Zeitschrift für angewandte **Mathematik und Physik ZAMP**

Well-posedness results for a class of semilinear time-fractional diffusion equations

Bruno de Andrade, Vo Van Au, Donal O'Regan and Nguyen Huy Tua[n](http://orcid.org/0000-0002-6962-1898)

Abstract. In this paper, we discuss an initial value problem for the semilinear time-fractional diffusion equation. The local well-posedness (existence and regularity) is presented when the source term satisfies a global Lipschitz condition. The unique continuation of solution and finite time blowup result are presented when the reaction terms are logarithmic functions (local Lipschitz types).

Mathematics Subject Classification. 26A33, 33E12, 35B40, 35K70, 44A20.

Keywords. Well-posedness, Blowup, Fractional calculus, Nonlinear problem.

1. Introduction

Let $\Omega \subset \mathbb{R}^N$, $(N \geq 1)$ be a bounded open set with boundary Ω^c . The main aim of the paper is to study the properties of the solutions of a class of time-fractional diffusion equations involving the so-called Riemann–Liouville (R–L) time-fractional derivative. More precisely, we consider the following initial value problem:

$$
\begin{cases}\n\frac{\partial}{\partial t}u(x,t) = -\frac{\partial^{1-\alpha}}{\partial t}\mathcal{A}u(x,t) + F(u), & x \in \Omega, \quad 0 < t \leq T, \\
u(x,t) = 0, & x \in \Omega^c, \quad 0 < t < T, \\
u(x,0) = u_0(x), & x \in \Omega,\n\end{cases} \tag{P}
$$

where $T > 0$, $\alpha \in (0, 1)$ is real number and $\frac{\partial^{1-\alpha}}{\partial t}u$ denotes the R–L time-fractional derivative of order $1 - \alpha$ of the function u formally given by

$$
\frac{\partial^{1-\alpha}}{\partial t}f(t) := \frac{\mathrm{d}}{\mathrm{d}}t\left(\mathcal{J}^{\alpha}f\right)(t), \quad t > 0,
$$
\n(1.1)

where the Riemann–Liouville fractional integral operator $\mathcal{J}^{\alpha}: L^2(0,T) \to L^2(0,T)$ is defined by the formula (see, e.g., $[1]$)

$$
(\mathcal{J}^{\alpha}f)(t) := \begin{cases} \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \tau^{\alpha-1} f(t-\tau) d\tau, & 0 < \alpha < 1, \\ f(t), & \alpha = 0, \end{cases}
$$
\n(1.2)

and $\Gamma(\cdot)$ is the Gamma function. The operator A is a linear, positive definite, self-adjoint operator with compact inverse in $L^2(\Omega)$, $u = u(x, t)$ is the state of the unknown function and $u_0(x)$ is a given function. The function F is a nonlinear source term which appears in some physical phenomena $[2-4]$ $[2-4]$.

ু Birkhäuser

When $\alpha = 1$ and $\mathcal{A} = -\Delta$ problem [P](#page-0-0) describes the nonlinear heat Eq. [\[2](#page-21-1)[,5](#page-21-4)[–7](#page-21-5)]

$$
\frac{\partial}{\partial t}u(x,t) - \Delta u(x,t) = F(u). \tag{1.3}
$$

If $\alpha \in (0, 1)$, [P](#page-0-0)roblem $\mathbb P$ is called an initial value problem for the semilinear time-fractional diffusion equation; we refer the reader to $[3,8-10]$ $[3,8-10]$ $[3,8-10]$ and the references therein. Many important physical models and practical problems require one to consider the diffusion model with a fractional derivative rather than a classical one, like physical models considering memory effects $[2-4, 11-13]$ $[2-4, 11-13]$ $[2-4, 11-13]$ $[2-4, 11-13]$ and some corresponding engineering problems $[2,3,14,15]$ $[2,3,14,15]$ $[2,3,14,15]$ $[2,3,14,15]$ with power-law memory (non-local effects) in time $[4,8,16-20]$ $[4,8,16-20]$ $[4,8,16-20]$ $[4,8,16-20]$ $[4,8,16-20]$. For nonlinearities of power-type $F(u) = |u|^{p-1}u$ for $p \ge 1$, Bruno de Andrade et al. [\[3\]](#page-21-6) considered the fractional reaction–diffusion equation to discuss the global well-posedness and asymptotic behavior of solutions; see also [\[7,](#page-21-5)[21\]](#page-22-1) and the references therein. Studies of logarithmic nonlinearity have a long history in physics as they occur naturally in inflation cosmology, quantum mechanics, and nuclear physics [\[22\]](#page-22-2) and PDEs with logarithmic nonlinearity have attracted many authors; see [\[23](#page-22-3)[–26\]](#page-22-4) and the references therein.

Results on initial value problems for R–L time-fractional diffusion equation with logarithmic nonlinearity are quite limited. The solution operator of our problem $E_{\alpha,1}$ ($-\mathcal{A}t^{\alpha}$) brings some difficulties in estimating and analyzing the solution (existence and regularity estimate of the solutions). We consider the model with the source terms $F_p(u) = \eta V_p(u) \log |u|$ and $V_p(u) = |u|^{p-2}u$, $p \ge 2, \eta > 0$ (locally Lipschitz type). To present the properties of the solutions in $W^{s,q}(\Omega)$, we need to consider the Lipschitz properties of the source function (both global Lipschitz property and local Lipschitz property). Based on the conditions of the constants s, q depending on the dimensions $N \geq 1$ and the constant $s > 0$, we set up the Sobolev embeddings $\mathbb{X}^s(\Omega) \hookrightarrow W^{s,q}(\Omega) \hookrightarrow L^p(\Omega)$ (see the definition of the spaces $W^{s,q}(\Omega)$ and $\mathbb{X}^{s}(\Omega)$ in [\(2.3\)](#page-2-0) and [\(2.7\)](#page-2-1) below).

In Sect. [2,](#page-1-0) we present some basic definitions and the setting for our work. Moreover, we obtain a precise representation of solutions using Mittag–Leffler operators. In Sect. [3,](#page-5-0) we first present local well-posedness results when the source term satisfies a global Lipschitz condition. Also local existence, continuation of solutions and finite time blowup results are presented when the source terms are logarithmic functions.

2. Notations and preliminaries

2.1. Relevant notations and the functional spaces

Given two positive quantities y, z , we write $y \lesssim z$ if there exists a constant $C > 0$ such that $y \leq Cz$. Let us recall that the spectral problem

$$
\begin{cases}\n\mathcal{A}\phi_j(x) = \lambda_j \phi_j(x), & x \in \Omega, \quad \sigma \in (0,1], \\
\phi_j(x) = 0, & x \in \partial\Omega,\n\end{cases}
$$
\n(2.1)

admits a family of eigenvalues

 $0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_j \leq \cdots \nearrow \infty.$

Given a Banach space B, let $C([0, T]; B)$ be the set of all continuous functions which map $[0, T]$ into B. The norm of the function space $C^k([0,T];B)$, for $0 \leq k \leq \infty$ is denoted by

$$
||v||_{C^{k}([0,T];B)} = \sum_{i=0}^{k} \sup_{t \in [0,T]} ||v^{(i)}(t)||_{B} < \infty.
$$
\n(2.2)

For any real numbers $s > 0$ and $1 \leq p < \infty$, we recall the fractional Sobolev-type spaces $W^{s,p}(\Omega)$ via the Gagliardo approach (also called Aronszajn or Slobodeckij spaces). Fix a number $s \in (0,1)$ and for

any $p \in [1,\infty)$, define $W^{s,p}(\Omega)$ as follows

$$
W^{s,p}(\Omega) = \left\{ v \in L^p(\Omega) \quad \text{s.t.} \quad \frac{|v(x) - v(y)|}{|x - y|^{\frac{N + ps}{p}}} \in L^p(\Omega \times \Omega) \right\}.
$$
 (2.3)

For $0 < s < 1$, it can be said that $W^{s,p}(\Omega)$ is an intermediate Banach space between $L^p(\Omega)$ and $W^{1,p}(\Omega)$, endowed the corresponding norm

$$
||v||_{W^{s,p}(\Omega)} = \left(\int_{\Omega} |v|^p dx + \int_{\Omega} \int_{\Omega} \frac{|v(x) - v(y)|^p}{|x - y|^{N + sp}} dx dy\right)^{\frac{1}{p}},\tag{2.4}
$$

where the seminorm

$$
|v|_{W^{s,p}(\Omega)} = \left(\int_{\Omega} \int \frac{|v(x) - v(y)|^p}{|x - y|^{N + sp}} \mathrm{d}x \mathrm{d}y\right)^{\frac{1}{p}},\tag{2.5}
$$

denotes the Gagliardo (semi)norm of v. For $p = 2$ in [\(2.3\)](#page-2-0), together with the norm $\lVert \cdot \rVert_{W^{s,2}(\Omega)}$ the space becomes a Hilbert space. Let us also set $W_0^{s,2}(\Omega) = \overline{C_c^{\infty}(\Omega)}^{W^{s,2}(\Omega)}$. It is well known that if Ω is bounded, then we have the following continuous embeddings:

$$
W_0^{s,2}(\Omega) \hookrightarrow \begin{cases} L^{\frac{2N}{N-2s}}(\Omega), & \text{if } s < \frac{N}{2}, \\ L^p(\Omega), & \text{if } s = \frac{N}{2}, \\ C^{0,s-\frac{N}{2}}(\Omega), & \text{if } s > \frac{N}{2}; \end{cases}
$$
(2.6)

for more details on fractional Sobolev spaces see [\[17](#page-21-14)[,27](#page-22-5)] and the references therein.

For each number $s \geq 0$, we define

$$
\mathbb{X}^s(\Omega) := \left\{ v = \sum_{j=1}^{\infty} v_j \phi_j \in L^2(\Omega) : ||v||^2_{\mathbb{X}^s(\Omega)} = \sum_{j=1}^{\infty} v_j^2 \lambda_j^s < \infty \right\}, \quad v_j = \int_{\Omega} v(x) \phi_j(x) \, \mathrm{d}x. \tag{2.7}
$$

Let us denote by $H^s(\Omega)$ the Sobolev–Slobodecki space $W^{s,p}(\Omega)$ when $p=2$, and by $H_0^s(\Omega)$ the closure of $C_c^{\infty}(\Omega)$ in $H^s(\Omega)$. Throughout this paper, Ω is assumed to be smooth enough such that $C_c^{\infty}(\Omega)$ is dense in $H^s(\Omega)$ for $0 < s < \frac{1}{2}$. This guarantees $H_0^s(\Omega) = H^s(\Omega)$. Moreover, it is well-known that

$$
\mathbb{X}^{s}(\Omega) = \begin{cases} H_0^{s}(\Omega), & \text{for } 0 \le s < \frac{1}{2}, \\ H_{00}^{1/2}(\Omega) \subsetneq H_0^{1/2}(\Omega), & \text{for } s = \frac{1}{2}, \\ H_0^{s}(\Omega), & \text{for } \frac{1}{2} < s \le 1, \\ H_0^{1}(\Omega) \cap H^{s}(\Omega), & \text{for } 1 < s \le 2, \end{cases}
$$

where we denote by $H_{00}^{1/2}(\Omega)$ the Lions–Magenes space. Let $\mathbb{X}^{-s}(\Omega)$ be the duality of \mathbb{X}^{s} which corresponds to the dual inner product $(\cdot, \cdot)_{-s,s}$. Then, the operator $\mathcal{A}^s : \mathbb{X}^s(\Omega) \to \mathbb{X}^{-s}(\Omega)$ of the fractional power s can be defined by

$$
\mathcal{A}^s v := \sum_{j=1}^{\infty} \lambda_j^s \left(v, \phi_j \right)_{-s,s} \phi_j, \quad \forall v \in \mathbb{X}^s.
$$

The above settings can be found in [\[28](#page-22-6)] (Sect. [3\)](#page-5-0) and [\[29\]](#page-22-7) (Sect. [2\)](#page-1-0). In the next lemmas, we present some useful embeddings between the spaces mentioned above.

