ge 2C \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } T^{1- \alpha }, \end{aligned}$$

and

$$\begin{aligned} R \ge 2C\left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } T^{1- \alpha }. \end{aligned}$$

Then, we imply \({\mathbf {M}}\) is invariant in \({\mathbb {W}}\).

\(\bullet \) Claim II \({\mathbf {M}}: {\mathbb {W}} \rightarrow {\mathbb {W}}\) is a contraction map. Let \(u,w\in {\mathbb {W}}\), and similar to (3.26) and using Lemma 2.3(b), one has for every \(t\in (0,T]\),

$$\begin{aligned} \left\| {\mathbf {M}}{\mathbf {u}}(t) - {\mathbf {M}}{\mathbf {w}}(t)\right\| _{\mathbb X^{s_2}(\Omega )}&= \left\| J(F(u))(t) -J(F(w))(t)\right\| _{\mathbb X^{s_2}(\Omega )} \nonumber \\&\le C \int \limits _0^t (t -\tau )^{-\alpha } \big \Vert F_{p}(u)(\cdot ,\tau ) - F_{p}(w)(\cdot ,\tau )\big \Vert _{{\mathbb {X}}^{s_1}(\Omega )} \mathrm {d}\tau \nonumber \\&\le C \int \limits _0^t (t - \tau )^{-\alpha } \left\| F_p(u)(\cdot ,\tau ) - F_p(w) (\cdot ,\tau )\right\| _{L^{2^*_{s_1}}(\Omega )} \mathrm {d}\tau , \end{aligned}$$
(3.36)

in which we used the Sobolev embedding \(L^{2^*_{s_1}}(\Omega ) \hookrightarrow {\mathbb {X}}^{s_1}(\Omega )\), for \(\frac{1}{2^*_{s_1}} = \frac{1}{2} - \frac{s_1}{N}\) and \(-\frac{N}{2} < s_1 \le 0\). By recalling Lemma 3.2, we arrive at

$$\begin{aligned} \left\| F_p(u) - F_p(w) \right\| _{L^{2^*_{s_1}}(\Omega )}&\le C \Big \Vert \big |\log |u| \big | \left| u -w\right| \Big \Vert _{L^{2^*_{s_1}}(\Omega )} + C \left\| \left| u\right| ^{p-2} \big |\log |u| \big | \left| u -w\right| \right\| _{L^{2^*_{s_1}}(\Omega )} \nonumber \\&\quad + C \left\| \left| w \right| ^{p-2} \big |\log |u| \big | \left| u -w\right| \right\| _{L^{2^*_{s_1}}(\Omega )} + C \left\| \left| w\right| ^{p-2} \left| u -w\right| \right\| _{L^{2^*_{s_1}}(\Omega )}. \end{aligned}$$
(3.37)

For the constant \(2^*_{s_1} \ge 1\), using Hölder’s inequality, we get

$$\begin{aligned}&\Big \Vert \big |\log |u| \big | \left| u -w\right| \Big \Vert _{L^{2^*_{s_1}}(\Omega )}^{2^*_{s_1}} = \int \limits _{\Omega } \left( \big |\log |u|\big | \big |u-w\big |\right) ^{2^*_{s_1}} \mathrm {d}x = \int \limits _{\Omega } \big |\log |u|\big |^{2^*_{s_1}} \big |u - w\big |^{2^*_{s_1}} \mathrm {d}x \nonumber \\&\quad \le \left( \int \limits _{\Omega } \big |\log |u|\big |^{\frac{p 2^*_{s_1}}{p-1}} \mathrm {d}x\right) ^{\frac{p-1}{p}} \left( \int \limits _{\Omega } \big |u-w\big |^{p 2^*_{s_1}} \mathrm {d}x\right) ^{\frac{1}{p}} \nonumber \\&\quad \le \left( \int \limits _{\Omega ^-} \big |\log |u|\big |^{\frac{p 2^*_{s_1}}{p-1}} \mathrm {d}x + \int \limits _{\Omega ^+} \big |\log |u|\big |^{\frac{p 2^*_{s_1}}{p-1}} \mathrm {d}x \right) ^{\frac{p-1}{p}} \left( \int \limits _{\Omega } \big |u - w \big |^{p 2^*_{s_1}} \mathrm {d}x\right) ^{\frac{1}{p}} \nonumber \\&\quad \le \left( \left( \int \limits _{\Omega ^-} \big |\log |u|\big |^{\frac{p2^*_{s_1}}{p-1}} \mathrm {d}x \right) ^{ \frac{p-1}{p}} + \left( \int \limits _{\Omega ^+} \big |\log |u|\big |^{\frac{p2^*_{s_1}}{p-1}} \mathrm {d}x \right) ^{ \frac{p-1}{p}} \right) \left( \int \limits _{\Omega } \big |u - w \big |^{p 2^*_{s_1}} \mathrm {d}x\right) ^{\frac{1}{p}}. \end{aligned}$$
(3.38)

From the inequality (2.20) for \(|u(x)|<1, ~ \forall x \in \Omega \), we have

$$\begin{aligned}&\left( \int \limits _{\Omega ^-} \big |\log |u|\big |^{\frac{p 2^*_{s_1} }{p-1}} \mathrm {d}x \right) ^{\frac{p-1}{p}} \nonumber \\&\quad \le C \left( \int \limits _{\Omega ^-} \big |u(x)\big |^{- \frac{p\theta 2^*_{s_1}}{p-1}} \mathrm {d}x \right) ^{\frac{p-1}{p}} \le \left( \left( \int \limits _{\Omega ^-} \big |u(x)\big |^{-\frac{p\theta 2^*_{s_1}}{p-1}} \mathrm {d}x \right) ^{-\frac{p-1}{p 2^*_{s_1}}} \right) ^{- 2^*_{s_1}} \nonumber \\&\quad \le C \left( \left( \int \limits _{\Omega ^-} |u(x)|^{\theta } \mathrm {d}x\right) \left( \int \limits _{\Omega ^-} 1 \mathrm {d}x \right) ^{-\frac{p-1+p 2^*_{s_1}}{p 2^*_{s_1}}} \right) ^{- 2^*_{s_1}} \le C \big \Vert u\big \Vert _{L^{\theta }(\Omega )}^{-\theta 2^*_{s_1}} |\Omega |^{\frac{p-1+p 2^*_{s_1}}{p }}, \end{aligned}$$
(3.39)

