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Abstract. In this paper, we discuss an initial value problem for the semilinear time-fractional diffusion equation. The local
well-posedness (existence and regularity) is presented when the source term satisfies a global Lipschitz condition. The unique
continuation of solution and finite time blowup result are presented when the reaction terms are logarithmic functions (local
Lipschitz types).
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1. Introduction

Let & ¢ RY, (N > 1) be a bounded open set with boundary Q°. The main aim of the paper is
to study the properties of the solutions of a class of time-fractional diffusion equations involving the
so-called Riemann-Liouville (R-L) time-fractional derivative. More precisely, we consider the following
initial value problem:

o al—a
ﬁu(x,t) = —W.Au(x,t) +F(u), z€Q, 0<t<T,
u(xz,t) =0, reQ, 0<t<T, (P)
u(z,0) = up(z), x €,
l1-a
where T' > 0, a € (0, 1) is real number and ETR denotes the R-L time-fractional derivative of order
1 — « of the function u formally given by
ot—e d
——f(t) ==t (T*f) (¢ t>0 1.1
s /()= JHTUH @), 1> 0, (1)

where the Riemann-Liouville fractional integral operator J< : L?(0,T) — L?(0,T) is defined by the
formula (see, e.g., [1])

t
1 / 4
o —— | T f(t — 7)dT, 0<a<l,
(7°9)(6) = { T(a) J
f(0), a=0,
and T'(+) is the Gamma function. The operator A is a linear, positive definite, self-adjoint operator with

compact inverse in L?(Q), u = u(x,t) is the state of the unknown function and ug(x) is a given function.
The function F' is a nonlinear source term which appears in some physical phenomena [2—4].

(1.2)
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When a =1 and A = —A problem P describes the nonlinear heat Eq. [2,5-7]

%u(w,t) — Au(z,t) = F(u). (1.3)
If & € (0,1), Problem P is called an initial value problem for the semilinear time-fractional diffusion
equation; we refer the reader to [3,8-10] and the references therein. Many important physical models
and practical problems require one to consider the diffusion model with a fractional derivative rather
than a classical one, like physical models considering memory effects [2—4,11-13] and some corresponding
engineering problems [2,3,14,15] with power-law memory (non-local effects) in time [4,8,16-20]. For
nonlinearities of power-type F(u) = |u[P~!u for p > 1, Bruno de Andrade et al. [3] considered the
fractional reaction—diffusion equation to discuss the global well-posedness and asymptotic behavior of
solutions; see also [7,21] and the references therein. Studies of logarithmic nonlinearity have a long history
in physics as they occur naturally in inflation cosmology, quantum mechanics, and nuclear physics [22]
and PDEs with logarithmic nonlinearity have attracted many authors; see [23-26] and the references
therein.

Results on initial value problems for R-L time-fractional diffusion equation with logarithmic nonlin-
earity are quite limited. The solution operator of our problem E, ; (—At*) brings some difficulties in
estimating and analyzing the solution (existence and regularity estimate of the solutions). We consider
the model with the source terms F,(u) = nV,(u)log|u| and V,(u) = |[u[P~?u, p > 2,7 > 0 (locally
Lipschitz type). To present the properties of the solutions in W*4(Q)), we need to consider the Lipschitz
properties of the source function (both global Lipschitz property and local Lipschitz property). Based on
the conditions of the constants s,q depending on the dimensions N > 1 and the constant s > 0, we set
up the Sobolev embeddings X*(Q2) — W*9(Q2) — LP(Q) (see the definition of the spaces W*9(2) and
X#() in (2.3) and (2.7) below).

In Sect. 2, we present some basic definitions and the setting for our work. Moreover, we obtain a precise
representation of solutions using Mittag—Leffler operators. In Sect. 3, we first present local well-posedness
results when the source term satisfies a global Lipschitz condition. Also local existence, continuation of
solutions and finite time blowup results are presented when the source terms are logarithmic functions.

2. Notations and preliminaries
2.1. Relevant notations and the functional spaces

Given two positive quantities y, z, we write y < z if there exists a constant C' > 0 such that y < Cz. Let
us recall that the spectral problem

{A@(x) = Noi(x),  TeQ, oe(0,1], 3.1)
¢;(z) =0, x € 09,

admits a family of eigenvalues
O<A <A< A3 <A< S oo
Given a Banach space B, let C([0,T]; B) be the set of all continuous functions which map [0, 7] into B.

The norm of the function space C*([0,T7]; B), for 0 < k < co is denoted by
k

Iollox o.17:8) = ;tes[%%] [v@ ()] 5 < oo (2.2)

For any real numbers s > 0 and 1 < p < oo, we recall the fractional Sobolev-type spaces W*P(Q) via
the Gagliardo approach (also called Aronszajn or Slobodeckij spaces). Fix a number s € (0,1) and for
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any p € [1,00), define W*P(Q) as follows

WeP(Q) = {v crr(©) st PE VWL g Q)} (2.3)

N+ps‘
lz—y|l 7

For 0 < s < 1, it can be said that W*P(€2) is an intermediate Banach space between LP(2) and W1P(Q),
endowed the corresponding norm

R — / ofPde + / /\v 0 doay ) (2.4

’v|WS,p = //‘U N+Sp d:cdy , (2.5)

Q Q

D=

where the seminorm

denotes the Gagliardo (semi)norm of v. For p = 2 in (2.3), together with the norm |[-[|y;..o(q, the space

———W3(Q
becomes a Hilbert space. Let us also set WOS’2(Q) =Cx(Q) “. It is well known that if £ is bounded,
then we have the following continuous embeddings:
L~ (), if s<%,
W52 (Q) — { Lr(Q), if s= g (2.6)

Cosm3(Q),  if s>

for more details on fractional Sobolev spaces see [17,27] and the references therein.
For each number s > 0, we define