Lemma 2.1. Given
$$
1 \le p, p' < \infty
$$
, $0 \le s \le s' < \infty$ and $s' - \frac{N}{p'} \ge s - \frac{N}{p}$. Then
\n
$$
W^{s',p'}(\Omega) \hookrightarrow W^{s,p}(\Omega). \tag{2.8}
$$

Lemma 2.2. *Let* $0 \le s \le s' \le 2$ *and let* $H^{-s}(\Omega)$ *be the dual space of* $H_0^s(\Omega)$ *. Then the following embeddings hold*

$$
\mathbb{X}^s(\Omega) \hookrightarrow L^2(\Omega) \hookrightarrow \mathbb{X}^{-s}(\Omega),\tag{2.9}
$$

and

$$
\mathbb{X}^{s'}(\Omega) \hookrightarrow \mathbb{X}^{s}(\Omega) \hookrightarrow H^{s}(\Omega) \hookrightarrow L^{2}(\Omega) \hookrightarrow H^{-s}(\Omega) \hookrightarrow \mathbb{X}^{-s'}(\Omega) \hookrightarrow \mathbb{X}^{-s'}(\Omega). \tag{2.10}
$$

2.2. Properties of Mittag–Leffler functions and some related results

The Mittag–Leffler function is defined by (see [\[30](#page-22-8)])

$$
E_{\alpha,\alpha'}(z) = \sum_{j=0}^{\infty} \frac{z^j}{\Gamma(\alpha j + \alpha')}, \quad z \in \mathbb{C},
$$
\n(2.11)

where $\alpha > 0$ and $\alpha' \in \mathbb{R}$ are arbitrary constants, Γ is the usual gamma function.

Next, we give some properties of the Mittag–Leffler function. Let $\alpha' \in \mathbb{R}$, and $\alpha \in (0, 2)$, we have:

$$
|E_{\alpha,\alpha'}(-z)| \leq \frac{C}{1+|z|}, \quad \tau \leq \arg(z) \leq \pi,
$$

where $C > 0$ depends on α, α', τ and $\frac{\pi \alpha'}{2} < \tau < \min{\lbrace \pi, \pi \alpha' \rbrace}$ (see e.g. [\[30\]](#page-22-8)).

Lemma 2.3. (See [\[30](#page-22-8)[,31](#page-22-9)]) *For* $0 < \alpha_1 < \alpha_2 < 1$ *and* $\alpha \in [\alpha_1, \alpha_2]$ *, there exist positive constants* $\underline{C}, \overline{C}$ *, such that*

(a)
$$
E_{\alpha,1}(-z) > 0
$$
, for any $z > 0$;
(2.12a)

(b)
$$
\frac{C}{1+z} \le E_{\alpha,\alpha'}(-z) \le \frac{C}{1+z}, \quad \text{for} \quad \alpha' \in \mathbb{R}, \ z > 0.
$$
 (2.12b)

Lemma 2.4. (See [\[31\]](#page-22-9)) *Let* α, λ, γ *are positive constants, and for every* $t > 0, n \in \mathbb{N}$ *, we have*

(a)
$$
\frac{d^n}{dt^n} [E_{\alpha,1}(-\lambda t^{\alpha})] = -\lambda t^{\alpha - n} E_{\alpha,\alpha - n + 1}(-\lambda t^{\alpha});
$$
 (2.13a)

(b)
$$
|\lambda^{\gamma}t^{\alpha-1}E_{\alpha,\alpha'}(-\lambda t^{\alpha})| \le Ct^{\alpha-1-\alpha\gamma}
$$
. (2.13b)

Lemma 2.5. (See [\[32\]](#page-22-10)) *The following equality holds*

$$
E_{\alpha,1}(-z) = \int_{0}^{\infty} \mathcal{M}_{\alpha}(s)e^{-zs}ds, \quad \text{for} \quad z \in \mathbb{C}, \tag{2.14}
$$

where we recall the definition of the Wright-type function

$$
\mathcal{M}_{\alpha}(s) := \sum_{j=0}^{\infty} \frac{s^j}{j! \Gamma(-\alpha j + 1 - \alpha)}, \quad 0 < \alpha < 1.
$$
\n(2.15)

Moreover, $\mathcal{M}_{\alpha}(s)$ *is a probability density function, that is,*

$$
\mathcal{M}_{\alpha}(s) \ge 0, \quad \text{for } s > 0; \quad \text{and} \quad \int_{0}^{\infty} \mathcal{M}_{\alpha}(s) \mathrm{d}s = 1. \tag{2.16}
$$

Lemma 2.6. (See [\[3\]](#page-21-6), expression (6), for $A = -\Delta$) *The function* u *is a mild solution of* \mathbb{P} \mathbb{P} \mathbb{P} *if* $u \in$ $C([0,T];L^2(\Omega))$ *and satisfies the following integral equation*

$$
u(t) = E_{\alpha,1}(-t^{\alpha}\mathcal{A})u_0 + \int_0^t E_{\alpha,1}(-(t-\tau)^{\alpha}\mathcal{A})F(u)(\tau)d\tau
$$
\n(2.17)

for all $t < T$ *, and* $\alpha \in (0, 1)$ *.*

Lemma 2.7. (a) (Weakly singular Grönwall's inequality, see [\[33](#page-22-11)], Theorem 1.2, page 2) Let a, b, β, β' be *non-negative constants and* $\beta, \beta' < 1$ *. Assume that* $\varphi \in L^1[0, T]$ *satisfies*

$$
\varphi(t) \le at^{-\beta} + b \int_0^t (t-s)^{-\beta'} \varphi(s) ds, \quad \text{for a.e.} \quad t \in (0, T]. \tag{2.18}
$$

Then there exists a constant $C(b, \beta', T)$ *such that*

$$
\varphi(t) \le C(b, \beta', T) \frac{at^{-\beta}}{1 - \beta}, \quad \text{for a.e.} \quad t \in (0, T]. \tag{2.19}
$$

(b) (Fractional Grönwall's inequality, see [\[34](#page-22-12)], Corollary 2) *Assume* $\beta > 0$, φ *is nonnegative, locally integrable, and*

$$
\varphi(t) \le a + b \int_0^t (t - \tau)^{\beta - 1} \varphi(s) \mathrm{d} s,
$$

on (0, T)*, where* a*,* b *are positive constants. Then,*

$$
\varphi(t) \le aE_{\beta,1} \big(b\Gamma(\beta)t^{\beta} \big), \quad on \ (0,T).
$$

Lemma 2.8. (a) *For* $z > 0$ *, then there exists a constant* $C > 0$ *depending on* θ *such that*

$$
\begin{cases} |\log z| \le Cz^{-\theta}, & \text{for } \theta > 0, \quad 0 < z < 1, \\ |\log z| \le Cz^{\theta}, & \text{for } \theta > 0, \quad z \ge 1. \end{cases}
$$
\n(2.20)

(b) (Hölder's inequality for negative exponents) (see [\[35](#page-22-13)]) Let $k' < 0$, and $k \in \mathbb{R}$ be such that $\frac{1}{k'} + \frac{1}{k} = 1$ *and* $f(x), g(x) \geq 0, \forall x \in \Omega$ *are Lebesgue measurable functions. Then*

$$
\int_{\Omega} fg dx \ge \left(\int_{\Omega} |f|^{k'} dx\right)^{\frac{1}{k'}} \left(\int_{\Omega} |g|^{k} dx\right)^{\frac{1}{k}}.
$$
\n(2.21)

Proof. The proof of inequalities (2.20) and (2.21) are elementary, so we omit them here.

Lemma 2.9. (See [\[17](#page-21-14),[27\]](#page-22-5)) *Let* $\Omega \subset \mathbb{R}^N$, $k, m \in \mathbb{N}$ *with* $k \geq m$ *satisfying* $(k - m)p < N$ *and* $1 \leq p < \infty$ *. Then we have the following Sobolev embeddings*

$$
(SE1): W^{k,p}(\Omega) \hookrightarrow W^{m,q}(\Omega), \quad \text{for} \quad 1 \le q < p_{k,m}^*,
$$
\n
$$
(SE2): \mathbb{X}^s(\Omega) \hookrightarrow H^s(\Omega), \quad \text{for} \quad s > 0,
$$
\n
$$
(SE3): L^p(\Omega) \hookrightarrow \mathbb{X}^s(\Omega), \quad \text{for} \quad -\frac{N}{2} < s \le 0, \quad p \ge 2_s^*,
$$
\n
$$
(SE4): \mathbb{X}^s(\Omega) \hookrightarrow L^p(\Omega), \quad \text{for} \quad 0 \le s < \frac{N}{2}, \quad p \le 2_s^*,
$$
\n
$$
(2.22)
$$

where $p_{k,m}^*$, 2_s^* are the so-called fractional Sobolev exponents, given by

$$
\frac{1}{p_{k,m}^*} = \frac{1}{p} + \frac{m}{N} - \frac{k}{N}, \quad and \quad \frac{1}{2_s^*} = \frac{1}{2} - \frac{s}{N}.
$$
\n(2.23)

3. Main results

3.1. The case when the source terms are globally Lipchitz functions

In this section, we will study the existence and uniqueness of mild solutions to problem [P](#page-0-0). First we assume the global Lipschitz continuity and the time Hölder continuity on the nonlinear term. More precisely, we suppose that $F: \mathbb{X}^p(\Omega) \to \mathbb{X}^q(\Omega)$, $F(0) = 0$, and

$$
||F(v_1) - F(v_2)||_{\mathbb{X}^q(\Omega)} \le K||v_1 - v_2||_{\mathbb{X}^p(\Omega)},
$$
\n(3.1)

where $K : [0, T] \to \mathbb{R}_+$ and p, q are real numbers.

Our results in this section present the local well-posedness of the problem. Here, $\mathbb{Z}_{\beta,d}(0,T];\mathbb{X}^q(\Omega))$ denotes the weighted space of all functions $v \in C((0,T]; \mathbb{X}^q(\Omega))$ such that

$$
||v||_{\mathbb{Z}_{\beta,d}((0,T];\mathbb{X}^q(\Omega))} := \sup_{t\in(0,T]} t^{\beta} e^{-dt} ||v(t,\cdot)||_{\mathbb{X}^q(\Omega)} < \infty
$$

where $\beta > 0$, $d > 0$. First we state the following lemma which will be useful in our main results. (This lemma can be found in [\[36\]](#page-22-14), Lemma 8, page 9.)

Lemma 3.1. *Let* $a > -1$ *,* $b > -1$ *such that* $a + b \geq -1$ *,* $h > 0$ *and* $t \in [0, T]$ *. For* $\mu > 0$ *, the following limit holds*

$$
\lim_{\mu \to \infty} \left(\sup_{t \in [0,T]} t^h \int_0^1 s^a (1-s)^b e^{-\mu t (1-s)} ds \right) = 0.
$$

Now, we are in the position to introduce the main contributions of this work. Our main results address the existence and regularity of the mild solution.