where we have chosen \(k' = -\frac{p-1}{p2^*_{s_1}} <0\) in Lemma 2.8(b). For \(|u(x)| \ge 1, ~ \forall x \in \Omega \), we have

$$\begin{aligned} \left( \int \limits _{\Omega ^+} \big |\log |u|\big |^{\frac{p 2^*_{s_1}}{p-1}} \mathrm {d}x \right) ^{\frac{p-1}{p}} \le C \left( \int \limits _{\Omega ^+} \big |u(x)\big |^{\frac{p\theta 2^*_{s_1}}{p-1}} \mathrm {d}x \right) ^{\frac{p-1}{p}} \le C \big \Vert u\big \Vert _{L^{\frac{p\theta 2^*_{s_1}}{p-1}}(\Omega )}^{\theta 2^*_{s_1}}. \end{aligned}$$
(3.40)

From (3.38), (3.39) and (3.40), we conclude that

$$\begin{aligned} \Big \Vert \big |\log |u|\big | \big |u-w\big |\Big \Vert _{L^{2^*_{s_1}}(\Omega )} \le C \left( \big \Vert u\big \Vert _{L^\theta (\Omega )}^{-\theta } + \big \Vert u\big \Vert _{L^{\frac{p\theta 2^*_{s_1}}{p-1}}(\Omega )}^{\theta } \right) \big \Vert u - w\big \Vert _{L^{p 2^*_{s_1}}(\Omega )}. \end{aligned}$$
(3.41)

Thanks to Hölder’s inequality, we get that

$$\begin{aligned}&\int \limits _{\Omega } \left( |u|^{p-2}\big |\log |u|\big | \big |u - w\big |\right) ^{2^*_{s_1}} \mathrm {d}x = \int \limits _{\Omega } |u|^{(p-2) 2^*_{s_1}} \big |\log |u|\big |^{2^*_{s_1}} \big |u - w\big |^{2^*_{s_1}} \mathrm {d}x \nonumber \\&\quad \le \left( \int \limits _{\Omega } \big |\log |u|\big |^{\frac{p 2^*_{s_1}}{p-2}} \mathrm {d}x\right) ^{\frac{p-2}{p}} \left( \int \limits _{\Omega } |u|^{p(p-2) 2^*_{s_1}} \mathrm {d}x\right) ^{\frac{1}{p}} \left( \int \limits _{\Omega } \big |u-w\big |^{p 2^*_{s_1}} \mathrm {d}x\right) ^{\frac{1}{p}}. \end{aligned}$$
(3.42)

Similar to (3.39) and (3.40), we have the following estimate

$$\begin{aligned} \left( \int \limits _{\Omega } \big |\log |u|\big |^{\frac{p 2^*_{s_1}}{p-2}} \mathrm {d}x\right) ^{\frac{p-2}{p}}&\le \left( \int \limits _{\Omega ^-} \big |\log |u|\big |^{\frac{p2^*_{s_1}}{p-2}} \mathrm {d}x \right) ^{ \frac{p-2}{p}} + \left( \int \limits _{\Omega ^+} \big |\log |u|\big |^{\frac{p2^*_{s_1}}{p-2}} \mathrm {d}x \right) ^{ \frac{p-2}{p}} \nonumber \\&\le C\left( \big \Vert u\big \Vert _{L^\theta (\Omega )}^{-\theta 2^*_{s_1} } + \big \Vert u\big \Vert _{L^{\frac{p \theta 2^*_{s_1}}{p-2}}(\Omega )}^{\theta 2^*_{s_1}} \right) . \end{aligned}$$
(3.43)

Combining (3.42) and (3.43), we get that

$$\begin{aligned}&\big \Vert |u|^{p-2}\big |\log |u|\big | \big |u-w\big |\big \Vert _{L^{2^*_{s_1}}(\Omega )} \nonumber \\&\quad \le C\left( \big \Vert u\big \Vert _{L^\theta (\Omega )}^{-\theta } + \big \Vert u\big \Vert _{L^{\frac{p \theta 2^*_{s_1}}{p-2}}(\Omega )}^{\theta } \right) \big \Vert u\big \Vert _{L^{p (p-2) 2^*_{s_1}}(\Omega )}^{p-2} \big \Vert u - w \big \Vert _{L^{p 2^*_{s_1}}(\Omega )}. \end{aligned}$$
(3.44)

Similarly,

$$\begin{aligned}&\left\| |w|^{p-2}\big |\log |u|\big | \big |u-w\big |\right\| _{L^{2^*_{s_1}}(\Omega )} \nonumber \\&\quad \le C\left( \big \Vert u\big \Vert _{L^\theta (\Omega )}^{-\theta } + \big \Vert u\big \Vert _{L^{\frac{p\theta 2^*_{s_1}}{p-2}}(\Omega )}^{\theta } \right) \big \Vert w\big \Vert _{L^{p (p-2) 2^*_{s_1}}(\Omega )}^{p-2} \big \Vert u - w\big \Vert _{L^{p 2^*_{s_1}}(\Omega )}. \end{aligned}$$
(3.45)

We use the Hölder’s inequality to obtain that

$$\begin{aligned} \left\| |w|^{p-2} \big |u-w\big |\right\| _{L^{2^*_{s_1}}(\Omega )}^{2^*_{s_1}}&= \int \limits _{\Omega } \left( |w|^{p-2} \big |u-w\big |\right) ^{2^*_{s_1}} \mathrm {d}x \nonumber \\&\le \left( \int \limits _{\Omega } |w|^{\frac{p(p-2)2^*_{s_1}}{p-1}} \mathrm {d}x\right) ^{\frac{p-1}{p}} \left( \int \limits _{\Omega } \big |u-w\big |^{p 2^*_{s_1}} \mathrm {d}x\right) ^{\frac{1}{p}} \nonumber \\&\le \big \Vert w\big \Vert _{L^{\frac{p (p-2) 2^*_{s_1}}{p-1}}(\Omega )}^{(p-2)2^*_{s_1}} \big \Vert u - w\big \Vert _{L^{p2^*_{s_1}}(\Omega )}^{2^*_{s_1}}. \end{aligned}$$
(3.46)