X(Q) = { v =Y 00 € LX(Q) : [ll o) = ZW <oop, v = / v(@)¢;(@)de.  (27)
J=1 Q
Let us denote by H*(2) the Sobolev—Slobodecki space W*?(2) when p = 2, and by H () the closure of
C®(Q) in H*(Q). Throughout this paper, €2 is assumed to be smooth enough such that C°(Q) is dense
in H*(2) for 0 < s < 3. This guarantees H({2) = H*(2). Moreover, it is well-known that

Hi(€2), for0§s<%,
1/2 1/2
X5(Q) = H(;({ Q)< HO/ (Q), for sl =1
HO(Q)’ for 3 <s< 1,
HY Q)N H(Q), for 1 < s <2,

where we denote by H / ’ (€) the Lions-Magenes space. Let X~¥(£2) be the duality of X* which corresponds
to the dual inner product (*;+) 4 Then, the operator A° : X*(2) — X7%(€2) of the fractional power s
can be defined by

Alv = ZA]S (v,d)j)_&S ¢j, YveX°.
j=1

The above settings can be found in [28] (Sect. 3) and [29] (Sect. 2). In the next lemmas, we present some
useful embeddings between the spaces mentioned above.

Lemma 2.1. Given 1 <p,p’ <o0,0<s< 5 <0 cmds’—%Zs—%. Then

WeP (Q) — WSP(Q). (2.8)
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Lemma 2.2. Let 0 < s < s’ <2 and let H*(Q) be the dual space of H§(Y). Then the following embeddings
hold

X*(Q) — L*(Q) — X~%(Q), (2.9)

and

X (Q) = X3(Q) — H*(Q) — L*(Q) — H*(Q) — X 5(Q) — X~ (Q). (2.10)
2.2. Properties of Mittag—Leffler functions and some related results

The Mittag—Leffler function is defined by (see [30])

Bow(2)=y — , 2.11
=2 Farray 7€ (211)

where @ > 0 and o’ € R are arbitrary constants, I" is the usual gamma function.
Next, we give some properties of the Mittag—Leffler function. Let o’ € R, and « € (0, 2), we have:
c
1+ |2|’

|Ea,a’(_z)| < T <arg(z) <,

where C' > 0 depends on «, o/, 7 and ’TTO‘/ < 7 < min{m, ma'} (see e.g. [30]).

Lemma 2.3. (See [30,31]) For 0 < a; < as < 1 and a € [ay, as), there exist positive constants C, C, such
that

(a) Eqi(—2)>0, forany z>0; (2.12a)
c C
—— < Eq o (—2) < "eR . 2.12
(b) 12 = oo ( Z)_1+z’ for o/ €R, 2>0 (2.12b)

Lemma 2.4. (See [31]) Let o, A,y are positive constants, and for every t > 0,n € N, we have
d'fL

(a) an

(b) [Nt Eg o (—AY)| < CtOTTT. (2.13b)

[Ea,l(_)\ta)] = _)\ta_nEa,afnle(_)\ta); (213&)

Lemma 2.5. (See [32]) The following equality holds

Eyi1(—2) = /./\/la(s)e_zsds, for zeC, (2.14)
0
where we recall the definition of the Wright-type function
Ma(s) ::;j!F(—aj+l—a)’ 0<a<l. (2.15)

Moreover, My (s) is a probability density function, that is,

Mqu(s) >0, fors>0; and /./\/la(s)ds =1 (2.16)
0
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Lemma 2.6. (See [3], expression (6), for A = —A) The function u is a mild solution of P if u €
C([0,T); L?(R)) and satisfies the following integral equation

u(t) = Eq1(—t*A)ug + /Ea’l(—(t —71)*A)F(u)(T)dr (2.17)
0

forallt <T, and o € (0,1).

Lemma 2.7. (a) (Weakly singular Gronwall’s inequality, see [33], Theorem 1.2, page 2) Let a,b, 3,3 be
non-negative constants and (3,3 < 1. Assume that o € L'[0,T] satisfies

t

o(t) < at™" + b/(t — )P p(s)ds, forae te(0,T). (2.18)
0
Then there exists a constant C(b, 3, T) such that
at="

o(t) <C(1,4.T)

et for a.e. t€(0,T). (2.19)

(b) (Fractional Gronwall’s inequality, see [34], Corollary 2) Assume 3 > 0, ¢ is nonnegative, locally
integrable, and

o(t) <ath / (t — )51 p(s)ds,
0

on (0,T), where a, b are positive constants. Then,
() < aBg (b0(B)17),  on (0,T).
Lemma 2.8. (a) For z > 0, then there exists a constant C > 0 depending on 0 such that

1 <Cz? 1
{}ogz’_Cz , for >0, 0<z<1, (2.20)

|log z| < C27, for >0, z>1.

(b) (Hélder’s inequality for negative exponents) (see [35]) Let k' < 0, and k € R be such that 2 + =1
and f(x),g(x) >0, Yo € Q are Lebesgue measurable functions. Then

/fgdacz /|f\k/dx /|g|kdx . (2.21)
Q Q Q

Proof. The proof of inequalities (2.20) and (2.21) are elementary, so we omit them here. O

Lemma 2.9. (See [17,27]) Let Q@ C RN, k,m € N with k > m satisfying (k —m)p < N and 1 < p < .
Then we have the following Sobolev embeddings

(SEl) : Wk,p(Q) — Wm’q(Q>7 fO’I” 1 S q < pz7m7

(SE2) : XS(Q) — HS(Q), for s>0,
(SE3): LP(Q) — X5(9), for ¥ <s<o, p>2r, (2.22)
(SE4) : X5(Q) — LP(Q), for 0<s<¥  p<ar
where py .., 25 are the so-called fractional Sobolev exponents, given by
L _lym kg L2108 (2.23)

Pown P N N’ 2r 2 N’
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3. Main results
3.1. The case when the source terms are globally Lipchitz functions

In this section, we will study the existence and uniqueness of mild solutions to problem P. First we assume
the global Lipschitz continuity and the time Holder continuity on the nonlinear term. More precisely, we
suppose that F': XP(Q) — X?(Q2), F'(0) =0, and

HF(UI) _F(UQ)HX‘I(Q) SKHU]_ (31)

- “2pr(sz)’

where K : [0,T] — R, and p, g are real numbers.
Our results in this section present the local well-posedness of the problem. Here, Zg 4((0,T]; X9(Q2))
denotes the weighted space of all functions v € C((0,T]; X?(£2)) such that

1vl|z5 a0, 1)5x0(02)) 7= sup tﬁefdtﬂv(tw)ﬂxq(n) <00
te(0,T]

where 8 > 0, d > 0. First we state the following lemma which will be useful in our main results. (This
lemma can be found in [36], Lemma 8, page 9.)