Theorem 3.1. Let $0 < \beta < 1$. Assume that $q - p < \min\left\{\frac{2(1-\beta)}{\alpha}, \frac{2\beta}{\alpha}\right\}$. Let $u_0 \in \mathbb{X}^{q-2\gamma}(\Omega)$ for any $0 < \gamma < \min \left\{ \frac{\beta}{\alpha};1 \right\}$. Then [P](#page-0-0)roblem P has a unique solution u in $\mathbb{Z}_{\beta,d_0}((0,T];\mathbb{X}^q(\Omega))$ with some $d_0 > 0$. *Moreover, there exist positive constant* C *independently of* t, x and for $1/2 < \beta < 1$, $1 - \beta < \alpha < 1/2$ *such that*

$$
||u(\cdot,t)||_{\mathbb{X}^p(\Omega))} \le Ct^{-\beta} e^{dt} ||u_0||_{\mathbb{X}^{q-2\gamma}(\Omega)}.
$$
\n(3.2)

Proof. Define the mapping $\mathfrak{B}: \mathbb{Z}_{\beta,d}((0,T]; \mathbb{X}^p(\Omega)) \to \mathbb{Z}_{\beta,d}((0,T]; \mathbb{X}^p(\Omega)), d > 0$, by

$$
\mathfrak{B}w(t) := E_{\alpha,1}(-t^{\alpha}\mathcal{A})u_0 + \int_0^t E_{\alpha,1}(-(t-\tau)^{\alpha}\mathcal{A})F(w)(\tau)d\tau.
$$
\n(3.3)

In what follows, we shall prove the existence of a unique solution of [P](#page-0-0)roblem \mathbb{P} . This is based on the Banach principal argument. First, since $0 < \gamma < 1$, we have

$$
\left\| E_{\alpha,1}(-t^{\alpha} A)u_0 \right\|_{\mathbb{X}^p(\Omega)}^2 = \sum_{j=1}^{\infty} (u_0, \phi_j)^2 (E_{\alpha,1}(-\lambda_j t^{\alpha}))^2 \lambda_j^p
$$

$$
\leq \sum_{j=1}^{\infty} (u_0, \phi_j)^2 \frac{C^2}{(1 + \lambda_j t^{\alpha})^{2\gamma}} \lambda_j^p \leq C^2 t^{-2\alpha\gamma} \sum_{j=1}^{\infty} (u_0, \phi_j)^2 \lambda_j^{p-2\gamma}.
$$
 (3.4)

It follows from the condition $\beta > \alpha \gamma$ that

$$
t^{\beta} e^{-dt} \left\| E_{\alpha,1}(-t^{\alpha} A) u_0 \right\|_{\mathbb{X}^p(\Omega)} \le C t^{\beta - \alpha \gamma} \|u_0\|_{\mathbb{X}^{p-2\gamma}(\Omega)} \le C T^{\beta - \alpha \gamma} \|u_0\|_{\mathbb{X}^{p-2\gamma}(\Omega)}.
$$
 (3.5)

From the latter inequality, we deduce that $u_0 \in \mathbb{Z}_{\beta,d}((0,T];\mathbb{X}^p(\Omega))$. Indeed, for $w_1, w_2 \in \mathbb{Z}_{\beta,d}((0,T];\mathbb{X}^p(\Omega))$ $\mathbb{X}^p(\Omega)$, we have

$$
\|\mathfrak{B}w_{1} - \mathfrak{B}w_{2}\|_{\mathbb{Z}_{\beta,d}((0,T];\mathbb{X}^{p}(\Omega))}
$$
\n
$$
= \sup_{t\in(0,T]} t^{\beta}e^{-dt} \Big\|\int_{0}^{t} E_{\alpha,1}(-(t-\tau)^{\alpha}\mathcal{A})\Big[F(w_{1}(\tau)) - F(w_{2}(\tau))\Big]d\tau \Big\|_{\mathbb{X}^{p}(\Omega)}
$$
\n
$$
\leq \sup_{t\in(0,T]} t^{\beta}e^{-dt} \int_{0}^{t} \Big\|E_{\alpha,1}(-(t-\tau)^{\alpha}\mathcal{A})\Big[F(w_{1}(\tau)) - F(w_{2}(\tau))\Big]\Big\|_{\mathbb{X}^{p}(\Omega)}d\tau
$$
\n
$$
\leq C \sup_{t\in(0,T]} t^{\beta}e^{-dt} \int_{0}^{t} (t-\tau)^{-\frac{\alpha(q-p)}{2}} \Big\|F(w_{1}(\tau)) - F(w_{2}(\tau))\Big\|_{\mathbb{X}^{q}(\Omega)}d\tau
$$
\n
$$
\leq CK \|\mathbf{v}_{1} - \mathbf{v}_{2}\|_{\mathbb{Z}_{\beta,d}((0,T];\mathbb{X}^{p}(\Omega))} \sup_{t\in(0,T]} t^{\beta} \int_{0}^{t} (t-\tau)^{-\frac{\alpha(q-p)}{2}} \tau^{-\beta}e^{-d(t-\tau)}d\tau.
$$
\n(3.6)

We derive the estimate

$$
\left\|\mathfrak{B} w_1-\mathfrak{B} w_2\right\|_{\mathbb{Z}_{\beta,d}((0,T];\mathbb{X}^p(\Omega))}\leq \mathscr{L}_d\left\|v_1-v_2\right\|_{\mathbb{Z}_{\beta,d}((0,T];\mathbb{X}^p(\Omega))},
$$

where

$$
\mathcal{L}_d = t^{\beta} \int_0^t (t - \tau)^{-\frac{\alpha(q-p)}{2}} \tau^{-\beta} e^{-d(t-\tau)} d\tau.
$$

From the conditions of α , β , p , q , we find that

$$
\beta - \frac{\alpha(q-p)}{2} > 0
$$
, $-\frac{\alpha(q-p)}{2} > -1$, $-\beta > -1$, $-\frac{\alpha(q-p)}{2} - \beta > -1$.

Applying Lemma [3.1,](#page-5-1) we obtain that

$$
\lim_{d \to \infty} \mathcal{L}_d := K \lim_{\mu \to \infty} \left(\sup_{t \in (0,T]} t^{\beta} \int_0^t (t - \tau)^{-\frac{\alpha(q-p)}{2}} \tau^{-\beta} e^{-(t-\tau)d} d\tau \right)
$$
\n
$$
= K \lim_{d \to \infty} \left(\sup_{t \in (0,T]} t^{\beta - \frac{\alpha(q-p)}{2}} \int_0^1 (1 - \tau)^{-\frac{\alpha(q-p)}{2}} \tau^{-\beta} e^{-t(1-\tau)d} d\tau \right)
$$
\n
$$
= 0. \tag{3.7}
$$

Hence, there exists a positive $d > 0$ such that \mathfrak{B} is a contraction mapping on $\mathbb{Z}_{\beta,d_0}((0,T];\mathbb{X}^p(\Omega))$. This together with [\(3.5\)](#page-5-2) leads to $\mathfrak{B}w \in \mathbb{Z}_{\beta,d_0}((0,T];\mathbb{X}^p(\Omega))$ if $w \in \mathbb{Z}_{\beta,d_0}((0,T];\mathbb{X}^p(\Omega))$. Hence, we conclude that **B** has a fixed point u in $\mathbb{Z}_{\beta,d_0}((0,T];\mathbb{X}^p(\Omega))$, i.e, u is a unique mild solution of [P](#page-0-0)roblem P.

This and the technique in [\(3.6\)](#page-6-0) yields

$$
\|u(t,\cdot)\|_{\mathbb{X}^p(\Omega)} \le \|E_{\alpha,1}(-t^{\alpha}\mathcal{A})u_0\|_{\mathbb{X}^p(\Omega)} + \int_0^t \|E_{\alpha,1}(-(t-\tau)^{\alpha}\mathcal{A})F(u(\tau))\|_{\mathbb{X}^p(\Omega)} d\tau
$$

$$
\le Ct^{-\alpha\gamma} \|u_0\|_{\mathbb{X}^{p-2\gamma}(\Omega)} + CK \int_0^t (t-\tau)^{-\frac{\alpha(q-p)}{2}} \|u(\tau))\|_{\mathbb{X}^p(\Omega)} d\tau.
$$
 (3.8)

Multiplying both sides to $t^{\beta}e^{-dt}$, we find that

$$
t^{\beta}e^{-dt}||u(t,\cdot)||_{\mathbb{X}^{p}(\Omega)} \leq Ce^{-dt}t^{\beta-\alpha\gamma}||u_{0}||_{\mathbb{X}^{p-2\gamma}(\Omega))} + CKt^{\beta}e^{-dt} \int_{0}^{t} (t-\tau)^{-\frac{\alpha(q-p)}{2}}||u(\tau)||_{\mathbb{X}^{p}(\Omega)}ds.
$$
 (3.9)

By applying the Hölder inequality, and then using $e^{-2d(t-\tau)} < 1$, we can find some positive constant *M* such that

$$
t^{\beta}e^{-dt} \int_{0}^{t} (t-\tau)^{-\frac{\alpha(q-p)}{2}} \|u(\tau))\|_{\mathbb{X}^{p}(\Omega)} d\tau
$$
\n
$$
\leq \left(t^{2\beta} \int_{0}^{t} (t-\tau)^{-\frac{\alpha(q-p)}{2}} \tau^{-2\beta} e^{-2d(t-\tau)} d\tau\right)^{\frac{1}{2}} \left(\int_{0}^{t} (t-\tau)^{-\frac{\alpha(q-p)}{2}} \left(\tau^{\beta} e^{-d\tau} \|u(s,\cdot)\|_{\mathbb{X}^{p}(\Omega)}\right)^{2} d\tau\right)^{\frac{1}{2}}
$$
\n
$$
\leq \left(t^{2\beta} t^{-\frac{\alpha(q-p)}{2}} \int_{0}^{1} (1-\tau)^{-\frac{\alpha(q-p)}{2}} \tau^{-2\beta} d\tau\right)^{\frac{1}{2}} \left(\int_{0}^{t} (t-\tau)^{-\frac{\alpha(q-p)}{2}} \left(\tau^{\beta} e^{-d\tau} \|u(\tau,\cdot)\|_{\mathbb{X}^{p}(\Omega)}\right)^{2} d\tau\right)^{\frac{1}{2}}
$$
\n
$$
\leq \mathcal{M} \left(\int_{0}^{t} (t-\tau)^{-\frac{\alpha(q-p)}{2}} \left(\tau^{\beta} e^{-d\tau} \|u(\tau,\cdot)\|_{\mathbb{X}^{\sigma}(\Omega)}\right)^{2} d\tau\right)^{\frac{1}{2}}.
$$
\n(3.10)

Taking the estimate (3.8) , and (3.10) together gives that

$$
\mathcal{U}_{\beta,d}(t) \le 2C^2 e^{-2dt} t^{2\beta - 2\alpha\gamma} \|u_0\|_{\mathbb{X}^{p-2\gamma}(\Omega)}^2 + |\mathcal{M}|^2 C^2 K^2 \int_0^t (t-\tau)^{-\frac{\alpha(q-p)}{2}} \mathcal{U}_{\beta,d}(\tau) d\tau, \tag{3.11}
$$

where

$$
\mathscr{U}_{\beta,d}(t):=\Big(t^{\beta}e^{-dt}\big\|u(t,\cdot)\big\|_{\mathbb{X}^p(\Omega)}\Big)^2.
$$

Applying Lemma [2.7\(](#page-4-2)b), we deduce that

$$
\mathscr{U}_{\beta,d}(t) \leq 2C^2 T^{2\beta - 2\alpha\gamma} \|u_0\|_{\mathbb{X}^{p-2\gamma}(\Omega)}^2 E_{1 - \frac{\alpha(q-p)}{2},1} \left(|\mathscr{M}|^2 C^2 K^2 \Gamma \left(1 - \frac{\alpha(q-p)}{2}\right) t^{1 - \frac{\alpha(q-p)}{2}} \right). \tag{3.12}
$$

The proof of Theorem [3.1](#page-5-3) is completed. \Box

3.2. The case when the source terms are locally Lipschitz functions

Next, we shall present the results when the source terms are logarithmic nonlinearities of the following type $F_p(u) = \eta V_p(u) \log |u|$ and $V_p(u) = |u|^{p-2}u$, for $p \ge 2, \eta > 0$.

Remark 3.1. For the source terms of polynomial type nonlinearities, i.e., $F_p(u) = V_p(u)$ a simpler result was considered in [\[2](#page-21-1),[5\]](#page-21-4).

Lemma 3.2. *For* $F_p(u)(x,t) = \eta V_p(u) \log |u| \in L^{\infty}(\Omega \times (0,T) \times \mathbb{R})$, $p \ge 2, \eta > 0$, there exists a positive *constant* C *such that*

$$
|F_p(u) - F_p(w)| \le C \left(\left| \log |u| \right| |u - w| + |u|^{p-2} \left| \log |u| \right| |u - w| \right) + C \left(|w|^{p-2} \left| \log |u| \right| |u - w| + |w|^{p-2} |u - w| \right), \tag{3.13}
$$

for all $(x, t) \in \Omega \times (0, T)$, $\forall u, w \in \mathbb{R}$.