Combining the results obtained in (3.37), (3.41), (3.44), (3.45) and (3.46), we have

$$\begin{aligned} \big \Vert F_p(u)(\cdot ,t) - F_p(w)(\cdot ,t)\big \Vert _{L^{2^*_{s_1}}(\Omega )}&\le C \left( \big \Vert u\big \Vert _{L^\theta (\Omega )}^{-\theta } + \big \Vert u\big \Vert _{L^{\frac{p\theta 2^*_{s_1}}{p-1}}(\Omega )}^{\theta } \right) \big \Vert u - w\big \Vert _{L^{p 2^*_{s_1}}(\Omega )} \nonumber \\&\quad + C\left( \big \Vert u\big \Vert _{L^\theta (\Omega )}^{-\theta } + \big \Vert u\big \Vert _{L^{\frac{p\theta 2^*_{s_1}}{p-2}}(\Omega )}^{\theta } \right) \big \Vert u\big \Vert _{L^{p (p-2) 2^*_{s_1} }(\Omega )}^{p-2} \big \Vert u - w\big \Vert _{L^{p 2^*_{s_1}}(\Omega )} \nonumber \\&\quad + C\left( \big \Vert u\big \Vert _{L^\theta (\Omega )}^{-\theta } + \big \Vert u\big \Vert _{L^{\frac{p \theta 2^*_{s_1}}{p-2}}(\Omega )}^{\theta } \right) \big \Vert w\big \Vert _{L^{p (p-2) 2^*_{s_1} }(\Omega )}^{p-2} \big \Vert u - w\big \Vert _{L^{p 2^*_{s_1}}(\Omega )} \nonumber \\&\quad + C~ \big \Vert w\big \Vert _{L^{\frac{p (p-2) 2^*_{s_1}}{p-1}}(\Omega )}^{p-2} \big \Vert u - w\big \Vert _{L^{p 2^*_{s_1} }(\Omega )}. \end{aligned}$$
(3.47)

From (3.18)–(3.21) we have the following:

\(\triangleright \):

For \(q^*_s\) satisfying \(\frac{1}{q^*_s} = \frac{1}{q} - \frac{s}{N}\), for \(q \le \frac{N\theta }{N+\theta s}\) and \(sq < N\), then \(q^*_s \le \theta \) and we deduce from Lemma 2.9 that \(L^{\theta }(\Omega ) \hookrightarrow W^{s,q}(\Omega )\). This implies that

$$\begin{aligned} \big \Vert u\big \Vert _{L^{\theta }(\Omega )}^{-\theta } \le C \big \Vert u\big \Vert _{W^{s,q}(\Omega )}^{-\theta }, \quad \hbox {for}~~ 0< \theta \le p-1. \end{aligned}$$
\(\triangleright \):

For \(s^* > Z(1,1)\), a similar argument with (3.31) and we observe that \( q^*_s \ge p 2^*_{s_1},\) and then we deduce from Lemma 2.9 that the following Sobolev embedding holds \(W^{s,q}(\Omega ) \hookrightarrow L^{p2^*_{s_1}}(\Omega )\).

\(\triangleright \):

For \(s^*> Z(p-2,1)\), implies that

$$\begin{aligned} p(p-2) 2^*_{s_1} = \frac{2p(p-2)N}{N-2s_1} < \frac{2p(p-2)N}{N+2 Z(p-2,1) -2 p s_2} \le q^*_s, \end{aligned}$$
(3.48)

and we infer that \(W^{s,q}(\Omega ) \hookrightarrow L^{p (p-2) 2^*_{s_1}}(\Omega )\).

\(\triangleright \):

For \(s^*> Z(\theta ,p-1)\), we observe that \(\frac{p \theta 2^*_{s_1}}{p-1} \le q^*_s,\) then we get \(W^{s,q}(\Omega ) \hookrightarrow L^{\frac{p \theta 2^*_{s_1}}{p-1}}(\Omega )\).

\(\triangleright \):

For \(s^*> Z(\theta ,p-2)\), we have \(\frac{p \theta 2^*_{s_1}}{p-2} \le q_s^*,\) and this implies that \(W^{s,q} (\Omega ) \hookrightarrow L^{\frac{p \theta 2^*_{s_1}}{p-2}}(\Omega )\).

\(\triangleright \):

For \(s^*> Z(p-2,p-1)\), implies \(\frac{p (p-2) 2^*_{s_1}}{p-1} \le q^*_s,\) and we infer that \(W^{s,q}(\Omega ) \hookrightarrow L^{\frac{p (p-2) 2^*_{s_1} }{p-1}}(\Omega )\).

We can now combine the results above together with (3.47) to deduce that

$$\begin{aligned} \big \Vert F_p(u)(\cdot ,t) - F_p(w)(\cdot ,t)\big \Vert _{L^{2^*_{s_1}}(\Omega )}&\le K (R,u_0) \big \Vert u(\cdot ,t) - w(\cdot ,t) \big \Vert _{W^{s,q}(\Omega )}, \end{aligned}$$
(3.49)

for all \(t\in (0,T]\), we have used that \(\max \left\{ \Vert u\Vert _{W^{s,q}(\Omega )}; \Vert w\Vert _{W^{s,q}(\Omega )} \right\} \le R + \Vert u_0\Vert _{W^{s,q}(\Omega )}\), and for the constant \(K(R,u_0):=K(N,p,\theta ,s_1,R, \Vert u_0\Vert _{W^{s,q}(\Omega )})\) but independent of t. From this, one observes that

$$\begin{aligned} {\underline{\hbox {The (RHS) of}}}\;\ (3.36)&\le CK(R,u_0) \int \limits _0^t (t -\tau )^{-\alpha } \left\| u(\cdot ,\tau ) - w(\cdot ,\tau )\right\| _{W^{s,q}(\Omega )} \mathrm {d}\tau \nonumber \\&\le CK(R,u_0) \int \limits _0^t (t -\tau )^{-\alpha } \left( \left\| u(\cdot ,\tau ) - w(\cdot ,\tau )\right\| _{W^{s,q}(\Omega )} \right) \mathrm {d}\tau \nonumber \\&\le CK(R,u_0) \left\| u(\cdot ,\tau ) - w(\cdot ,\tau )\right\| _{C([0,T];W^{s,q}(\Omega ))} \int \limits _0^t (t -\tau )^{-\alpha } \mathrm {d}\tau \nonumber \\&\le CK(R,u_0) \left\| u - w \right\| _{C([0,T];W^{s,q}(\Omega ))} \frac{t^{1-\alpha }}{1-\alpha }. \end{aligned}$$
(3.50)