Lemma 3.1. Let a > —1, b > —1 such that a+b > —1, h > 0 and t € [0,T]. For p > 0, the following
limit holds
1

lim | sup th/sa(l—s)bef“t(lfs)ds =0.
H—00 \ ¢t€[0,T

Now, we are in the position to introduce the main contributions of this work. Our main results address
the existence and regularity of the mild solution.

Theorem 3.1. Let 0 < 5 < 1. Assume that ¢ — p < min{@,%}. Let ug € X9=27(Q)) for any

0 <7 < min {g, 1}. Then Problem P has a unique solution u in Zg q4,((0,T]; X9(Q)) with some dy > 0.

Moreover, there exist positive constant C independently of t,x and for 1/2 < < 1,1 - < a < 1/2
such that

Hu("t)HXP(Q)) = Ct_ﬂedtHUOHquzw(Q)' (3.2)

Proof. Define the mapping B : Zg 4((0,T]; XP(Q2)) — Zp,4((0,T]; XP(Q2)), d > 0, by
Bw(t) := Eq1(—t"A)ug + /E%l(—(t —7)*A)F(w)(1)dr. (3.3)
0

In what follows, we shall prove the existence of a unique solution of Problem P. This is based on the
Banach principal argument. First, since 0 < v < 1, we have

|Eas o]’ = 3 (a0, 6)? (B (A7)

Xr(Q))

<.
I
—

Cc? oo _
< AL S CHTNN " (ug, 6) AT (3.4)

2
o) T

M2

Jj=1

<.
Il
—

It follows from the condition 5 > a-y that

tﬁe_dtHEaﬁl(—taA)“OHXp(m) < CP = |ugl|xo-21(0)) < CT ™7 [Jug|[x-2v(q))- (3.5)
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From the latter inequality, we deduce that ug € Zg4((0,T];XP(€2)). Indeed, for wi,ws € Zg q4((0,T];
XP(2)), we have
H%Uh - %w2|’2[, 4((0 T]~XP(Q))

~ sup P dtH/E —(t — 7)* A) [F(w (T))—F(wQ(T))}dT]

t€(0,7) Xr(Q)
< sup o / | Ban (=t = A [Fwn(r) = Flws(r))] | dr
t€(0,7] Xr(Q)
<C sup tle /(t—T)—a‘“z # P () - Fls(r))|
t€(0,T) X1(Q)
t
_ s _ )M B —d(t-T)
< CK|jn WHZB,d((o,T];XP(Q)) tes(t(l)%)T]t /(t )" dr. (3.6)
We derive the estimate
H%wl - %wQHZﬁ,d((o,T];XP(Q)) = gdHUl - UQHZ[;@((O,T];XP(Q))’
where
¢
Ly=1P /(t — T)_a(q;p) rBe=dt=T)qr.
0
From the conditions of «, 3, p, ¢, we find that
B— ala=p) 0, _ola=p) -1, —B8> -1, _ola=p) — B> -1
2 2 2
Applying Lemma 3.1, we obtain that
t
lim %; := K lim sup tﬂ/ (t—7) — R B (t-T)d g,
d—o0 #=00 | ¢€(0,T)
0
1
= K lim sup #8= = p)/ a(q;p)T*ﬁe*t(l*T)ddT
d—oo \ ¢e(0,T)
0
=0. (3.7)

Hence, there exists a positive d > 0 such that 9B is a contraction mapping on Zg 4, ((0, T]; XP(£2)). This
together with (3.5) leads to Bw € Zg 4,((0,T]; XP(Q)) if w € Zg,q,((0,T); XP(2)). Hence, we conclude
that 9B has a fixed point u in Zg 4,((0,T]; XP(2)), i.e, u is a unique mild solution of Problem P.

This and the technique in (3.6) yields

(e g < [ Ear(-tual )+ [ Bt = nra)FGir)
0

dr
Xp(Q)
— (q p)
< Ct (X’YH’U/OHX:D*TV(Q)) + CK/(t -7) Hu )HXP(Q)dT‘ (3.8)
0
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Multiplying both sides to t?e~%, we find that
t

< e |up |l gp-2r () + CE 1o / (t— 1)
0

(q p)

tPe™||ut, )|xo o) )l zo 0y s (39)

By applying the Holder inequality, and then using e~ 24*~7) < 1, we can find some positive constant .#
such that
t
_ a(q p)
Pt [t =)= )
0

[SIE

1
2

t t
(t” Je—ny e metenan | f—n (e uts g ) o
0 0

IN

=

1
2 t

1
< | 28 )/1—7 2 /(t—f)_a(q‘;p) (Tﬁ ~ |t >szv<sz>)2d7
0 0
t ) 2
< / (6= )5 (e fulr, Dl o) A7 | (3.10)

0
Taking the estimate (3.8), and (3.10) together gives that
¢
%ﬁ,d(t) < 2026_2dtt2ﬂ_2a’y||U0||§gp—2w(g)) + |,///|202K2 /(t o 7_)_
0

a(T)dr, (3.11)

where

Up,a(t) = (tﬁe_dt [ut, ) HXP(Q)> 2'

Applying Lemma 2.7(b), we deduce that

2
The proof of Theorem 3.1 is completed. O

Upa(t) < 2Tl Byt (PR (1= SO Yot} )

3.2. The case when the source terms are locally Lipschitz functions

Next, we shall present the results when the source terms are logarithmic nonlinearities of the following
type F,(u) = nV,(u)log|u| and V,(u) = |u|P~2u, for p > 2,1 > 0.