Proof. For $(x, t) \in \Omega \times (0, T)$ and $u, w \in \mathbb{R}$, we have

$$
\begin{aligned} \left| F_p(u) - F_p(w) \right| &= \eta \left| V_p(u) \log |u| - V_p(w) \log |w| \right| \\ &\le \eta \left(\left| V_p(u) - V_p(w) \right| \left| \log |u| \right| + \left| V_p(u) \right| \left| \log |u| - \log |w| \right| \right). \end{aligned} \tag{3.14}
$$

Thanks to the results in [\[5\]](#page-21-4), we have that

$$
\begin{aligned} \left| V_p(u) - V_p(w) \right| &= \left| u \right|^{p-2} u - |w|^{p-2} w \right| \\ &\le C(1 + |u|^{p-2} + |w|^{p-2}) |u - w|. \end{aligned} \tag{3.15}
$$

Using the basic inequality $\log(1 + z) < z$ for $z > 0$, one has

$$
\left| \log |u| - \log |w| \right| = \left| \log \left| 1 + \frac{|u| - |w|}{|w|} \right| \right|
$$

<
$$
\left| \log \left(1 + \frac{|u - w|}{|w|} \right) \right| < \frac{|u - w|}{|w|}.
$$
 (3.16)

From (3.14) – (3.16) , we have the proof of Lemma [3.2.](#page-7-1)

Theorem 3.2. (Local existence) Let $\alpha \in (0,1)$, $N \geq 1, p \geq 2, 0 \leq s < s_2$, for $0 \leq s_2 < N/2$. Let $1 \le q \le \min\left\{2^{\star}_{s_2,s}; \frac{N\theta}{N+\theta s}\right\}$ with $2^{\star}_{s_2,s}$ satisfying $\frac{1}{2^{\star}_{s_2,s}} = \frac{1}{2} + \frac{s}{N} - \frac{s_2}{N}$ and $qs < N$. Let $u_0 \in \mathbb{X}^{s_2}(\Omega) \cap W^{s,q}(\Omega)$, *and for the nonlinearity source of logarithmic function type*

$$
F_p(u) = \eta V_p(u) \log |u|
$$
, for $V_p(u) = |u|^{p-2}u$, with $p \ge 2, \eta > 0$,

then there is a time constant $T > 0$ *(depending only on* u_0 *) such that [P](#page-0-0)roblem* $\mathbb P$ *has a unique mild solution belonging to* $C([0, T]; W^{s,q}(\Omega))$ *.*

Remark 3.2. In Theorem [3.2,](#page-8-2) for $N \geq 1$, and $0 \leq s_2 < N/2$ let us choose $N = 3$, $s_2 = 1$. From the conditions

$$
\begin{cases}\ns < 2s_2, s \in \mathbb{N}, \\
1 \le q \le \frac{2N}{N+2s-2s_2},\n\end{cases}\n\text{ this implies that }\n\begin{cases}\ns = 0, \quad q \in [1, 6], \quad \text{or,} \\
s = 1, \quad q \in [1, 2].\n\end{cases}\n\tag{3.17}
$$

Then, the [P](#page-0-0)roblem P has a unique mild solution $u \in C([0,T];L^q(\Omega)), 1 \leq q \leq 6$, or $u \in C([0,T];W^{1,q}(\Omega)),$ for $1 \leq q \leq 2$.

Proof. For $N \geq 1, p \geq 2, 0 < \theta \leq p-1$ (θ is defined in Lemma [2.8\)](#page-4-3), we put

$$
0 \le s_2 < \min\left\{1; \frac{(p-1)N}{2p}\right\}, \quad s_1 = ps_2 - s^*, \tag{3.18}
$$

$$
s \in \mathbb{N} \quad \text{satisfies} \quad s < s_2, \quad 1 \le q \le \min\left\{2^*_{s_2, s}; \frac{N\theta}{N + \theta s}\right\},\tag{3.19}
$$

$$
\max \{ps_2; Z(a, b)\} < s^* < \min \left\{ps_2 + \frac{N}{2}; 1 + (p - 1)s_2\right\},\tag{3.20}
$$

where $2^*_{s_2,s} = \frac{1}{2} + \frac{s}{N} - \frac{s_2}{N}$, and $Z(a, b)$ be defined by

$$
Z(a,b) = \frac{N(2pa - qb) + 2pq(s_2b - sa)}{2qb},
$$
\n(3.21)

with the pairs (a, b) as follows:

$$
(a, b) \in \{ (1, 1), (\theta, 1), (p - 2, 1), (\theta, p - 1), (\theta, p - 1), (p - 2, p - 1) \}, \text{ for } \theta > 0.
$$

Let $T > 0$ and $R > 0$ to be chosen later, and we consider the following space

$$
\mathbb{W} := \left\{ u \in C([0, T]; W^{s, q}(\Omega)) : u(\cdot, 0) = u_0, \text{ and } ||u(\cdot, t) - u_0||_{W^{m, q}(\Omega)} \le R \right\},\tag{3.22}
$$

for $0 < \alpha < 1$, and we define the mapping **M** on W by

$$
\mathbf{M}\mathbf{u}(t) = E_{\alpha,1}(-t^{\alpha}\mathcal{A})u_0 + \int_0^t E_{\alpha,1}(-(t-\tau)^{\alpha}\mathcal{A})F_p(u)(\tau)d\tau
$$

 := $E_{\alpha,1}(-t^{\alpha}\mathcal{A})u_0 + J(F(u))(t).$ (3.23)

We show that **M** is invariant in W and **M** is a contraction.

• *Claim I* If $u_0 \in \mathbb{X}^{s_2}(\Omega) \cap W^{s,q}(\Omega)$, *then* **M** *is* W-*invariant*. In fact, from Lemma [2.3\(](#page-3-0)b), we have

$$
||E_{\alpha,1}(-\mathcal{A}t^{\alpha})u_0 - u_0||_{\mathbb{X}^{s_2}(\Omega)}^2 = \sum_{j=1}^{\infty} (u_0, \phi_j)^2 (E_{\alpha,1}(-\lambda_j t^{\alpha}) - 1)^2 \lambda_j^{s_2}
$$

$$
\leq 2(\overline{C}^2 + 1) \sum_{j=1}^{\infty} (u_0, \phi_j)^2 \lambda_j^{s_2}
$$

$$
\leq C ||u_0||_{\mathbb{X}^{s_2}(\Omega)}^2, \quad \forall t \in (0, T].
$$
 (3.24)

From [\(3.19\)](#page-8-3), one has $s < s_2$ and $1 \le q \le 2^{*}_{s_2,s}$, and we have that $\mathbb{X}^{s_2}(\Omega) \hookrightarrow H^{s_2}(\Omega) \hookrightarrow W^{s,q}(\Omega)$ and then, we conclude from [\(3.24\)](#page-9-0) that

$$
||E_{\alpha,1}(-\mathcal{A}t^{\alpha})u_0 - u_0||_{W^{s,q}(\Omega)} \le C ||u_0||_{\mathbb{X}^{s_2}(\Omega)}, \quad t \in (0,T].
$$
\n(3.25)

From [\(3.20\)](#page-8-4), we have $ps_2 < s^* < 1+(p-1)s_2$, this implies that $0 < s_2-s_1 < 1$ and for $ps_2 < s^* < ps_2+\frac{N}{2}$. or $-\frac{N}{2}$ < ps₂ – s^{*} < 0 thus $-\frac{N}{2}$ < s₁ < 0. Taking $\frac{1}{2_{s_1}^*} = \frac{1}{2} - \frac{s_1}{N}$ and combine with Lemma [2.9,](#page-4-4) we obtain $L^{2_{s_1}^*}(\Omega) \hookrightarrow \mathbb{X}^{s_1}(\Omega)$. Using Lemma [2.3\(](#page-3-0)b), we have for $t \in (0, T]$

$$
\|J(F(u))(t)\|_{\mathbb{X}^{s_2}(\Omega)} \leq \int_0^t \|E_{\alpha,1}(-(t-\tau)^{\alpha}A)F_p(u)(\tau)\|_{\mathbb{X}^{s_2}(\Omega)} d\tau
$$

\n
$$
\leq \int_0^t \left(\sum_{j=1}^{\infty} \lambda_j^{s_2-s_1} (F_p(u)(\cdot,\tau),\phi_j)^2 \lambda_j^{s_1} \left(\frac{\overline{C}}{1+\lambda_j(t-\tau)^{\alpha}}\right)^2\right)^{\frac{1}{2}} d\tau
$$

\n
$$
\leq \frac{\overline{C}}{\lambda_1^{\frac{2-s_2+s_1}{2}}} \int_0^t (t-\tau)^{-\alpha} \|F_p(u)(\cdot,\tau)\|_{\mathbb{X}^{s_1}(\Omega)} d\tau
$$

\n
$$
\leq C \int_0^t (t-\tau)^{-\alpha} \|F_p(u)(\cdot,\tau)\|_{L^{2^*}_{s_1}(\Omega)} d\tau.
$$
\n(3.26)

Let us set $\Omega^- := \{x \in \Omega : |u(x)| < 1\}$ and $\Omega^+ := \{x \in \Omega : |u(x)| \ge 1\}$. Using Hölder's inequality, we have

$$
\int_{\Omega} |F_p(u)|^{2_{s_1}^*} dx \leq \eta^{2_{s_1}^*} \int_{\Omega} |u|^{(p-1)2_{s_1}^*} |\log |u||^{2_{s_1}^*} dx
$$
\n
$$
\leq C \left(\int_{\Omega} |\log |u||^{p2_{s_1}^*} dx \right)^{\frac{1}{p}} \left(\int_{\Omega} |u|^{p2_{s_1}^*} dx \right)^{\frac{p-1}{p}}
$$
\n
$$
\leq C \left(\int_{\Omega} |\log |u||^{p2_{s_1}^*} dx + \int_{\Omega^+} |\log |u||^{p2_{s_1}^*} dx \right)^{\frac{1}{p}} \left(\int_{\Omega} |u|^{p2_{s_1}^*} dx \right)^{\frac{p-1}{p}}
$$
\n
$$
\leq C \left(\left(\int_{\Omega^-} |\log |u||^{p2_{s_1}^*} dx \right)^{\frac{1}{p}} + \left(\int_{\Omega^+} |\log |u||^{p2_{s_1}^*} dx \right)^{\frac{1}{p}} \right) \left(\int_{\Omega} |u|^{p2_{s_1}^*} dx \right)^{\frac{p-1}{p}}, \qquad (3.27)
$$

where we have used the elementary inequality $(a+b)^c \le a^c + b^c$, for $0 < c < 1$. From the inequality [\(2.20\)](#page-4-0) for $|u(x)| < 1$, $\forall x \in \Omega$, by applying Lemma [2.8b](#page-4-3)) for $k' = -\frac{1}{p2s_{n_1}} < 0$, we have

$$
\left(\int_{\Omega^{-}} |\log |u||^{p2_{s_1}^*} dx\right)^{\frac{1}{p}} \leq C \left(\int_{\Omega^{-}} |u(x)|^{-p\theta 2_{s_1}^*} dx\right)^{\frac{1}{p}}
$$
\n
$$
\leq C \left(\left(\int_{\Omega^{-}} |u(x)|^{-p\theta 2_{s_1}^*} dx\right)^{-\frac{1}{p2_{s_1}^*}}\right)^{-2_{s_1}^*}
$$
\n
$$
\leq C \left(\left(\int_{\Omega^{-}} |u(x)|^p dx\right) \left(\int_{\Omega^{-}} 1 dx\right)^{-\frac{1+p2_{s_1}^*}{p2_{s_1}^*}}\right)^{-2_{s_1}^*}
$$
\n
$$
\leq C \left|\left(u\right|_{L^{\theta}(\Omega)}^{-\theta 2_{s_1}^*} |\Omega|^{\frac{1+p2_{s_1}^*}{p}}, \tag{3.28}
$$

From the inequality [\(2.20\)](#page-4-0) for $|u(x)| \geq 1$, we have

$$
\left(\int_{\Omega^+} \left| \log |u| \right|^{p2_{s_1}^*} \mathrm{d}x \right)^{\frac{1}{p}} \le C \left(\int_{\Omega^+} \left| u(x) \right|^{p\theta 2_{s_1}^*} \mathrm{d}x \right)^{\frac{1}{p}} \le C \|u\|_{L^{p\theta 2_{s_1}^*}(\Omega)}^{p2_{s_1}^*}.
$$
\n(3.29)

From (3.27) , (3.28) and (3.29) , we conclude that

$$
||F_p(u)||_{L^{2_{s_1}^*}(\Omega)} \le C \left(||u||_{L^{\theta}(\Omega)}^{-\theta} + ||u||_{L^{p\theta 2_{s_1}^*}(\Omega)}^{\theta} \right) ||u||_{L^{p2_{s_1}^*}(\Omega)}^{p-1}.
$$
\n(3.30)