Inserting the result of (3.50) into (3.36), we obtain that

$$\begin{aligned} \left\| {\mathbf {M}}{\mathbf {u}}(t) - {\mathbf {M}}{\mathbf {w}}(t)\right\| _{\mathbb X^{s_2}(\Omega )} \le CK(R,u_0) T^{1-\alpha } \left\| u - w \right\| _{C([0,T];W^{s,q}(\Omega ))}. \end{aligned}$$

For the constants sq satisfying (3.19), we have that \({\mathbb {X}}^{s_2}(\Omega ) \hookrightarrow W^{s,q}(\Omega )\), and

$$\begin{aligned} \left\| {\mathbf {M}} u - {\mathbf {M}}{\mathbf {w}}\right\| _{C([0,T];W^{s,q}(\Omega ))} \le CK(R,u_0) T^{1-\alpha } \left\| u - w \right\| _{C([0,T];W^{s,q}(\Omega ))}. \end{aligned}$$
(3.51)

Choosing \(T, K(R,u_0)\) small enough such that \(CK(R,u_0) T^{1-\alpha } < 1,\) it follows that \({\mathbf {M}}\) is a contraction map on \(\mathbb W\). So, we invoke the contraction mapping principle to conclude that the map \({\mathbf {M}}\) has a unique fixed point u in \({\mathbb {W}}\). The proof of Theorem 3.2 is completed. \(\square \)

Since we already know that the mild solution of \({{\mathbb {P}}}\) does exist, the question is whether it will continue (continuation to a bigger interval of existence) and in what situation it is non-continuation by blowup.

Definition 3.1

Given a mild solution \(u \in C([0,T]; W^{s,q}(\Omega ))\) of \({{\mathbb {P}}}\) for \(\alpha \in (0,1)\), we say that \(u^\star \) is a continuation of u in \((0, T^\star ]\) for \( T^\star > T\) if it is satisfies

$$\begin{aligned} {\left\{ \begin{array}{ll} u^\star \in C([T,T^\star ]; W^{s,q}(\Omega )) ~~ \text{ is } \text{ a } \text{ mild } \text{ solution } \text{ of } \text{( }{\mathbb {P}}\text{) } \text{ for } \text{ all }~~ t \in [T, T^\star ], \\ u^\star (x,t) = u(x,t) \quad \text{ whenever } \quad t \in [0,T], x \in \Omega . \end{array}\right. } \end{aligned}$$
(3.52)

Theorem 3.3

(Continuation) Suppose that the assumptions of Theorem 3.2 are satisfied. Then, the mild solution (unique) on (0, T] of Problem \({{\mathbb {P}}}\) can be extended to the interval \((0, T^\star ],\) for some \( T^\star > T \), so that, the extended function is also the mild solution (unique) of Problem \({{\mathbb {P}}}\) on \((0, T^\star ].\)

Proof

Let \(u:[0, T] \rightarrow W^{s,q}(\Omega )\) be a mild solution of Problem \({{\mathbb {P}}}\) (T is the time from Theorem 3.2). Fix \(R^\star >0,\) and for \( T^\star > T,\) (\(T^\star \) depending on \(R^\star \)), we shall prove that \(u^\star : [0,T^\star ] \rightarrow W^{s,q}(\Omega )\) is a mild solution of Problem \({{\mathbb {P}}}\). Assume the following estimates hold:

$$\begin{aligned}&C T^{-\alpha } (T^\star )^{\alpha } \left\| u_{0}\right\| _{\mathbb X^{s_2}(\Omega )} \le \frac{R^\star }{4}, \end{aligned}$$
(3.53)
$$\begin{aligned}&C \left( R^\star + \big \Vert u(\cdot ,T)\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } (T^\star )^{1- \alpha } \le \frac{R^\star }{8}, \end{aligned}$$
(3.54)
$$\begin{aligned}&C \left( R^\star + \big \Vert u(\cdot ,T)\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } (T^\star )^{1- \alpha } \le \frac{R^\star }{8}, \end{aligned}$$
(3.55)
$$\begin{aligned}&C \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } (T^\star )^{\frac{\alpha s_1 - \alpha s_2 +2}{2} } < \frac{R^\star }{8}, \end{aligned}$$
(3.56)
$$\begin{aligned}&C \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } (T^\star )^{\frac{\alpha s_1 - \alpha s_2 +2}{2} } < \frac{R^\star }{8}, \end{aligned}$$
(3.57)
$$\begin{aligned}&CK(R,u_0) (T^\star )^{\alpha + \alpha \gamma - 2 \alpha \gamma } \le \frac{R^\star }{4}, \end{aligned}$$
(3.58)

where \(0<\theta \le p-1\) and \(K(R,u_0)\) is defined in the proof of Theorem 3.2. For \( T^\star \ge T >0\) and \(R^\star >0\), let us define

$$\begin{aligned} {\mathbb {W}}^\star :=\left\{ u^\star \in C([0,T^\star ]; W^{s,q}(\Omega )): \left| \right. \begin{array}{lll} &{}u^\star (\cdot ,t) =u(\cdot ,t),&{}\quad \forall t\in (0,T], \\ &{}\left\| u^\star (\cdot ,t) - u (\cdot ,T)\right\| _{C([T, T^\star ]; W^{s,q}(\Omega ))} \le R^\star , &{} \quad \forall t\in [ T, T^\star ]. \end{array} \right\} \end{aligned}$$
(3.59)

\(\bullet \) Step I We show that \({\mathbf {M}}\) defined as in (3.23) is the operator on \({\mathbb {W}}^\star \). Let \(u^\star \in {\mathbb {W}}^\star \) and we consider two cases.

\(*\) If \(t\in (0,T]\), then by virtue of Theorem 3.2, we have the Problem \({{\mathbb {P}}}\) has a unique solution and we also have \(u^\star (\cdot ,t)=u(\cdot ,t)\). Thus \({\mathbf {M}} u^\star (t) = {\mathbf {M}} u(t) = u(\cdot ,t) \) for all \(t \in (0, T]\).