Remark 3.1. For the source terms of polynomial type nonlinearities, i.e., Fj,(u) = V,(u) a simpler result
was considered in [2,5].

Lemma 3.2. For F,(u)(z,t) = nVp(u)log|u| € L>*(Q x (0,T) x R), p > 2,17 > 0, there exists a positive
constant C' such that

|Fp(u) — Fp(w)| < C (| log |ul| [u — w| 4 [ulP~?| log |ul| |u — w])
+C(|w|p_2|log|u|’ |u — w| —i—|w|pi2 |u—w|) , (3.13)
for all (z,t) € QA x (0,T), Yu,w € R.
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Proof. For (z,t) € Q x (0,T) and u,w € R, we have
’Fp(u) - Fp(w)| = n’Vp(u) log |u| — V,(w) log |w|’
< (V) — V()| og ful| + V()| | o [u] — log ]} (3.14)
Thanks to the results in [5], we have that

Vo) = V()| = [ul?"2u ~ w2

<O+ [ufP~2 + [wP~2)|u — wl. (3.15)

Using the basic inequality log(1 + z) < z for z > 0, one has

‘1og|u| —10g\w|| = |log |1 + |u_|w'H
|wl
- log<1+|u_w|)‘<|u_w|‘ (3.16)
From (3.14)—(3.16), we have the proof of Lemma 3.2. .

Theorem 3.2. (Local existence) Let o € (0,1), N > 1,p > 2,0 < s < sg, for 0 < so < N/2. Let

1<¢< min{2§278; #995} with 23, ; satisfying L = 1452 gndgs < N. Let ug € X2(Q)NW*4(Q),

*
252

and for the nonlinearity source of logarithmic funétz’on type

Fy(u) =nVy(u)loglu|, for Vy(u) = |u|p_2u, with p > 2,m > 0,

then there is a time constant T > 0 (depending only on ug) such that Problem P has a unique mild
solution belonging to C([0,T]; W*1(Q)).

Remark 3.2. In Theorem 3.2, for N > 1, and 0 < s5 < N/2 let us choose N = 3,39 = 1. From the
conditions

< 2sy,s €N, s =0, € |1,6], ,
5 e oN this implies that N ¢€ 1,6, or (3.17)
ISQS N+25—2s52" 8217 qe [1;2]

Then, the Problem P has a unique mild solution u € C([0,77; L4(2)), 1 < ¢ < 6,0r u € C([0,T]; W14(Q)),
for1 <g<2.

Proof. For N >1,p>2,0<6 <p—1 (0 is defined in Lemma 2.8), we put

—1)N
0§52<min{1;(p2)}, 81 = psy — ¥, (3.18)
P
s € N satisfies s<s 1<¢g<min<27 N0 (3.19)
2, >4 SQ’S,N—F@S ) .
max {pss; Z(a,b)} < s* < min < psy + 5 1+(p—1)s2¢, (3.20)

where 27, , =1+ £ — %2, and Z(a,b) be defined by

52,8

N(2pa — gb) + 2 b—
Z(a7b) _ ( pa q );;]bPQ(SQ Sa)’ (321)

with the pairs (a, ) as follows:

(a’ﬂb) € {(13 ]‘)ﬂ (9’ 1)7 (p - 27 1)3 (9717 - 1)7 (97p - 1)7 (p - 2,]) - 1)}; for 6 > 0.
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Let T > 0 and R > 0 to be chosen later, and we consider the following space
W ::{u e C([0, T); W*49(Q)) : u(-,0) = ug, and ||u(7t) — uo”Wm,q(Q) < R}, (3.22)

for 0 < a < 1, and we define the mapping M on W by

Mu(t) = Eq 1 (—t*A)ug + / Eo1(—(t = 1) A)F,(u)(r)dr
0
= By (—t Ao + J(F(u))(2). (3.23)

We show that M is invariant in W and M is a contraction.
o Claim I Tf up € X52(Q) N W=4(Q), then M is W-invariant. In fact, from Lemma 2.3(b), we have

[ Ea1(—At%)uo — uo 52@2(9) Z Uo, ¢J Eaa (=At%) — 1)?* AS
1)y (u0,65)° A2
j=1
< Clluoleney -Vt € (0,71, (3.24)

From (3.19), one has s < sy and 1 < g < 2*
then, we conclude from (3.24) that

and we have that X°2(Q) — H*2(Q) — W*=9(Q) and

892,89

[Ea1 (—AL*) uo = vollyyeaiq) < Clluol

xoaqqys tE(0,T]. (3.25)

From (3.20), we have psa < s* < 14(p—1)s2, this implies that 0 < so—s; < 1 and for pss < s* < p52+N

or —% < pse —s* < 0 thus —% < 51 < 0. Taking 21 = %— 2 and combine with Lemma 2.9, we obtain
s1

L*1(Q) — X1 (). Using Lemma 2.3(b), we have for ¢ € (0, 7]

t
1T E@) )] ey < / | Bt (= (¢ = ) A) By () (1)l o0 ) AT
0
. - N
< [ (S .o A?l(m-um) dT
o \J=1 ’
t
< o [P NE e, o

0

< c/@ 1) )72, (3.26)
0
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Let usset Q™ :={z € Q: |u(z)] < 1} and QT := {zx € Q : |u(x)| > 1}. Using Holder’s
Q

<(C /‘log’uHPQ:l dx /|u’p2:1dx
Q Q

/|log|u\‘p2:1dx+/|10g|u|’p2:1dx /’u‘pQ;ldw
- ot Q

/‘log\quz;ldx /|log|u||p2:1dm
- +

where we have used the elementary inequality (a+b)¢ < a®+b¢, for 0 < ¢ < 1. From t
for |u(x)] < 1, Vx € Q, by applying Lemma 2.8b) for k' = —p2—1* < 0, we have