For $s > 0, qs < N$, and $q < \frac{N\theta}{N+\theta s}$, this implies that $q_s^* \leq \theta$ with q_s^* satisfies

$$
\frac{1}{q_s^*} = \frac{1}{q} - \frac{s}{N},
$$

we deduce from Lemma [2.9](#page-4-4) that the following Sobolev embedding holds $L^{\theta}(\Omega) \hookrightarrow W^{s,q}(\Omega)$. Then we get that

$$
||u||_{W^{s,q}(\Omega)} \leq C||u||_{L^{\theta}(\Omega)},
$$

161 Page 12 of [24](#page-21-3) B. de Andrade et al. **ZAMP**

and for $\theta > 0$, we have that

$$
||u||_{L^{\theta}(\Omega)}^{-\theta} \leq C||u||_{W^{s,q}(\Omega)}^{-\theta}.
$$

From [\(3.21\)](#page-8-5), the constant $s^* > Z(1,1)$, [for $Z(1,1)$ defined in (3.21)] and observe that

$$
p2_{s_1}^* = \frac{2Np}{N - 2s_1} = \frac{2Np}{N + 2s^* - 2ps_2} < \frac{2Np}{N + 2Z(1, 1) - 2ps_2} = \frac{Nq}{N - sq} = q_s^*,\tag{3.31}
$$

then we also obtain $W^{s,q}(\Omega) \hookrightarrow L^{p2_{s_1}^*}(\Omega)$. For $s^* > Z(\theta,1)$ [for $Z(\theta,1)$ defined in (3.21)], we infer that

$$
p\theta2^*_{s_1}=p\theta\frac{2N}{N-2s_1}=\frac{2Np}{N+2s^*-2ps_2}=p\theta\frac{2N}{N+2Z(\theta,1)-2ps_2}\leq q^*_s,
$$

this implies that $W^{s,q}(\Omega) \hookrightarrow L^{p\theta 2_{s_1}^*}(\Omega)$. This implies that

$$
||F_p(u)||_{L^{2_{s_1}^*}(\Omega)} \leq C \left(||u||_{W^{s,q}(\Omega)}^{-\theta} + ||u||_{W^{s,q}(\Omega)}^{\theta} \right) ||u||_{W^{s,q}(\Omega)}^{p-1},
$$

and from [\(3.26\)](#page-9-1), and for $0 < \theta < p - 1$, we have

$$
\begin{split} \n\text{The (RHS) of (3.26)} &\leq C \int_{0}^{t} (t-\tau)^{-\alpha} \left(\|u(\cdot,\tau)\|_{W^{s,q}(\Omega)}^{-\theta} + \|u(\cdot,\tau)\|_{W^{s,q}(\Omega)}^{\theta} \right) \|u(\cdot,\tau)\|_{W^{s,q}(\Omega)}^{p-1} d\tau \\ \n&\leq C \int_{0}^{t} (t-\tau)^{-\alpha} \left(\|u(\cdot,\tau)\|_{W^{s,q}(\Omega)}^{p-1-\theta} + \|u(\cdot,\tau)\|_{W^{s,q}(\Omega)}^{p-1+\theta} \right) d\tau \\ \n&\leq C \left(\left(R + \|u_0\|_{W^{s,q}(\Omega)} \right)^{p-1-\theta} + \left(R + \|u_0\|_{W^{s,q}(\Omega)} \right)^{p-1+\theta} \right) \int_{0}^{t} (t-\tau)^{-\alpha} d\tau \\ \n&\leq C \left(\left(R + \|u_0\|_{W^{s,q}(\Omega)} \right)^{p-1-\theta} + \left(R + \|u_0\|_{W^{s,q}(\Omega)} \right)^{p-1+\theta} \right) \frac{t^{1-\alpha}}{1-\alpha}, \end{split} \tag{3.32}
$$

where from [\(3.22\)](#page-9-2), we have that $||u(\cdot,\tau)||_{W^{s,q}(\Omega)} \leq R + ||u_0||_{W^{s,q}(\Omega)}$, for all $\tau \in [0,T]$. From [\(3.26\)](#page-9-1), [\(3.32\)](#page-11-0), we obtain that for $t \in (0, T]$

$$
\|J(F(u))(t)\|_{\mathbb{X}^{s_2}(\Omega)} \le C\left(\left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta} + \left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)t^{1-\alpha}.\tag{3.33}
$$

For the constants s, q satisfying [\(3.19\)](#page-8-3), we have that $X^{s_2}(\Omega) \hookrightarrow W^{s,q}(\Omega)$ and $\alpha \in (0,1)$, and for all $t \in [0, T]$, we get

$$
\|J(F(u))(t)\|_{W^{s,q}(\Omega)} \le C\left(\left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta} + \left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)T^{1-\alpha}.\tag{3.34}
$$

Hence, from (3.24) and (3.34) , for every $t \in (0, T]$,

$$
\|\mathbf{M} \mathbf{u}(t) - u_0\|_{W^{s,q}(\Omega)} \leq C \|u_0\|_{W^{s,q}(\Omega)} + C \left(\left(R + \|u_0\|_{W^{s,q}(\Omega)} \right)^{p-1-\theta} + \left(R + \|u_0\|_{W^{s,q}(\Omega)} \right)^{p-1+\theta} \right) T^{1-\alpha}.
$$
 (3.35)

Therefore we see that if $R = 2C ||u_0||_{\mathbb{X}^{s_2}(\Omega)}$ and for the constant $C > 0$, $\theta < p - 1$ such that

$$
R \geq 2C\left(R + \left\|u_0\right\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta}T^{1-\alpha},
$$

and

$$
R \ge 2C\left(R + \left\|u_0\right\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta}T^{1-\alpha}.
$$

Then, we imply **M** is invariant in W.

• *Claim II* **M** : W \rightarrow W *is a contraction map*. Let $u, w \in W$, and similar to [\(3.26\)](#page-9-1) and using Lemma [2.3\(](#page-3-0)b), one has for every $t \in (0, T]$,

$$
\|\mathbf{M} \mathbf{u}(t) - \mathbf{M} \mathbf{w}(t)\|_{\mathbb{X}^{s_2}(\Omega)} = \|J(F(u))(t) - J(F(w))(t)\|_{\mathbb{X}^{s_2}(\Omega)}
$$

\n
$$
\leq C \int_{0}^{t} (t - \tau)^{-\alpha} \|F_p(u)(\cdot, \tau) - F_p(w)(\cdot, \tau)\|_{\mathbb{X}^{s_1}(\Omega)} d\tau
$$

\n
$$
\leq C \int_{0}^{t} (t - \tau)^{-\alpha} \|F_p(u)(\cdot, \tau) - F_p(w)(\cdot, \tau)\|_{L^{2_{s_1}^*}(\Omega)} d\tau,
$$
\n(3.36)

in which we used the Sobolev embedding $L^{2_{s_1}^*}(\Omega) \hookrightarrow \mathbb{X}^{s_1}(\Omega)$, for $\frac{1}{2_{s_1}^*} = \frac{1}{2} - \frac{s_1}{N}$ and $-\frac{N}{2} < s_1 \leq 0$. By recalling Lemma [3.2,](#page-7-1) we arrive at

$$
||F_p(u) - F_p(w)||_{L^{2_{s_1}^*}(\Omega)} \le C \left\| \left|\log |u|\right| |u - w| \right\|_{L^{2_{s_1}^*}(\Omega)} + C \left\| |u|^{p-2} \left|\log |u|\right| |u - w| \right\|_{L^{2_{s_1}^*}(\Omega)} + C \left\| |w|^{p-2} \left|\log |u|\right| |u - w| \right\|_{L^{2_{s_1}^*}(\Omega)}.
$$
\n
$$
(3.37)
$$

For the constant $2_{s_1}^* \geq 1$, using Hölder's inequality, we get

$$
\| |\log |u|| |u-w| \|_{L^{2_{s_1}^*}(\Omega)}^{2_{s_1}^*} = \int_{\Omega} (|\log |u|| |u-w|)^{2_{s_1}^*} dx = \int_{\Omega} |\log |u||^{2_{s_1}^*} |u-w|^{2_{s_1}^*} dx
$$

\n
$$
\leq \left(\int_{\Omega} |\log |u||^{\frac{p2_{s_1}^*}{p-1}} dx \right)^{\frac{p-1}{p}} \left(\int_{\Omega} |u-w|^{p2_{s_1}^*} dx \right)^{\frac{1}{p}}
$$

\n
$$
\leq \left(\int_{\Omega} |\log |u||^{\frac{p2_{s_1}^*}{p-1}} dx + \int_{\Omega^+} |\log |u||^{\frac{p2_{s_1}^*}{p-1}} dx \right)^{\frac{p-1}{p}} \left(\int_{\Omega} |u-w|^{p2_{s_1}^*} dx \right)^{\frac{1}{p}}
$$

\n
$$
\leq \left(\left(\int_{\Omega^-} |\log |u||^{\frac{p2_{s_1}^*}{p-1}} dx \right)^{\frac{p-1}{p}} + \left(\int_{\Omega^+} |\log |u||^{\frac{p2_{s_1}^*}{p-1}} dx \right)^{\frac{p-1}{p}} \right) \left(\int_{\Omega} |u-w|^{p2_{s_1}^*} dx \right)^{\frac{1}{p}}.
$$
\n(3.38)

From the inequality (2.20) for $|u(x)| < 1$, $\forall x \in \Omega$, we have

$$
\left(\int_{\Omega^{-}} |\log |u||^{\frac{p2^{*}_{s_{1}}}{p-1}} dx\right)^{\frac{p-1}{p}} \leq C \left(\int_{\Omega^{-}} |u(x)|^{-\frac{p\theta 2^{*}_{s_{1}}}{p-1}} dx\right)^{\frac{p-1}{p}} \leq \left(\left(\int_{\Omega^{-}} |u(x)|^{-\frac{p\theta 2^{*}_{s_{1}}}{p-1}} dx\right)^{-\frac{p-1}{p2^{*}_{s_{1}}}}\right)^{-\frac{p-1}{p2^{*}_{s_{1}}}} \right)^{-2^{*}_{s_{1}}}
$$
\n
$$
\leq C \left(\left(\int_{\Omega^{-}} |u(x)|^{\theta} dx\right) \left(\int_{\Omega^{-}} 1 dx\right)^{-\frac{p-1+p2^{*}_{s_{1}}}{p2^{*}_{s_{1}}}}\right)^{-2^{*}_{s_{1}}} \leq C \|u\|_{L^{\theta}(\Omega)}^{-\theta 2^{*}_{s_{1}}} |\Omega|^{\frac{p-1+p2^{*}_{s_{1}}}{p}}, \qquad (3.39)
$$

where we have chosen $k' = -\frac{p-1}{p2_{s_1}^*} < 0$ in Lemma [2.8\(](#page-4-3)b). For $|u(x)| \ge 1$, $\forall x \in \Omega$, we have

$$
\left(\int_{\Omega^{+}}|\log|u||^{\frac{p2^{*}_{s_{1}}}{p-1}}\mathrm{d}x\right)^{\frac{p-1}{p}} \leq C\left(\int_{\Omega^{+}}|u(x)|^{\frac{p\theta2^{*}_{s_{1}}}{p-1}}\mathrm{d}x\right)^{\frac{p-1}{p}} \leq C\|u\|^{\theta2^{*}_{s_{1}}}_{L^{\frac{p\theta2^{*}_{s_{1}}}{p-1}}(\Omega)}.\tag{3.40}
$$

From (3.38) , (3.39) and (3.40) , we conclude that

$$
\left\| \left| \log |u| \right| \middle| u - w \right\|_{L^{2^{*}_{s_1}}(\Omega)} \leq C \left(\left\| u \right\|_{L^{\theta}(\Omega)}^{-\theta} + \left\| u \right\|_{L^{\frac{p\theta 2^{*}_{s_1}}{p-1}}(\Omega)}^{\theta} \right) \left\| u - w \right\|_{L^{p2^{*}_{s_1}}(\Omega)}. \tag{3.41}
$$