\(*\) If \(t\in [ T, T^\star ]\), we have

$$\begin{aligned}&\left\| {\mathbf {M}} u^\star (t)-u(\cdot , T) \right\| _{W^{s,q}(\Omega )} \nonumber \\&\quad \le \left\| \left( E_{\alpha ,1}\left( - t^{\alpha } {\mathcal {A}} \right) - E_{\alpha ,1}\left( - T^{\alpha } {\mathcal {A}}\right) \right) u_{0} \right\| _{W^{s,q}(\Omega )} \nonumber \\&\qquad + \int \limits _T^t \left\| E_{\alpha ,1}\left( - (t-\tau )^{\alpha } {\mathcal {A}} \right) F_p(u^\star )(\tau ) \right\| _{W^{s,q}(\Omega )} \mathrm {d}\tau \nonumber \\&\qquad + \int \limits _0^T \left\| \left( E_{\alpha ,1}\left( - (t-\tau )^{\alpha } {\mathcal {A}} \right) -E_{\alpha ,1}\left( - (T-\tau )^{\alpha } {\mathcal {A}} \right) \right) F_p(u^\star )(\tau ) \right\| _{W^{s,q}(\Omega )}\mathrm {d}\tau \nonumber \\&\quad =: \left\| J_2(u_0)( t)\right\| _{W^{s,q}(\Omega )} + \left\| J_3(u^\star )( t)\right\| _{W^{s,q}(\Omega )} + \left\| J_4(u^\star )( t)\right\| _{W^{s,q}(\Omega )}. \end{aligned}$$
(3.60)

Estimating the term \(\left\| J_2(u_0)( t)\right\| _{W^{s,q}(\Omega )}\), using Lemma 2.5, we have for all \(t \in [T,T^\star ]\),

$$\begin{aligned} \left\| J_2(u_0)( t)\right\| _{{\mathbb {X}}^{s_2}(\Omega )}^2&= \sum _{j=1}^\infty \lambda _j^{ s_2}\left( u_{0},\phi _j \right) ^2 \left( E_{\alpha ,1}\left( - \lambda _j t^{\alpha }\right) - E_{\alpha ,1}\left( - \lambda _j T^{\alpha } \right) \right) ^2 \nonumber \\&= \sum _{j=1}^\infty \lambda _j^{s_2} \left( u_{0},\phi _j \right) ^2 \left( \int \limits _0^\infty {\mathcal {M}}_\alpha (z) \left| e^{- z \lambda _j t^{\alpha }} - e^{- z \lambda _j T^{\alpha } } \right| \mathrm {d} z \right) ^2 \nonumber \\&\le \sum _{j=1}^\infty \lambda _j^{ s_2} \left( u_{0},\phi _j \right) ^2 \left( \int \limits _0^\infty {\mathcal {M}}_\alpha (z)e^{- z \lambda _j T^{\alpha } } \left| e^{- z \lambda _j (t^\alpha - T^{\alpha }) } - 1 \right| \mathrm {d} z \right) ^2. \end{aligned}$$

For \(z>0\), using the inequality \(1-e^{-z}\le z, ~ \hbox { and} ~~ ze^{-z} \le 1,\) one obtains

$$\begin{aligned} \left\| J_2(u_0)( t)\right\| _{{\mathbb {X}}^{s_2}(\Omega )}^2&\le \sum _{j=1}^\infty \lambda _j^{s_2} \left( u_{0},\phi _j \right) ^2\left( \lambda _j (t^\alpha - T^{\alpha }) \int \limits _0^\infty {\mathcal {M}}_\alpha (z) \left( z \lambda _j T^{\alpha } \right) ^{-1} z \mathrm {d} z \right) ^2 \nonumber \\&\le \sum _{j=1}^\infty \lambda _j^{s_2} \left( u_{0},\phi _j \right) ^2 \left( \left( t^{\alpha } - T^{\alpha }\right) T^{-\alpha } \int \limits _0^\infty {\mathcal {M}}_\alpha (z) \mathrm {d} z \right) ^2 \nonumber \\&\le \left( t - T\right) ^{2\alpha } T^{-2\alpha } \left\| u_{0}\right\| _{{\mathbb {X}}^{s_2}(\Omega )}^2, \end{aligned}$$
(3.61)

where we have use the inequalities

$$\begin{aligned}a^{c} - b^{c} \le (a-b)^{c},\quad \hbox {for}~~ a>b>0, c \in (0,1),\quad \hbox {and}~~ \int \limits _0^\infty {\mathcal {M}}_\alpha (z) \mathrm {d} z = 1.\end{aligned}$$

For the constants sq satisfying (3.19), we have that \(\mathbb X^{s_2}(\Omega ) \hookrightarrow W^{s,q}(\Omega )\). Hence, we get that

$$\begin{aligned} \left\| J_2(u_0)(t)\right\| _{W^{s,q}(\Omega )} \le C \left( t - T\right) ^{\alpha } T^{-\alpha } \left\| u_{0}\right\| _{\mathbb X^{s_2}(\Omega )} \le C \left( T^\star \right) ^{\alpha } T^{-\alpha } \left\| u_{0}\right\| _{{\mathbb {X}}^{s_2}(\Omega )}. \end{aligned}$$
(3.62)

From (3.53), this implies that the following estimate holds

$$\begin{aligned} \left\| J_2(u_0)\right\| _{C([0,T^\star ];W^{s,q}(\Omega ))} \le C T^{-\alpha } (T^\star )^{\alpha } \left\| u_{0}\right\| _{\mathbb X^{s_2}(\Omega )}\le \frac{R^\star }{4}. \end{aligned}$$
(3.63)

Similar to (3.32), we have the following estimate for all \(t \in [T,T^\star ]\) (note that we can choose \(T^\star >T\) and close enough to T)

$$\begin{aligned}&\Vert J_3(u^\star )(t) \Vert _{W^{s,q}(\Omega )} \le C \big \Vert J_3(u)(t) \big \Vert _{{\mathbb {X}}^{s_2}(\Omega )} \nonumber \\&\quad \le C \left( \left( R^\star + \big \Vert u(\cdot ,T)\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R^\star + \big \Vert u(\cdot ,T)\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) (t-T)^{1- \alpha }, \end{aligned}$$
(3.64)

where from (3.59), for all \(t \in [T,T^\star ]\), we have used that

$$\begin{aligned} \Vert u^\star (\cdot ,t) \Vert _{W^{s,q}(\Omega )} \le R^\star + \big \Vert u(\cdot ,T)\big \Vert _{W^{s,q}(\Omega )}.\end{aligned}$$