.
%o dx

log [ul

P

P

p—1

P

IN

IA

/|log\u|‘p ade | <C /|u % g
i —2
/‘ p02 o
1+p2:1
P23,
<C / lu(x)|da / 1dx
14+p2%
< OJull oy 1
From the inequality (2.20) for |u(z)| > 1, we have
1 1
/ ’10g |u|’1)2:1 dz < C / |u($)’1792:1d < CH H pezsl (Q)
+ +

From (3.27), (3.28) and (3.29), we conclude that

1Ep ) 2, 0y < € (lull oy + Il gz, o ) Il -

For s > 0,gs < N, and g < this implies that ¢¥ < 6 with ¢} satisfies

1 1

a g

N+9 ’
S

N7

[ 1o
Q
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inequality, we have

p—1

p

(3.27)

)

he inequality (2.20)

_2*

S1

(3.28)

(3.29)

(3.30)

we deduce from Lemma 2.9 that the following Sobolev embedding holds L?(Q) < W*4(Q). Then we get

that

HUHW%'J(Q) = CH“HLO(Q)’
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and for 6 > 0, we have that

—0
lull 2oy < Cllullwree oy

From (3.21), the constant s* > Z(1,1), [for Z(1,1) defined in (3.21)] and observe that

2Np 2Np 2Np Ngq

2% = =q: 3.31
Pess = N Z 251 N+2s*—2p32 <N—|—22(1,1)—2p52 N — sq s (3:31)

then we also obtain W#9(Q) — L%+ (). For s* > Z(6,1) [for Z(0,1) defined in (3.21)], we infer that

2N 2N 2N
P25 = pb P

— = — 0 < *’
N —2s; N +2s* — 2pso b N—&—QZ(H,I)—stQ*qS

this implies that W=9(Q) < LPY?+ (Q). This implies that

1E @) 22, ) < C ([elleaiay + 1elagey ) lelloay

and from (3.26), and for 0 < 6 < p — 1, we have

t

The (RHS) of (320) < € [ (¢ =77 ([l 1)y + ey oy) Pl
0

<c [t ()l + e e, dr

0
p—1—0 p 146
<0 (R Tolhyon)™ ™+ (4 Blyrn) ™) [ r-var
0
p—1—-0 p—1+6 t
<C ((m lwollyroey)  + (B lluollynagey) ) o (332)
where from (3.22), we have that ||u(~,T)HWS)q(Q) <R+ ||u0||W5"I(Q)’ for all 7 € [0, T]. From (3.26), (3.32),
we obtain that for ¢ € (0,7]
p—1—0 p—1+6
Doy < (R )+ (Bt folhyon) ™ )07 63)

For the constants s,q satisfying (3.19), we have that X*2(Q) — W*4(Q) and o € (0,1), and for all
t € 10,77, we get

p—1—6 p—1+46 1o
IHEDOlleniey < (R [0llonay) (R foollyonay) ) T @30
Hence, from (3.24) and (3.34), for every t € (0,71,
IMu(t) = uollyys.a(q)

p—1—0 p—1+6
< Clluollxez (o) +C <(R+ HUOHWS=¢1(SZ)) + (R+ HUOHWS»‘I(Q)) ) i (3.35)
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Therefore we see that if R = 2C |||z (q) and for the constant C' >0, § < p — 1 such that

—1-0
R>2C (Rt [uollyyny) T
and
—1+6
R>2C (Rt [uollypony) T

Then, we imply M is invariant in W.

e Claim II M : W — W is a contraction map. Let u,w € W, and similar to (3.26) and using

Lemma 2.3(b), one has for every t € (0,71,

[Mu(t) — Mw ()]

xe2(0) = I (F (@) () = J(F(w))(#)]

t

<c / (t = 7)70|| By (u) (-, 7) — Fy(w)(-,7)|

X¢2(Q)

o (Q)dT

[}

t

<C / (t = 7) " [ Fp() (1) = Fp(w) (5 1) 2z, g AT,

0

in which we used the Sobolev embedding L1 (Q) — X*1(), for ;- =

1
2% 2
S1
recalling Lemma 3.2, we arrive at

1By () = Fy(w)ll 22, ) < C ||| 108 full Ju = w |

)—l—CH\u|p72|log|u\| |u—w|‘

LQ':I © LQ':I Q)
+C [l [og ful| Ju = w| ... ot [l ] . .
For the constant 23 > 1, using Holder’s inequality, we get
H|lo ul| u — wl % */(|10 |u\||u7w|)2:1 dx*/|lo |ul 2l — wl® de
g ) g = g
Q Q
p=1 1
* P P
P25y 2"
< | [roslallFar ) ([ lu-wpas
Q Q
p—1 1
< /}log\UH’” dx+/!10gIUI|’” da /|u—w|p 1 da
\Q_ O+ Q
p=1 p=1 1
< / |10g|u||"‘1da: + /|log|u||F"1 dx /|u_w’p 1 de
_ . A

(3.36)

(3.37)

(3.38)
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From the inequality (2.20) for |u(z)| < 1, Vx € §, we have

p—1

(7/ | log |u|T:}dx> N
ol o) <((

pP— 1+p2

e (0/ m(zﬂedm) (ﬂ[ m) o

where we have chosen k' = —5211 < 0 in Lemma 2.8(b). For |u(z)| > 1, Vz € Q,

s1

p—1

p92

7"1d3:

7251

p—1

pZ:l S péZ:l P
(7/ ‘10g|u""1dx) <C (ﬂ/ ‘u(x)’”‘ldx>
+ +

From (3.38), (3.39) and (3.40), we conclude that

H‘log\u“‘u—

Thanks to Holder’s inequality, we get that

Q

Similar to (3.39) and (3.40), we have the following estimate

p;E ot p—2
log |ul|| P~ zdx < log |u T"‘l’dx log |ul| P~ de
(/! ul ) (ﬁ! ul ) (7\ ul )