Thanks to Hölder's inequality, we get that

$$
\int_{\Omega} (|u|^{p-2} |\log |u|| |u-w|)^{2_{s_1}^*} dx = \int_{\Omega} |u|^{(p-2)2_{s_1}^*} |\log |u||^{2_{s_1}^*} |u-w|^{2_{s_1}^*} dx
$$
\n
$$
\leq \left(\int_{\Omega} |\log |u||^{\frac{p2_{s_1}^*}{p-2}} dx\right)^{\frac{p-2}{p}} \left(\int_{\Omega} |u|^{p(p-2)2_{s_1}^*} dx\right)^{\frac{1}{p}} \left(\int_{\Omega} |u-w|^{p2_{s_1}^*} dx\right)^{\frac{1}{p}}.
$$
\n(3.42)

Similar to (3.39) and (3.40) , we have the following estimate

$$
\left(\int_{\Omega} \left| \log |u| \right|^{\frac{p2_{s_1}^*}{p-2}} \mathrm{d}x \right)^{\frac{p-2}{p}} \le \left(\int_{\Omega^{-}} \left| \log |u| \right|^{\frac{p2_{s_1}^*}{p-2}} \mathrm{d}x \right)^{\frac{p-2}{p}} + \left(\int_{\Omega^{+}} \left| \log |u| \right|^{\frac{p2_{s_1}^*}{p-2}} \mathrm{d}x \right)^{\frac{p-2}{p}} \le C \left(\left\| u \right\|_{L^{\theta}(\Omega)}^{-\theta 2_{s_1}^*} + \left\| u \right\|_{L^{\frac{p2_{s_1}^*}{p-2}}(\Omega)}^{\theta 2_{s_1}^*} \right). \tag{3.43}
$$

Combining (3.42) and (3.43) , we get that

$$
\| |u|^{p-2} |\log |u|| |u-w| \|_{L^{2_{s_1}^*}(\Omega)}
$$

\n
$$
\leq C \left(\|u\|_{L^{\theta}(\Omega)}^{-\theta} + \|u\|_{L^{\frac{p\theta 2_{s_1}^*}{p-2}}(\Omega)}^{\theta} \right) \|u\|_{L^{p(p-2)2_{s_1}^*}(\Omega)}^{p-2} \|u-w\|_{L^{p2_{s_1}^*}(\Omega)}.
$$
\n(3.44)

Similarly,

$$
\| |w|^{p-2} |\log |u|| |u-w||_{L^{2_{s_1}^*}(\Omega)}
$$

\n
$$
\leq C \left(\|u\|_{L^{\theta}(\Omega)}^{-\theta} + \|u\|_{L^{\frac{p\theta 2_{s_1}^*}{p-2}}(\Omega)}^{\theta} \right) \|w\|_{L^{p(p-2)2_{s_1}^*}(\Omega)}^{p-2} \|u-w\|_{L^{p2_{s_1}^*}(\Omega)}.
$$
\n(3.45)

We use the Hölder's inequality to obtain that

$$
\| |w|^{p-2} |u-w| \|_{L^{2_{s_1}^*}(\Omega)}^{2_{s_1}^*} = \int_{\Omega} (|w|^{p-2} |u-w|)^{2_{s_1}^*} dx
$$

\n
$$
\leq \left(\int_{\Omega} |w| \frac{\nu(p-2)2_{s_1}^*}{p-1} dx \right)^{\frac{p-1}{p}} \left(\int_{\Omega} |u-w|^{p2_{s_1}^*} dx \right)^{\frac{1}{p}}
$$

\n
$$
\leq \|w\|_{L^{\frac{p(p-2)2_{s_1}^*}{p-1}}(\Omega)}^{(p-2)2_{s_1}^*} \|u-w\|_{L^{p2_{s_1}^*}(\Omega)}^{2_{s_1}^*}.
$$
\n(3.46)

Combining the results obtained in $(3.37), (3.41), (3.44), (3.45)$ $(3.37), (3.41), (3.44), (3.45)$ $(3.37), (3.41), (3.44), (3.45)$ $(3.37), (3.41), (3.44), (3.45)$ $(3.37), (3.41), (3.44), (3.45)$ $(3.37), (3.41), (3.44), (3.45)$ $(3.37), (3.41), (3.44), (3.45)$ and $(3.46),$ $(3.46),$ we have

$$
\|F_p(u)(\cdot,t) - F_p(w)(\cdot,t)\|_{L^{2_{s_1}^*}(\Omega)} \le C \left(\|u\|_{L^{\theta}(\Omega)}^{-\theta} + \|u\|_{L^{\frac{p\theta 2_{s_1}^*}{p-1}}(\Omega)}^{\theta} \right) \|u - w\|_{L^{p2_{s_1}^*}(\Omega)} + C \left(\|u\|_{L^{\theta}(\Omega)}^{-\theta} + \|u\|_{L^{\frac{p\theta 2_{s_1}^*}{p-2}}(\Omega)}^{\theta} \right) \|u\|_{L^{p(p-2)2_{s_1}^*}(\Omega)}^{p-2} \|u - w\|_{L^{p2_{s_1}^*}(\Omega)} + C \left(\|u\|_{L^{\theta}(\Omega)}^{-\theta} + \|u\|_{L^{\frac{p\theta 2_{s_1}^*}{p-2}}(\Omega)}^{\theta} \right) \|w\|_{L^{p(p-2)2_{s_1}^*}(\Omega)}^{p-2} \|u - w\|_{L^{p2_{s_1}^*}(\Omega)} + C \|w\|_{L^{\frac{p(p-2)2_{s_1}^*}{p-1}}(\Omega)}^{p-2} \|u - w\|_{L^{p2_{s_1}^*}(\Omega)} \right). \tag{3.47}
$$

From (3.18) – (3.21) we have the following:

 \triangleright For q_s^* satisfying $\frac{1}{q_s^*} = \frac{1}{q} - \frac{s}{N}$, for $q \leq \frac{N\theta}{N+\theta s}$ and sq < N, then $q_s^* \leq \theta$ and we deduce from Lemma [2.9](#page-4-4) that $L^{\theta}(\Omega) \hookrightarrow W^{s,q}(\Omega)$. This implies that

$$
||u||_{L^{\theta}(\Omega)}^{-\theta} \le C||u||_{W^{s,q}(\Omega)}^{-\theta}, \quad \text{for } 0 < \theta \le p-1.
$$

- ► For $s^* > Z(1,1)$, a similar argument with (3.31) and we observe that $q_s^* \geq p2^*_{s_1}$, and then we deduce from Lemma [2.9](#page-4-4) that the following Sobolev embedding holds $W^{s,q}(\Omega) \hookrightarrow L^{p2^*_{s_1}}(\Omega)$.
- ► For $s^* > Z(p-2,1)$, implies that

$$
p(p-2)2_{s_1}^* = \frac{2p(p-2)N}{N-2s_1} < \frac{2p(p-2)N}{N+2Z(p-2,1)-2ps_2} \le q_s^*,\tag{3.48}
$$

and we infer that $W^{s,q}(\Omega) \hookrightarrow L^{p(p-2)2_{s_1}^*}(\Omega)$. ρ For $s^* > Z(\theta, p-1)$, we observe that $\frac{p\theta 2^*_{s_1}}{p-1} \leq q_s^*$, then we get $W^{s,q}(\Omega) \hookrightarrow L^{\frac{p\theta 2^*_{s_1}}{p-1}}(\Omega)$. ρ For $s^* > Z(\theta, p-2)$, we have $\frac{p\theta 2^*_{s_1}}{p-2} \leq q_s^*$, and this implies that $W^{s,q}(\Omega) \hookrightarrow L^{\frac{p\theta 2^*_{s_1}}{p-2}}(\Omega)$. \triangleright For $s^* > Z(p-2, p-1)$, implies $\frac{p(p-2)2^*_{s_1}}{p-1} \leq q_s^*$, and we infer that $W^{s,q}(\Omega) \hookrightarrow L^{\frac{p(p-2)2^*_{s_1}}{p-1}}(\Omega)$.

We can now combine the results above together with [\(3.47\)](#page-14-2) to deduce that

$$
||F_p(u)(\cdot,t) - F_p(w)(\cdot,t)||_{L^{2^*_{s_1}}(\Omega)} \le K(R, u_0)||u(\cdot,t) - w(\cdot,t)||_{W^{s,q}(\Omega)},
$$
\n(3.49)

for all $t \in (0,T]$, we have used that $\max\{||u||_{W^{s,q}(\Omega)}; ||w||_{W^{s,q}(\Omega)}\} \leq R + ||u_0||_{W^{s,q}(\Omega)}$, and for the constant $K(R, u_0) := K(N, p, \theta, s_1, R, ||u_0||_{W^{s,q}(\Omega)})$ but independent of t. From this, one observes that

$$
\underline{\text{The (RHS) of}} \quad (3.36) \le CK(R, u_0) \int_0^t (t - \tau)^{-\alpha} ||u(\cdot, \tau) - w(\cdot, \tau)||_{W^{s,q}(\Omega)} d\tau
$$
\n
$$
\le CK(R, u_0) \int_0^t (t - \tau)^{-\alpha} \left(||u(\cdot, \tau) - w(\cdot, \tau)||_{W^{s,q}(\Omega)} \right) d\tau
$$
\n
$$
\le CK(R, u_0) ||u(\cdot, \tau) - w(\cdot, \tau)||_{C([0, T]; W^{s,q}(\Omega))} \int_0^t (t - \tau)^{-\alpha} d\tau
$$
\n
$$
\le CK(R, u_0) ||u - w||_{C([0, T]; W^{s,q}(\Omega))} \frac{t^{1-\alpha}}{1-\alpha}.
$$
\n(3.50)

Inserting the result of (3.50) into (3.36) , we obtain that

$$
\|\mathbf{M} \mathbf{u}(t) - \mathbf{M} \mathbf{w}(t)\|_{\mathbb{X}^{s_2}(\Omega)} \leq C K(R, u_0) T^{1-\alpha} \|u - w\|_{C([0,T]; W^{s,q}(\Omega))}.
$$

For the constants s, q satisfying [\(3.19\)](#page-8-3), we have that $\mathbb{X}^{s_2}(\Omega) \hookrightarrow W^{s,q}(\Omega)$, and

$$
\|\mathbf{M}u - \mathbf{Mw}\|_{C([0,T];W^{s,q}(\Omega))} \le CK(R, u_0) T^{1-\alpha} \|u - w\|_{C([0,T];W^{s,q}(\Omega))}.
$$
\n(3.51)

Choosing T, $K(R, u_0)$ small enough such that $CK(R, u_0)T^{1-\alpha} < 1$, it follows that M is a contraction map on W. So, we invoke the contraction mapping principle to conclude that the map **M** has a unique fixed point u in W. The proof of Theorem [3.2](#page-8-2) is completed. \square

Since we already know that the mild solution of $\mathbb P$ $\mathbb P$ does exist, the question is whether it will continue (continuation to a bigger interval of existence) and in what situation it is non-continuation by blowup.