Using (3.54) and (3.55), we infer that

$$\begin{aligned}&\left\| J_3(u^\star ) \right\| _{C([0,T^\star ]; W^{s,q}(\Omega ))} \nonumber \\&\quad \le C \left( \left( R^\star + \big \Vert u(\cdot ,T)\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R^\star + \big \Vert u(\cdot ,T)\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) (T^\star )^{1- \alpha } \le \frac{R^\star }{4}. \end{aligned}$$
(3.65)

We continue with the estimate on the third term of (3.60), and using Lemma 2.3(b) and Lemma 2.4, we obtain for all \(t \in [ T, T^\star ]\)

$$\begin{aligned} \left| E_{\alpha ,1}\left( - \lambda _j\left( t - \tau \right) ^{\alpha } \right) - E_{\alpha ,1}\left( - \lambda _j \left( T - \tau \right) ^{\alpha } \right) \right|&= \left| \int \limits _{T - \tau }^{t - \tau } -\lambda _j z^{\alpha -1} E_{\alpha ,\alpha }\left( - \lambda _j z^{\alpha } \right) \mathrm {d} z\right| \nonumber \\&= \left| \int \limits _{T - \tau }^{t - \tau } \lambda _j^{1+ \frac{s_2 - s_1}{2}} z^{\alpha -1} E_{\alpha ,\alpha }\left( - \lambda _j z^{\alpha } \right) \mathrm {d} z\right| \lambda _j^{\frac{s_1-s_2}{2}} \nonumber \\&\le C \left| \int \limits _{T - \tau }^{t - \tau } z^{\frac{\alpha s_1 - \alpha s_2}{2} -1} \mathrm {d} z\right| \lambda _j^{\frac{s_1-s_2}{2}} \le C \lambda _j^{\frac{s_1-s_2}{2}} (T-\tau )^{\frac{\alpha s_1 - \alpha s_2}{2}}. \end{aligned}$$
(3.66)

For the constant \(s_1\) satisfying \(-\frac{N}{2} < s_1 \le 0\) and \(\frac{1}{2^\star _{s_1} } = \frac{1}{2} - \frac{s_1}{N}\), from Lemma 2.9, we obtain \(L^{2^\star _{s_1}}(\Omega ) \hookrightarrow {\mathbb {X}}^{s_1}(\Omega ).\) Hence, we deduce that

$$\begin{aligned}&\left\| J_4(u^\star )( t) \right\| _{{\mathbb {X}}^{s_2}(\Omega )} \nonumber \\&\quad \le \int \limits _0^T \Bigg (\sum _{j=1}^{\infty } \lambda _j^{s_2} \left( F_p(u^\star )(\cdot ,\tau ),\phi _j\right) ^2 \left| E_{\alpha ,1}\left( - \lambda _j\left( t - \tau \right) ^{\alpha } \right) - E_{\alpha ,1}\left( - \lambda _j \left( T - \tau \right) ^{\alpha } \right) \right| ^2 \Bigg )^{\frac{1}{2}} \mathrm {d}\tau \nonumber \\&\quad \le C \int \limits _0^T \Bigg (\sum _{j=1}^{\infty } \lambda _j^{s_1} (T-\tau )^{\alpha s_1- \alpha s_2} \left( F_p(u^\star )(\cdot ,\tau ),\phi _j\right) ^2 \Bigg )^{\frac{1}{2}} \mathrm {d}\tau \nonumber \\&\quad \le C \int \limits _0^T \left( T - \tau \right) ^{\frac{\alpha s_1 - \alpha s_2}{2} } \left\| F_p(u^\star )(\cdot ,\tau )\right\| _{\mathbb X^{s_1}(\Omega )} \mathrm {d}\tau \nonumber \\&\quad \le C \int \limits _0^T \left( T - \tau \right) ^{\frac{\alpha s_1 - \alpha s_2}{2} } \left\| F_p(u^\star )(\cdot ,\tau )\right\| _{ L^{2^\star _{s_1}}(\Omega )} \mathrm {d}\tau , \end{aligned}$$
(3.67)

In the same way as in (3.32), and from (3.59), one obtains

$$\begin{aligned}&{\underline{\hbox {The (RHS) of}}}\;\; (3.67) \nonumber \\&\quad \le C \int \limits _0^T (T - \tau )^{\frac{\alpha s_1 - \alpha s_2}{2} } \left( \left\| u(\cdot ,\tau )\right\| _{W^{s,q}(\Omega )}^{-\theta } + \big \Vert u(\cdot ,\tau )\big \Vert _{W^{s,q}(\Omega )}^{\theta } \right) \big \Vert u(\cdot ,\tau )\big \Vert _{W^{s,q}(\Omega )}^{p-1} \mathrm {d}\tau \nonumber \\&\quad \le C \left( \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) \int \limits _0^T (T - \tau )^{\frac{\alpha s_1 - \alpha s_2}{2} } \mathrm {d}\tau \nonumber \\&\quad \le C \left( \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) T^{\frac{\alpha s_1 - \alpha s_2 +2}{2} }, \end{aligned}$$
(3.68)

for \(\theta < p-1\). From (3.67), we have that \(\mathbb X^{s_2}(\Omega ) \hookrightarrow W^{s,q}(\Omega )\) and obtain

$$\begin{aligned} \big \Vert J_4(u^\star )(t) \big \Vert _{W^{s,q}(\Omega )} \le C \left( \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) T^{\frac{\alpha s_1 - \alpha s_2 +2}{2} }. \end{aligned}$$
(3.69)

Thus, for \(t\in (T,T^\star ]\), we obtain

$$\begin{aligned} \big \Vert J_4(u^\star )(t) \big \Vert _{W^{s,q}(\Omega )} \le C \left( \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) (T^\star )^{\frac{\alpha s_1 - \alpha s_2 +2}{2} }. \end{aligned}$$
(3.70)

From (3.56) and (3.57), we get

$$\begin{aligned} \left\| J_4(u^\star ) \right\| _{C([0,T^\star ];W^{s,q}(\Omega ))} \le \frac{R^\star }{4}. \end{aligned}$$
(3.71)

It follows from (3.63), (3.65), (3.71) that, for every \(t\in [ T, T^\star ]\)

$$\begin{aligned} \left\| {\mathbf {M}} u^\star - u(\cdot ,T) \right\| _{C([0,T^\star ];W^{s,q}(\Omega ))} \le \frac{R^\star }{4} + \frac{R^\star }{4} + \frac{R^\star }{4} \le R^\star . \end{aligned}$$

We have shown that \({\mathbf {M}}\) is a map \({\mathbb {W}}^\star \) into \({\mathbb {W}}^\star \).