~02: :
_c@wm@+wu@

02 )
5 :
L »=2 (Q)

Combining (3.42) and (3.43), we get that

lal?=  tog Jul[Ju = wl]] 422,

<0 (i + 1l oy

2 Q)

ity < € (Il + ol e,

_p-1
) :

_p2* p—1+p2
< Oful gy 197

027
< Clful| s,
L »-1 (Q)

we have

o) 1=l o

/ (|u|p72| log |ul||u — wDQ:1 de = / |u| P22 | log |u||2:1 lu — w|2:1 dz
Q

p=2 A )
: (/|10g|u|25%dg;) (/|“|p(p2)2:1dsc) (/|uw|P2.§1dx)
Q J J

) el g o=l o,

ZAMP

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
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Similarly,

| tog Jul|[u = w] || 22,

-2
<0 (Il + ol . ) ol = g, 345
We use the Holder’s inequality to obtain that

2% - :
L7 () :/(|w|p 2|u—wl)* do

leol?™* | = w]

Q
p—1 1
p(p 2)2* ’ o
< /|w\ dz /\u_w‘p s
Q Q
(p—2)2; 2*
< HU)H pp(p—z)égl Hu —w Lplzgl (Q)~ (3.46)

L r-1 (Q)

Combining the results obtained in (3.37), (3.41), (3.44), (3.45) and (3.46), we have

(4
B0 = )02, gy < € (ol + ol oy ) =l
€ (Il iy + I oy ) Nl gl =l

+c@umw+uum o) I g = el

+C wl” <7> Ju—wl| (3.47)
=

LP%5 Q)"
From (3.18)—(3.21) we have the following'

1

> For ¢¥ satisfying q% 1o , for ¢ < N]i%s and sqg < N, then ¢¥ < 6 and we deduce from Lemma

2.9 that LY(Q) — W*4(Q). ThlS implies that

H HLG(Q <CH Hqu(Q for0<6<p-1.

> For s* > Z(1,1), a similar argument with (3.31) and we observe that ¢} > p27 , and then we deduce
from Lemma 2.9 that the following Sobolev embedding holds W*4(Q) — LP%1 (Q).
> For s* > Z(p — 2,1), implies that
N 2p(p — 2)N 2p(p — 2)N
N —2s; N+2Z(p—2,1) — 2pss

<q, (3.48)

and we infer that W*4(Q) — LPP=2)2, (Q)
po2}%
> For s* > Z(,p — 1), we observe that * 51 < ¢, then we get W59(Q) < L7 1 ().

po2}
> For s* > Z(0,p — 2), we have poZs 5 < g3, and this implies that W*9(Q) — L =2 (Q).

p(p 2)2

% < ¢, and we infer that W*(Q) — L
p

S(Q).

> For s* > Z(p—2,p—1), implies
We can now combine the results above together with (3.47) to deduce that

(| Fp(u)(-, 1) )|,z ) <K(R,uo)Hu(.,t)—w(.,t)HWM(Q), (3.49)



161 Page 16 of 24 B. de Andrade et al. ZAMP

for all t € (0, 7], we have used that max {||u[ly=.q(0); |w|lw=a@) } < R+|uollwe.q(q), and for the constant
K(R,up) := K(N,p,0,s1, R, ||ug|/ws.aq)) but independent of ¢. From this, one observes that

The (RHS) of (3.36) < CK(R, ug) /(t = 7) " lul, 7) = w0 7)lea (o) AT

0
t

< CR(Ryug) [ (=17 (Juler7) = 0,7y 47

0
t

< CK(R, uo) Ju(, 7) = w(, 7)o zmweacen) / (t—7)dr

0
tlfoz
< CK(R,u0) 4 = wllogo zwniay 1 (3:50)

Inserting the result of (3.50) into (3.36), we obtain that

[Mu(t) — Mw(#)]

xea () < CK(R,u0)T % [lu = wl| ¢ o rpwe.aa)) -
For the constants s, ¢ satisfying (3.19), we have that X°2(Q) — W*9(Q), and
M = MWl oo, i a(ay) < CE (R u0) T Jlu = wll oo, rimwea ey - (3.51)

Choosing T, K (R, up) small enough such that CK(R,uo)T'~* < 1, it follows that M is a contraction
map on W. So, we invoke the contraction mapping principle to conclude that the map M has a unique
fixed point v in W. The proof of Theorem 3.2 is completed. U

Since we already know that the mild solution of P does exist, the question is whether it will continue
(continuation to a bigger interval of existence) and in what situation it is non-continuation by blowup.

Definition 3.1. Given a mild solution u € C([0,T]); W*9(Q2)) of P for a € (0,1), we say that u* is a
continuation of u in (0, T*] for T* > T if it is satisfies

{u* € C(IT, T*); W*4()) is a mild solution of (P) for all ¢ € [T, T*, (352)

u*(z,t) = u(x,t) whenever te€0,7],2 € Q.

Theorem 3.3. (Continuation) Suppose that the assumptions of Theorem 3.2 are satisfied. Then, the mild
solution (unique) on (0,T] of Problem P can be extended to the interval (0,T*], for some T* > T, so
that, the extended function is also the mild solution (unique) of Problem P on (0,T*].