Definition 3.1. Given a mild solution $u \in C([0,T];W^{s,q}(\Omega))$ of \mathbb{P} \mathbb{P} \mathbb{P} for $\alpha \in (0,1)$, we say that u^* is a *continuation* of u in $(0, T^{\star}]$ for $T^{\star} > T$ if it is satisfies

$$
\begin{cases} u^* \in C([T, T^*]; W^{s,q}(\Omega)) \text{ is a mild solution of } (\mathbb{P}) \text{ for all } t \in [T, T^*],\\ u^*(x, t) = u(x, t) \quad \text{whenever} \quad t \in [0, T], x \in \Omega. \end{cases}
$$
(3.52)

Theorem 3.3. (Continuation) *Suppose that the assumptions of Theorem* [3.2](#page-8-2) *are satisfied. Then, the mild solution (unique) on* $(0, T]$ *of [P](#page-0-0)roblem* $\mathbb P$ *can be extended to the interval* $(0, T^*]$ *, for some* $T^* > T$ *, so that, the extended function is also the mild solution (unique) of [P](#page-0-0)roblem* $\mathbb P$ *on* $(0, T^*]$ *.*

[P](#page-0-0)roof. Let $u : [0, T] \to W^{s,q}(\Omega)$ be a mild solution of Problem $\mathbb{P}(T)$ is the time from Theorem [3.2\)](#page-8-2). Fix $R^* > 0$, and for $T^* > T$, $(T^*$ depending on R^*), we shall prove that $u^* : [0, T^*] \to W^{s,q}(\Omega)$ is a mild

solution of [P](#page-0-0)roblem $\mathbb P$. Assume the following estimates hold:

$$
CT^{-\alpha}(T^{\star})^{\alpha} \left\|u_0\right\|_{\mathbb{X}^{s_2}(\Omega)} \le \frac{R^{\star}}{4},\tag{3.53}
$$

$$
C\left(R^* + \left\|u(\cdot,T)\right\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta}(T^*)^{1-\alpha} \le \frac{R^*}{8},\tag{3.54}
$$

$$
C\left(R^* + \left\|u(\cdot,T)\right\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta}(T^*)^{1-\alpha} \le \frac{R^*}{8},\tag{3.55}
$$

$$
C\left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta} (T^{\star})^{\frac{\alpha s_1 - \alpha s_2 + 2}{2}} < \frac{R^{\star}}{8},\tag{3.56}
$$

$$
C\left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta} (T^{\star})^{\frac{\alpha s_1 - \alpha s_2 + 2}{2}} < \frac{R^{\star}}{8},\tag{3.57}
$$

$$
CK(R, u_0)(T^{\star})^{\alpha + \alpha \gamma - 2\alpha \gamma} \le \frac{R^{\star}}{4},\tag{3.58}
$$

where $0 < \theta \le p-1$ and $K(R, u_0)$ is defined in the proof of Theorem [3.2.](#page-8-2) For $T^* \ge T > 0$ and $R^* > 0$, let us define

$$
\mathbb{W}^{\star} := \left\{ u^{\star} \in C([0,T^{\star}]; W^{s,q}(\Omega)) : \left| \begin{array}{l} u^{\star}(\cdot,t) = u(\cdot,t), & \forall t \in (0,T], \\ \|u^{\star}(\cdot,t) - u(\cdot,T)\|_{C([T,T^{\star}]; W^{s,q}(\Omega))} \leq R^{\star}, & \forall t \in [T,T^{\star}]. \end{array} \right\} (3.59)
$$

• *Step I We show that* **M** *defined as in* [\(3.23\)](#page-9-3) *is the operator on* \mathbb{W}^* . Let $u^* \in \mathbb{W}^*$ and we consider two cases.

 $∗$ If $t ∈ (0, T]$, then by virtue of Theorem [3.2,](#page-8-2) we have the [P](#page-0-0)roblem \mathbb{P} has a unique solution and we also have $u^*(\cdot, t) = u(\cdot, t)$. Thus $\mathbf{M}u^*(t) = \mathbf{M}u(t) = u(\cdot, t)$ for all $t \in (0, T]$.

 \ast If $t \in [T, T^*]$, we have

$$
\|\mathbf{M}u^{*}(t) - u(\cdot, T)\|_{W^{s,q}(\Omega)}\n\leq \|(E_{\alpha,1}(-t^{\alpha}\mathcal{A}) - E_{\alpha,1}(-T^{\alpha}\mathcal{A})) u_{0}\|_{W^{s,q}(\Omega)}\n+ \int_{T} \|E_{\alpha,1}(-(t-\tau)^{\alpha}\mathcal{A}) F_{p}(u^{*})(\tau)\|_{W^{s,q}(\Omega)} d\tau\n+ \int_{0}^{T} \|(E_{\alpha,1}(-(t-\tau)^{\alpha}\mathcal{A}) - E_{\alpha,1}(-(T-\tau)^{\alpha}\mathcal{A})) F_{p}(u^{*})(\tau)\|_{W^{s,q}(\Omega)} d\tau\n=: \|J_{2}(u_{0})(t)\|_{W^{s,q}(\Omega)} + \|J_{3}(u^{*})(t)\|_{W^{s,q}(\Omega)} + \|J_{4}(u^{*})(t)\|_{W^{s,q}(\Omega)}.
$$
\n(3.60)

Estimating the term $||J_2(u_0)(t)||_{W^{s,q}(\Omega)}$, using Lemma [2.5,](#page-3-1) we have for all $t \in [T, T^*]$,

$$
||J_2(u_0)(t)||_{\mathbb{X}^{s_2}(\Omega)}^2 = \sum_{j=1}^{\infty} \lambda_j^{s_2} (u_0, \phi_j)^2 (E_{\alpha,1}(-\lambda_j t^{\alpha}) - E_{\alpha,1}(-\lambda_j T^{\alpha}))^2
$$

$$
= \sum_{j=1}^{\infty} \lambda_j^{s_2} (u_0, \phi_j)^2 \left(\int_0^{\infty} \mathcal{M}_{\alpha}(z) \left| e^{-z\lambda_j t^{\alpha}} - e^{-z\lambda_j T^{\alpha}} \right| dz \right)^2
$$

$$
\leq \sum_{j=1}^{\infty} \lambda_j^{s_2} (u_0, \phi_j)^2 \left(\int_0^{\infty} \mathcal{M}_{\alpha}(z) e^{-z\lambda_j T^{\alpha}} \left| e^{-z\lambda_j (t^{\alpha} - T^{\alpha})} - 1 \right| dz \right)^2.
$$

For $z > 0$, using the inequality $1 - e^{-z} \le z$, and $ze^{-z} \le 1$, one obtains

$$
||J_2(u_0)(t)||_{\mathbb{X}^{s_2}(\Omega)}^2 \le \sum_{j=1}^{\infty} \lambda_j^{s_2} (u_0, \phi_j)^2 \left(\lambda_j (t^{\alpha} - T^{\alpha}) \int_0^{\infty} \mathcal{M}_{\alpha}(z) (z \lambda_j T^{\alpha})^{-1} z dz\right)^2
$$

$$
\le \sum_{j=1}^{\infty} \lambda_j^{s_2} (u_0, \phi_j)^2 \left((t^{\alpha} - T^{\alpha}) T^{-\alpha} \int_0^{\infty} \mathcal{M}_{\alpha}(z) dz\right)^2
$$

$$
\le (t - T)^{2\alpha} T^{-2\alpha} ||u_0||_{\mathbb{X}^{s_2}(\Omega)}^2,
$$
 (3.61)

where we have use the inequalities

$$
a^c - b^c \le (a - b)^c
$$
, for $a > b > 0$, $c \in (0, 1)$, and $\int_0^\infty \mathcal{M}_\alpha(z) dz = 1$.

For the constants s, q satisfying [\(3.19\)](#page-8-3), we have that $\mathbb{X}^{s_2}(\Omega) \hookrightarrow W^{s,q}(\Omega)$. Hence, we get that

$$
||J_2(u_0)(t)||_{W^{s,q}(\Omega)} \le C (t - T)^{\alpha} T^{-\alpha} ||u_0||_{\mathbb{X}^{s_2}(\Omega)} \le C (T^{\star})^{\alpha} T^{-\alpha} ||u_0||_{\mathbb{X}^{s_2}(\Omega)}.
$$
 (3.62)

From [\(3.53\)](#page-16-0), this implies that the following estimate holds

$$
||J_2(u_0)||_{C([0,T^*];W^{s,q}(\Omega))} \leq CT^{-\alpha}(T^*)^{\alpha} ||u_0||_{\mathbb{X}^{s_2}(\Omega)} \leq \frac{R^*}{4}.
$$
\n(3.63)

Similar to [\(3.32\)](#page-11-0), we have the following estimate for all $t \in [T, T^*]$ (note that we can choose $T^* > T$ and close enough to T)

$$
||J_3(u^*)(t)||_{W^{s,q}(\Omega)} \le C||J_3(u)(t)||_{\mathbb{X}^{s_2}(\Omega)}
$$

$$
\le C\left(\left(R^* + ||u(\cdot,T)||_{W^{s,q}(\Omega)}\right)^{p-1-\theta} + \left(R^* + ||u(\cdot,T)||_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)(t-T)^{1-\alpha}, \quad (3.64)
$$

where from [\(3.59\)](#page-16-1), for all $t \in [T, T^*]$, we have used that

$$
||u^{\star}(\cdot,t)||_{W^{s,q}(\Omega)} \leq R^{\star} + ||u(\cdot,T)||_{W^{s,q}(\Omega)}.
$$

Using (3.54) and (3.55) , we infer that

$$
||J_3(u^*)||_{C([0,T^*];W^{s,q}(\Omega))}
$$

\n
$$
\leq C\left(\left(R^* + ||u(\cdot,T)||_{W^{s,q}(\Omega)}\right)^{p-1-\theta} + \left(R^* + ||u(\cdot,T)||_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)(T^*)^{1-\alpha} \leq \frac{R^*}{4}.
$$
 (3.65)

We continue with the estimate on the third term of (3.60) , and using Lemma [2.3\(](#page-3-0)b) and Lemma [2.4,](#page-3-2) we obtain for all $t \in [T, T^*]$

$$
\begin{split} \left| E_{\alpha,1} \left(-\lambda_j \left(t - \tau \right)^{\alpha} \right) - E_{\alpha,1} \left(-\lambda_j \left(T - \tau \right)^{\alpha} \right) \right| &= \left| \int\limits_{T-\tau}^{t-\tau} -\lambda_j z^{\alpha-1} E_{\alpha,\alpha} \left(-\lambda_j z^{\alpha} \right) \mathrm{d}z \right| \\ &= \left| \int\limits_{T-\tau}^{t-\tau} \lambda_j^{1 + \frac{s_2 - s_1}{2}} z^{\alpha-1} E_{\alpha,\alpha} \left(-\lambda_j z^{\alpha} \right) \mathrm{d}z \right| \lambda_j^{\frac{s_1 - s_2}{2}} \\ &\leq C \left| \int\limits_{T-\tau}^{t-\tau} z^{\frac{\alpha s_1 - \alpha s_2}{2} - 1} \mathrm{d}z \right| \lambda_j^{\frac{s_1 - s_2}{2}} \leq C \lambda_j^{\frac{s_1 - s_2}{2}} (T - \tau)^{\frac{\alpha s_1 - \alpha s_2}{2}}. \end{split} \tag{3.66}
$$

For the constant s_1 satisfying $-\frac{N}{2} < s_1 \leq 0$ and $\frac{1}{2^{*}_{s_1}} = \frac{1}{2} - \frac{s_1}{N}$, from Lemma [2.9,](#page-4-4) we obtain $L^{2^{*}_{s_1}}(\Omega) \hookrightarrow$ $\mathbb{X}^{s_1}(\Omega)$. Hence, we deduce that

$$
\|J_{4}(u^{*})(t)\|_{\mathbb{X}^{s_{2}}(\Omega)}\n\leq \int_{0}^{T} \left(\sum_{j=1}^{\infty} \lambda_{j}^{s_{2}} \left(F_{p}(u^{*})(\cdot, \tau), \phi_{j} \right)^{2} |E_{\alpha,1}(-\lambda_{j}(t-\tau)^{\alpha}) - E_{\alpha,1}(-\lambda_{j}(T-\tau)^{\alpha})|^{2} \right)^{\frac{1}{2}} d\tau
$$
\n
$$
\leq C \int_{0}^{T} \left(\sum_{j=1}^{\infty} \lambda_{j}^{s_{1}} (T-\tau)^{\alpha s_{1}-\alpha s_{2}} \left(F_{p}(u^{*})(\cdot, \tau), \phi_{j} \right)^{2} \right)^{\frac{1}{2}} d\tau
$$
\n
$$
\leq C \int_{0}^{T} (T-\tau)^{\frac{\alpha s_{1}-\alpha s_{2}}{2}} \|F_{p}(u^{*})(\cdot, \tau)\|_{\mathbb{X}^{s_{1}}(\Omega)} d\tau
$$
\n
$$
\leq C \int_{0}^{T} (T-\tau)^{\frac{\alpha s_{1}-\alpha s_{2}}{2}} \|F_{p}(u^{*})(\cdot, \tau)\|_{L^{2^{*}_{s_{1}}(\Omega)}} d\tau, \qquad (3.67)
$$