\(\bullet \) Step II We show that \({\mathbf {M}}\) is a contraction on \({\mathbb {W}}^\star \). Let \( u,w \in {\mathbb {W}}^\star \), and we have that for \( 0 \le t \le T^\star ,\)

$$\begin{aligned} {\mathbf {M}} u(t)-{\mathbf {M}} w(t) = \int \limits _0^t E_{\alpha ,1}\left( - \mathcal A \left( t - \tau \right) ^{\alpha } \right) \left( F_p(u)(\tau ) - F_p(w) (\tau ) \right) \mathrm {d}\tau , \end{aligned}$$
(3.72)

where we note that \({\mathbf {M}}{\mathbf {u}}(t)-{\mathbf {M}}{\mathbf {w}}(t) = 0,\) vanishes in \({\mathbb {W}}^\star \) for all \(t \in (0, T]\). Then, for all \(t \in [0, T^\star ]\), proceeding as in Claim (2) of the last theorem, we have

$$\begin{aligned} \big \Vert {\mathbf {M}}{\mathbf {u}}(t)-{\mathbf {M}}{\mathbf {w}}(t) \big \Vert _{{\mathbb {X}}^{s_2}(\Omega )} \le CK(R,u_0) (T^\star )^{1-\alpha } \left\| u - w \right\| _{C([0,T^*];W^{s,q}(\Omega ))} \le \frac{R^\star }{4} \left\| u - w \right\| _{C([0,T^*];W^{s,q}(\Omega ))}. \end{aligned}$$

Thus, using the Sobolev embedding \({\mathbb {X}}^{s_2}(\Omega ) \hookrightarrow W^{s,q}(\Omega )\) with sq satisfying (3.19), for all \(T^\star >0\), so without loss of generality, we may assume that \(0\le R^\star <4\), and we infer that

$$\begin{aligned} \big \Vert {\mathbf {M}}{\mathbf {u}} -{\mathbf {M}}{\mathbf {w}} \big \Vert _{C([0,T^\star ];W^{s,q}(\Omega ))} \le \frac{R^\star }{4} \big \Vert u-v\big \Vert _{C([0,T^\star ];W^{s,q}(\Omega ))}. \end{aligned}$$
(3.73)

This implies that \({\mathbf {M}}\) is a \(\frac{R^\star }{4}\)-contraction. By the Banach contraction principle it follows that \({\mathbf {M}}\) has a unique fixed point \(u^\star \) of \({\mathbf {M}}\) in \({\mathbb {W}}^\star \), which is a continuation of u. This finishes the proof. \(\square \)

The next results are on global existence or non-continuation by a blowup.

Definition 3.2

Let u(xt) be a solution of \({{\mathbb {P}}}\). We define the maximal existence time \( T_{\max }\) of u(xt) as follows:

  1. (i)

    If u(xt) exists for all \(0 \le t < \infty \), then \( T_{\max } = \infty \).

  2. (ii)

    If there exists \( T \in (0,\infty )\) such that u(xt) exists for \(0 \le t < T\), but does not exist at \(t = T\), then \( T_{\max }= T\).

Definition 3.3

Let u(xt) be a solution of \({{\mathbb {P}}}\). We say u(xt) blows up in finite time if the maximal existence time \( T_{\max }\) is finite and

$$\begin{aligned} \lim \;\;\sup _{t\rightarrow T_{\max }^-} \left\| u(\cdot ,t)\right\| _{W^{s,q}(\Omega )} = \infty . \end{aligned}$$
(3.74)

Theorem 3.4

(Global existence or finite time blowup) For \(N\ge 1, p\ge 2,0\le s < 2s_2\), for \(0\le s_2 <N/2\) and \(1 \le q \le \min \left\{ 2^\star _{s_2,s};\frac{N \theta }{N+\theta s} \right\} \) with \(2^\star _{s_2,s}\) satisfying \(\frac{1}{2^\star _{s_2,s}} = \frac{1}{2} + \frac{s}{N} - \frac{s_2}{N}\) and \(qs < N\). For \(u_0 \in {\mathbb {X}}^{s_2}(\Omega ) \cap W^{s,q}(\Omega )\), there exists a maximal time \(T_{\max } >0\) such that \(u \in C([0,T_{\max }];W^{s,q}(\Omega ))\) is the mild solution of \({{\mathbb {P}}}\). Thus, either Problem \({{\mathbb {P}}}\) has a unique global mild solution on \([0,\infty )\) or there exists a maximal time \(T_{\max } < \infty \) such that

$$\begin{aligned} \lim \;\;\sup _{t \rightarrow T_{\max }^{-}} \Vert u(\cdot ,t)\Vert _{W^{s,q}(\Omega )} = \infty . \end{aligned}$$

Proof

Let \(u_0 \in {\mathbb {X}}^{s_2}(\Omega ) \cap W^{s,q}(\Omega )\) and define

$$\begin{aligned} T_{\max }:=\sup \left\{ T>0:\hbox {there exits a solution on}\;(0, T]\right\} . \end{aligned}$$