Proof. Let w : [0,T] — W=4(2) be a mild solution of Problem P (T is the time from Theorem 3.2). Fix
R* > 0, and for T* > T, (T* depending on R*), we shall prove that w* : [0,7*] — W*=9(Q) is a mild
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solution of Problem P. Assume the following estimates hold:

R*

CT™(T*)* uollxez ) < T (3.53)
p—1-0 R*

C (R + e Do) @7 < 5 (3.5)
p—1+6 R*

¢ (R* + Hu('>T)HWs,q(Q)) (T*)l_a < = (3.55)
—1-6 as1—as R*

¢ (R+ HUOHW&q(Q))p (T%)" = s 3 (3.56)
p—1+46 as1—as R*

C (R+ Juoll .oy ()= < (3.57)

CK(R,up)(T*)tor—207 < T*’ (3.58)

where 0 < 0 < p—1 and K(R,ug) is defined in the proof of Theorem 3.2. For T* > T > 0 and R* > 0,
let us define

o) = u(-t), vt € (0,7,
t

* . * *1. T17S,q . ’U,*(
s {u € O THWHHD) e ) = uls Dllorrweacay < B Ve [T, T*]'} (3:59)

o Step I We show that M defined as in (3.23) is the operator on W*. Let u* € W* and we consider
two cases.

« If t € (0,T), then by virtue of Theorem 3.2, we have the Problem P has a unique solution and we
also have u*(-,t) = u(-,t). Thus Mu*(t) = Mu(t) = u(-,t) for all t € (0,T].
« If t € [T,T*], we have

IV (8) = (s T)
< [(Ba (~1%A) = By (~T°A) oy

[ 1B (== 7)) Byl o7
T

T
b [ 1 (== 7)) = Bt (<7 = 17 A) Byl )y O

= [ J2(wo) ) llye.aey + 173 (") Ol e.ay + 4@ Ol oo - (3.60)

Estimating the term [[.J2(uo)(t)|lyy .4 (o). using Lemma 2.5, we have for all t € [T', 7],

[ J2 (o) (t

en () = ZA (10, 7)% (Bay (—Ajt%) — Eo1 (=X T*))?
2

)\; (U(),¢J)2 /MQ(Z) ‘e—zkjto‘ _ e—z)\jT“‘dZ

Il
i :

-
I
-

E%g

A 1‘ dz

.
Il
_

X2 (o, 6;)° / Mo (z)e 0T
0
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For z > 0, using the inequality 1 —e™* < 2z, and ze™* < 1, one obtains

2
IOy < 3205 (" 0% =) [ Mole) (11 2
<3N (w0dy)” [ @0 =TT [ Mo
Jj=1 0
<(t- T)Qa T2 [[wol ?@2(9) ) (3.61)

where we have use the inequalities
o0
a®—b*<(a—0b)°, fora>b>0,ce(0,1), and /./\/la(z)dz =1.

For the constants s, ¢ satisfying (3.19), we have that X°2(Q) — W*9(Q). Hence, we get that

172 (o) () [y ey < C (¢ = T)* T [[uollye () < C(T*)* T [Jto|l o2 () - (3.62)
From (3.53), this implies that the following estimate holds
*\ ¢ R*
HJQ(UO)HC(OT*] Wea(Q) S CT=(T")" |luo| Xo2(Q) = e (3.63)

Similar to (3.32), we have the following estimate for all ¢ € [T, 7] (note that we can choose T* > T and
close enough to 7T')

175(u*) (D) [w.a () < C|[Js(w)(1)]

X2 (Q)

p—1—0 p—146
<cC ((R* e D lyeay) o+ (B [T yay) ) (t—T)'  (3.64)
where from (3.59), for all ¢ € [T, T*], we have used that
)y < R+ [ Dy
Using (3.54) and (3.55), we infer that

13 () o, r 1w ()

*

p—1—6 p—146 R
so((m||u<-,T>||Ws,q<m) + (B 4+ [l Dy )<T*>ws4. (3.65)

We continue with the estimate on the third term of (3.60), and using Lemma 2.3(b) and Lemma 2.4, we
obtain for all ¢ € [T, T*]

t—7

Ba (<35 (6= 1)) = Ba (4 (T = 7)) = | [ =327 B (-415%) 2

s1—s92

_ /AHSQ;SI 2 B (“A2%) dz| A, 7

52 $1 352

<C /z“” 71, )\ <O\ 7T (T-7)

as]—asg

(3.66)
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For the constant s; satisfying —% <51 <
X51(€2). Hence, we deduce that

174 (w") (#) | =2 (0

~—

N|=

INA
c\'ﬂ

ZA” u”) ),¢j>2|Ea,1<—Aj<t—T>“>—Ea,1<—Aj<T—T>“>|2> dr

N

IA
Q

St Ty T O

(Z X (T = )05 (B () (7). <z>j>2>

Jj=1

dr

(T—7)" 7 | Ep(ut)(7)]

IN

C

X51(€)

<0 [@ =T R, o 07

In the same way as in (3.32), and from (3.59), one obtains

The (RHS) of (3.67)

T
< C/(T - T) . (Hu(vT)H;VOSQ(Q) + Hu HWS a Q)) Hu )| I;[:sl,q(ﬂ)dT
0
1-6 1+6 :
p—1— pP— as]—as
<c ((m Fiollyoey) 4 (B ol )/(T—T) .
0

p—1-0 =140\ os)—aspt2
<C <(R+ Hu0||Ws,q(Q)) - (R+ Huollws,q(m) > TR

for 6 < p— 1. From (3.67), we have that X*2(Q) — W=9(Q) and obtain

X p—1-6 =140\ as)—ospt2
||J4(u )(t)HWs,q(Q) <C ((RJF HUOHWW(Q)) + (RJF HUOHWW(Q)) > T ’ ’

Thus, for t € (T, T*], we obtain

N p—1-6 p—1+0 oy 81z esnt2
0Ol < € (R Dl (Rt il )25

From (3.56) and (3.57), we get
x R
sl eqo,rpwesi) <
It follows from (3.63), (3.65), (3.71) that, for every t € [T, T*]
R* R* R*
HMU*_U( )HC[OT* qu(gz)) = 4 “"T"‘T < R".
We have shown that M is a map W* into W*.

= 5 — %, from Lemma 2.9, we obtain L% (Q) —

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)
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e Step II We show that M is a contraction on W*. Let u,w € W*, and we have that for 0 < ¢ < T™*,
t

Mu(t) — Muw(t) = /EQJ (—A(t—7)) (Fy(u)(r) = Fy(w)(7))dr, (3.72)
0

where we note that Mu(t) — Mw(¢) = 0, vanishes in W* for all ¢ € (0,7]. Then, for all ¢t € [0,7],
proceeding as in Claim (2) of the last theorem, we have

*

*\1—a R
||Mu(t) - Mw(t)| X=2(Q) < CK(R,uo)(T*)' ™ ||u - ch([o,T*];Ws,q(Q)) < o Ju— wHC([o,T*];WS,q(Q)) :

Thus, using the Sobolev embedding X*2(Q) — W#4(Q) with s, ¢ satisfying (3.19), for all T* > 0, so
without loss of generality, we may assume that 0 < R* < 4, and we infer that

[Mu - Mw], (3.73)

0,T+];Ws:4(R2)) = THU - UHC([(J:T*]:WS*“(Q))'

This implies that M is a R%—contraction. By the Banach contraction principle it follows that M has a

unique fixed point v* of M in W*, which is a continuation of w. This finishes the proof. O

The next results are on global existence or non-continuation by a blowup.

Definition 3.2. Let u(x,t) be a solution of P. We define the maximal existence time Tynax of u(x,t) as
follows:

(i) If u(z,t) exists for all 0 <t < oo, then Tyax = 00.
(ii) If there exists T € (0,00) such that u(z,t) exists for 0 < ¢ < T', but does not exist at ¢ = T', then
Toax = T.

Definition 3.3. Let u(z,t) be a solution of P. We say u(z, t) blows up in finite time if the maximal existence
time Tyhay is finite and

im  sup ([u(,t)|lyyea(q) = o©- (3.74)

t—Tmax

Theorem 3.4. (Global existence or finite time blowup) For N > 1,p > 2,0 < s < 289, for 0 < s5 < N/2

and1 < g < min{ 5.5 #%g} with 2%, . satisfying 2*1 = % + x5 — % and gs < N. For up € X*2(Q) N
: , e

W#1(Q), there exists a mazimal time Tax > 0 such that w € C([0, Tiax|; W*9(2)) is the mild solution
of P. Thus, either Problem P has a unique global mild solution on [0,00) or there exists a mazimal time
Tinax < 00 such that

lim  sup [Ju(-,t)|[weq@) = co.

t—Tmax
Proof. Let ug € X°2(Q) N W*=9(Q) and define

Tnax :=sup {T > 0 : there exits a solution on (0,77]} .

Assume that Tinax < 00, and [lu(-,t)||xs2 ) < Ro, for some Ry > 0. Now suppose there exists a sequence
{tn}tnen C [0, Tmax) such that ¢, — Tiax and {u(:, t,)}neny C X2(Q). Let us show that {u(-,t,)}nen is
a Cauchy sequence in X°2(Q). Indeed, given ¢ > 0, fix N € N such that for all n,m > N, 0 < t, < t,, <
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Tinax, We have

Hu(th) - “('7t”)HWs=q(Q)
< ”(Eoz,l (—tfén.A) —Ean (—tﬁA)) uO”ws,q(Q)

# [ 1B (= = 7" A By ey 0
[ 1ot (= (b0 = 7)" A) = Bt (= T = 77 A) Fy(0)(7) ey O
0

+ / ||(Eoc’1 (_ (Tmax - 7)a A) — Ean (_ (tm - T)Q) A) Fp(u)(T)||WS>Q(Q) dr

= ||J5(UO)||Ws,q(Q) + ||J6(U)||Ws-,q(9) + ||J7(u)||Wqu(Q) + ||J8(“)‘|Ws,q(9) : (3.75)
Similar to (3.61), and using the Sobolev embedding X®2(Q) — W*9(), we have that

||J5(u0)||WS=Q(Q) < C||J5(uo) ()] X52(Q) (3.76)

xez() < C ltm — tal® o [|uo|

In the same way as in (3.32), we get

p—1—-6 p—1+6 —a
”Jﬁ(u)(t)nwqu((}) <C <<RO + HUOHWs,q(Q)) + (RO + ||u0HWs,q(Q)) ) |tm - tn| : (3'77)

Similar to (3.68), we have

p—1-0 p—1+6 e o
172 (@lleo ey < © ((RO + HUOHWS"I(Q)) + (RO + ||UOHWSMI(Q)) ) A e
(3.78)

and

p—1—6 p—146
”JB(U)HWS»G(Q) <C ((RO + ||u0HWs,q(Q)) + (RO + HUOHWs,q(Q)) > |TmaX - tml

Qs —asgt2

(3.79)

Thus, since {t, }nen+ is convergent we can take N := N(e) € N* with m > n > N such that |t, —t,] is
as small as we want, and we have

Cltm — tn|at;a [l

€
x2() < 7

p—1—0
C ((RO + HUOHWM(Q)) + (Ro + HUOHWs,q(Q))
asj—asgt2 €

p—1—0 p—1+6
¢ ((Rot o)™+ (ot lolhyey)” ) e =l 55 < 5,

p—14+6 €
R

) [t — ta' ™% < 1

and

asy —asg+2 €

p—1—0 p—1+6
C ((RO + HUOHWM(Q)) + (RO + ||UOHW5=‘1(Q)) ) Tnax —tal 27 < 1
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Hence, given € > 0 there exists N € N such that
l|lu(, tm) — u(~,tn)HWS,q(Q) <e€, form,n>N. (3.80)

It follows that {u(-,tn) tneny C W*9(Q) is a Cauchy sequences and for {t, },en+ arbitrary we have proved
the existence of the limit

[, O)llyena oy < 0.

—Tmax
FRom our previos result we deduce that the solution can extended to some larger interval (u can be

continued beyond Thax ), and this contradict the definition of Ty,ax. Thus, either Tiax = 00 or if Thax < 00
then lim; ;.- [lu(+,?)[lyye.0(q) = 00. The proof of Theorem 3.4 is finished. O
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