Assume that \(T_{\max } < \infty \), and \(\Vert u(\cdot ,t) \Vert _{\mathbb X^{s_2}(\Omega )} \le R_0,\) for some \(R_0 >0\). Now suppose there exists a sequence \(\{t_{n}\}_{n\in {\mathbb {N}}}\subset [0, T_{\max })\) such that \(t_n \rightarrow T_{\max }\) and \(\{u(\cdot ,t_{n})\}_{n\in {\mathbb {N}}} \subset \mathbb X^{s_2}(\Omega )\). Let us show that \(\{u(\cdot ,t_{n})\}_{n\in \mathbb N}\) is a Cauchy sequence in \({\mathbb {X}}^{s_2}(\Omega )\). Indeed, given \(\epsilon >0\), fix \(N \in {\mathbb {N}}\) such that for all \(n,m>N\), \(0< t_n< t_{m} < T_{\max }\), we have

$$\begin{aligned}&\big \Vert u(\cdot ,t_{m})-u(\cdot ,t_n)\big \Vert _{W^{s,q}(\Omega )} \nonumber \\&\quad \le \left\| \left( E_{\alpha ,1}\left( - t_m^{\alpha }{\mathcal {A}} \right) - E_{\alpha ,1}\left( - t_n^{\alpha } {\mathcal {A}} \right) \right) u_{0} \right\| _{W^{s,q}(\Omega )} \nonumber \\&\qquad + \int \limits _{t_n}^{t_m} \left\| E_{\alpha ,1}\left( -\left( t_m - \tau \right) ^{\alpha } {\mathcal {A}} \right) F_p(u )( \tau ) \right\| _{W^{s,q}(\Omega )} \mathrm {d}\tau \nonumber \\&\qquad + \int \limits _0^{t_n} \left\| \left( E_{\alpha ,1}\left( - \left( t_n - \tau \right) ^{\alpha } {\mathcal {A}} \right) - E_{\alpha ,1}\left( - \left( T_{\max } - \tau \right) ^{\alpha } {\mathcal {A}} \right) \right) F_p(u )(\tau ) \right\| _{W^{s,q}(\Omega )} \mathrm {d}\tau \nonumber \\&\qquad + \int \limits _0^{t_m} \left\| \left( E_{\alpha ,1}\left( -\left( T_{\max } - \tau \right) ^{\alpha } {\mathcal {A}} \right) - E_{\alpha ,1}\left( - \left( t_{m} - \tau \right) ^{\alpha } \right) {\mathcal {A}} \right) F_p(u )(\tau ) \right\| _{W^{s,q}(\Omega )} \mathrm {d}\tau \nonumber \\&\quad = \left\| J_5(u_0)\right\| _{W^{s,q}(\Omega )} + \left\| J_6(u )\right\| _{W^{s,q}(\Omega )} + \left\| J_7(u )\right\| _{W^{s,q}(\Omega )} + \left\| J_8(u )\right\| _{W^{s,q}(\Omega )}. \end{aligned}$$
(3.75)

Similar to (3.61), and using the Sobolev embedding \(\mathbb X^{s_2}(\Omega ) \hookrightarrow W^{s,q}(\Omega )\), we have that

$$\begin{aligned} \left\| J_5(u_0) \right\| _{W^{s,q}(\Omega )} \le C\left\| J_5(u_0)(t)\right\| _{{\mathbb {X}}^{s_2}(\Omega )} \le C \left| t_m - t_n\right| ^{ \alpha } t_n^{- \alpha } \left\| u_{0}\right\| _{{\mathbb {X}}^{s_2}(\Omega )}. \end{aligned}$$
(3.76)

In the same way as in (3.32), we get

$$\begin{aligned} \left\| J_6(u)(t)\right\| _{W^{s,q}(\Omega )} \le C \left( \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) |t_m-t_n|^{1-\alpha }. \end{aligned}$$
(3.77)

Similar to (3.68), we have

$$\begin{aligned} \left\| J_7(u) \right\| _{W^{s,q}(\Omega )} \le C \left( \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) |T_{\max }-t_n|^{\frac{\alpha s_1 - \alpha s_2 +2}{2} }, \end{aligned}$$
(3.78)

and

$$\begin{aligned} \left\| J_8(u) \right\| _{W^{s,q}(\Omega )} \le C \left( \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) |T_{\max }-t_m|^{\frac{\alpha s_1 - \alpha s_2 +2}{2} }. \end{aligned}$$
(3.79)

Thus, since \(\{t_n\}_{n\in {\mathbb {N}}^*}\) is convergent we can take \(N:=N(\epsilon ) \in {\mathbb {N}}^*\) with \(m \ge n \ge N\) such that \(|t_{m} - t_n|\) is as small as we want, and we have

$$\begin{aligned}&C \left| t_m - t_n\right| ^{ \alpha } t_n^{- \alpha } \left\| u_{n}\right\| _{{\mathbb {X}}^{s_2}(\Omega )}< \frac{\epsilon }{4},\\&C \left( \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) |t_m-t_n|^{1-\alpha }< \frac{\epsilon }{4},\\&C \left( \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) |T_{\max }-t_m|^{\frac{\alpha s_1 - \alpha s_2 +2}{2} } < \frac{\epsilon }{4}, \end{aligned}$$

and

$$\begin{aligned} C \left( \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1-\theta } + \left( R_0 + \big \Vert u_0\big \Vert _{W^{s,q}(\Omega )} \right) ^{p-1+\theta } \right) |T_{\max }-t_n|^{\frac{\alpha s_1 - \alpha s_2 +2}{2} } < \frac{\epsilon }{4}. \end{aligned}$$

Hence, given \(\epsilon >0\) there exists \(N \in {\mathbb {N}}\) such that

$$\begin{aligned} \big \Vert u(\cdot ,t_{m})-u(\cdot ,t_n)\big \Vert _{W^{s,q}(\Omega )} < \epsilon , \quad \hbox {for}~~m,n \ge N. \end{aligned}$$
(3.80)

It follows that \(\{u(\cdot ,t_n)\}_{n\in {{\mathbb {N}}}} \subset W^{s,q}(\Omega )\) is a Cauchy sequences and for \(\{t_n\}_{n\in {\mathbb {N}}^*}\) arbitrary we have proved the existence of the limit

$$\begin{aligned} \lim _{t\rightarrow T_{\max }^-} \left\| u(\cdot ,t)\right\| _{W^{s,q}(\Omega )} < \infty . \end{aligned}$$

FRom our previos result we deduce that the solution can extended to some larger interval (u can be continued beyond \( T_{\max }\)), and this contradict the definition of \( T_{\max }\). Thus, either \( T_{\max } = \infty \) or if \( T_{\max }<\infty \) then \(\lim _{t\rightarrow T_{\max }^-} \left\| u(\cdot ,t)\right\| _{W^{s,q}(\Omega )} = \infty \). The proof of Theorem 3.4 is finished. \(\square \)