In the same way as in (3.32) , and from (3.59) , one obtains

$$
\frac{\text{The (RHS) of (3.67)}}{\zeta C \int_{0}^{T} (T-\tau)^{\frac{\alpha s_{1}-\alpha s_{2}}{2}} \left(\|u(\cdot,\tau)\|_{W^{s,q}(\Omega)}^{-\theta} + \|u(\cdot,\tau)\|_{W^{s,q}(\Omega)}^{\theta} \right) \|u(\cdot,\tau)\|_{W^{s,q}(\Omega)}^{p-1} d\tau
$$
\n
$$
\leq C \left(\left(R + \|u_{0}\|_{W^{s,q}(\Omega)} \right)^{p-1-\theta} + \left(R + \|u_{0}\|_{W^{s,q}(\Omega)} \right)^{p-1+\theta} \right) \int_{0}^{T} (T-\tau)^{\frac{\alpha s_{1}-\alpha s_{2}}{2}} d\tau
$$
\n
$$
\leq C \left(\left(R + \|u_{0}\|_{W^{s,q}(\Omega)} \right)^{p-1-\theta} + \left(R + \|u_{0}\|_{W^{s,q}(\Omega)} \right)^{p-1+\theta} \right) T^{\frac{\alpha s_{1}-\alpha s_{2}+2}{2}}, \tag{3.68}
$$

for $\theta < p - 1$. From [\(3.67\)](#page-18-0), we have that $X^{s_2}(\Omega) \hookrightarrow W^{s,q}(\Omega)$ and obtain

$$
\|J_4(u^*)(t)\|_{W^{s,q}(\Omega)} \le C\left(\left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta} + \left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)T^{\frac{\alpha s_1 - \alpha s_2 + 2}{2}}.\tag{3.69}
$$

Thus, for $t \in (T, T^*]$, we obtain

$$
\|J_4(u^*)(t)\|_{W^{s,q}(\Omega)} \le C\left(\left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta} + \left(R + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)(T^*)^{\frac{\alpha s_1-\alpha s_2+2}{2}}.\tag{3.70}
$$

From (3.56) and (3.57) , we get

$$
||J_4(u^*)||_{C([0,T^*];W^{s,q}(\Omega))} \le \frac{R^*}{4}.
$$
\n(3.71)

It follows from [\(3.63\)](#page-17-0), [\(3.65\)](#page-17-1), [\(3.71\)](#page-18-1) that, for every $t \in [T, T^{\star}]$

$$
\|\mathbf{M}u^{\star}-u(\cdot,T)\|_{C([0,T^*];W^{s,q}(\Omega))}\leq \frac{R^{\star}}{4}+\frac{R^{\star}}{4}+\frac{R^{\star}}{4}\leq R^{\star}.
$$

We have shown that **M** is a map W^* into W^* .

• *Step II We show that* **M** *is a contraction on* \mathbb{W}^* . Let $u, w \in \mathbb{W}^*$, and we have that for $0 \le t \le T^*$,

$$
\mathbf{M}u(t) - \mathbf{M}w(t) = \int_{0}^{t} E_{\alpha,1} \left(-\mathcal{A}(t-\tau)^{\alpha} \right) \left(F_{p}(u)(\tau) - F_{p}(w)(\tau) \right) d\tau, \tag{3.72}
$$

where we note that $\mathbf{M}\mathbf{u}(t) - \mathbf{M}\mathbf{w}(t) = 0$, vanishes in \mathbb{W}^* for all $t \in (0,T]$. Then, for all $t \in [0,T^*]$, proceeding as in Claim (2) of the last theorem, we have

$$
\big\| \mathbf{M} \mathbf{u}(t) - \mathbf{M} \mathbf{w}(t) \big\|_{\mathbb{X}^{s_2}(\Omega)} \leq C K(R, u_0) (T^\star)^{1-\alpha} \left\| u - w \right\|_{C([0,T^*];W^{s,q}(\Omega))} \leq \frac{R^\star}{4} \left\| u - w \right\|_{C([0,T^*];W^{s,q}(\Omega))}.
$$

Thus, using the Sobolev embedding $X^{s_2}(\Omega) \hookrightarrow W^{s,q}(\Omega)$ with s, q satisfying [\(3.19\)](#page-8-3), for all $T^* > 0$, so without loss of generality, we may assume that $0 \leq R^* < 4$, and we infer that

$$
\|\mathbf{M} \mathbf{u} - \mathbf{M} \mathbf{w}\|_{C([0,T^*];W^{s,q}(\Omega))} \le \frac{R^*}{4} \|u - v\|_{C([0,T^*];W^{s,q}(\Omega))}.
$$
\n(3.73)

This implies that **M** is a $\frac{R^*}{4}$ -contraction. By the Banach contraction principle it follows that **M** has a unique fixed point u^* of **M** in \mathbb{W}^* , which is a continuation of u. This finishes the proof.

The next results are on global existence or non-continuation by a blowup.

Definition 3.2. Let $u(x, t)$ be a solution of [P](#page-0-0). We define the maximal existence time T_{max} of $u(x, t)$ as follows:

- (i) If $u(x, t)$ exists for all $0 \le t < \infty$, then $T_{\text{max}} = \infty$.
- (ii) If there exists $T \in (0,\infty)$ such that $u(x,t)$ exists for $0 \le t \le T$, but does not exist at $t = T$, then $T_{\text{max}} = T.$

Definition 3.3. Let $u(x, t)$ be a solution of [P](#page-0-0). We say $u(x, t)$ blows up in finite time if the maximal existence time T_{max} is finite and

$$
\lim_{t \to T_{\text{max}}} \sup \|u(\cdot, t)\|_{W^{s,q}(\Omega)} = \infty. \tag{3.74}
$$

Theorem 3.4. (Global existence or finite time blowup) *For* $N \geq 1, p \geq 2, 0 \leq s \leq 2s_2$, for $0 \leq s_2 \leq N/2$ and $1 \leq q \leq \min\left\{2\frac{x}{s_2,s}; \frac{N\theta}{N+\theta s}\right\}$ with $2\frac{x}{s_2,s}$ satisfying $\frac{1}{2\frac{x}{s_2,s}} = \frac{1}{2} + \frac{s}{N} - \frac{s_2}{N}$ and $qs < N$. For $u_0 \in \mathbb{X}^{s_2}(\Omega) \cap$ $W^{s,q}(\Omega)$, there exists a maximal time $T_{\text{max}} > 0$ such that $u \in C([0,T_{\text{max}}];W^{s,q}(\Omega))$ is the mild solution *of* [P](#page-0-0)*. Thus, either Problem* [P](#page-0-0) *has a unique global mild solution on* [0,∞) *or there exists a maximal time* $T_{\text{max}} < \infty$ such that

$$
\lim \sup_{t \to T_{\max}^-} \|u(\cdot,t)\|_{W^{s,q}(\Omega)} = \infty.
$$

Proof. Let $u_0 \in \mathbb{X}^{s_2}(\Omega) \cap W^{s,q}(\Omega)$ and define

 $T_{\text{max}} := \sup \{T > 0 : \text{there exists a solution on } (0, T]\}.$

Assume that $T_{\text{max}} < \infty$, and $||u(\cdot, t)||_{\mathbb{X}^{s_2}(\Omega)} \leq R_0$, for some $R_0 > 0$. Now suppose there exists a sequence $\{t_n\}_{n\in\mathbb{N}}\subset [0,T_{\max})$ such that $t_n\to T_{\max}$ and $\{u(\cdot,t_n)\}_{n\in\mathbb{N}}\subset \mathbb{X}^{s_2}(\Omega)$. Let us show that $\{u(\cdot,t_n)\}_{n\in\mathbb{N}}$ is a Cauchy sequence in $\mathbb{X}^{s_2}(\Omega)$. Indeed, given $\epsilon > 0$, fix $N \in \mathbb{N}$ such that for all $n, m > N$, $0 < t_n < t_m <$

 T_{max} , we have

$$
\|u(\cdot, t_m) - u(\cdot, t_n)\|_{W^{s,q}(\Omega)}\n\leq \|(E_{\alpha,1}(-t_m^{\alpha} \mathcal{A}) - E_{\alpha,1}(-t_n^{\alpha} \mathcal{A})) u_0\|_{W^{s,q}(\Omega)}\n+ \int_{t_m}^t \|E_{\alpha,1}(-(t_m - \tau)^{\alpha} \mathcal{A}) F_p(u)(\tau)\|_{W^{s,q}(\Omega)} d\tau\n+ \int_{t_m}^t \|(E_{\alpha,1}(-(t_n - \tau)^{\alpha} \mathcal{A}) - E_{\alpha,1}(-(T_{\max} - \tau)^{\alpha} \mathcal{A})) F_p(u)(\tau)\|_{W^{s,q}(\Omega)} d\tau\n+ \int_{0}^{t_m} \|(E_{\alpha,1}(-(T_{\max} - \tau)^{\alpha} \mathcal{A}) - E_{\alpha,1}(-(t_m - \tau)^{\alpha}) \mathcal{A}) F_p(u)(\tau)\|_{W^{s,q}(\Omega)} d\tau\n= \|J_5(u_0)\|_{W^{s,q}(\Omega)} + \|J_6(u)\|_{W^{s,q}(\Omega)} + \|J_7(u)\|_{W^{s,q}(\Omega)} + \|J_8(u)\|_{W^{s,q}(\Omega)}.
$$
\n(3.75)

Similar to [\(3.61\)](#page-17-2), and using the Sobolev embedding $\mathbb{X}^{s_2}(\Omega) \hookrightarrow W^{s,q}(\Omega)$, we have that

$$
||J_5(u_0)||_{W^{s,q}(\Omega)} \leq C ||J_5(u_0)(t)||_{\mathbb{X}^{s_2}(\Omega)} \leq C |t_m - t_n|^{\alpha} t_n^{-\alpha} ||u_0||_{\mathbb{X}^{s_2}(\Omega)}.
$$
\n(3.76)

In the same way as in (3.32) , we get

$$
\|J_6(u)(t)\|_{W^{s,q}(\Omega)} \le C\left(\left(R_0 + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta} + \left(R_0 + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)|t_m - t_n|^{1-\alpha}.\tag{3.77}
$$

Similar to (3.68) , we have

$$
\|J_7(u)\|_{W^{s,q}(\Omega)} \le C\left(\left(R_0 + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta} + \left(R_0 + \|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)|T_{\max} - t_n|^{\frac{\alpha s_1 - \alpha s_2 + 2}{2}},\tag{3.78}
$$

and

$$
||J_8(u)||_{W^{s,q}(\Omega)} \leq C\left(\left(R_0 + ||u_0||_{W^{s,q}(\Omega)}\right)^{p-1-\theta} + \left(R_0 + ||u_0||_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)|T_{\max} - t_m|^{\frac{\alpha s_1 - \alpha s_2 + 2}{2}}.\tag{3.79}
$$

Thus, since $\{t_n\}_{n\in\mathbb{N}^*}$ is convergent we can take $N := N(\epsilon) \in \mathbb{N}^*$ with $m \ge n \ge N$ such that $|t_m - t_n|$ is as small as we want, and we have

$$
C |t_m - t_n|^{\alpha} t_n^{-\alpha} ||u_n||_{\mathbb{X}^{s_2}(\Omega)} < \frac{\epsilon}{4},
$$

\n
$$
C \left(\left(R_0 + ||u_0||_{W^{s,q}(\Omega)} \right)^{p-1-\theta} + \left(R_0 + ||u_0||_{W^{s,q}(\Omega)} \right)^{p-1+\theta} \right) |t_m - t_n|^{1-\alpha} < \frac{\epsilon}{4},
$$

\n
$$
C \left(\left(R_0 + ||u_0||_{W^{s,q}(\Omega)} \right)^{p-1-\theta} + \left(R_0 + ||u_0||_{W^{s,q}(\Omega)} \right)^{p-1+\theta} \right) |T_{\max} - t_m|^{\frac{\alpha s_1 - \alpha s_2 + 2}{2}} < \frac{\epsilon}{4},
$$

and

$$
C\left(\left(R_0+\|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1-\theta}+\left(R_0+\|u_0\|_{W^{s,q}(\Omega)}\right)^{p-1+\theta}\right)|T_{\max}-t_n|^{\frac{\alpha s_1-\alpha s_2+2}{2}}<\frac{\epsilon}{4}.
$$

161 Page 22 of [24](#page-21-3) B. de Andrade et al. **ZAMP**

Hence, given $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$
\|u(\cdot,t_m) - u(\cdot,t_n)\|_{W^{s,q}(\Omega)} < \epsilon, \quad \text{for } m, n \ge N. \tag{3.80}
$$

It follows that $\{u(\cdot,t_n)\}_{n\in\mathbb{N}}\subset W^{s,q}(\Omega)$ is a Cauchy sequences and for $\{t_n\}_{n\in\mathbb{N}^*}$ arbitrary we have proved the existence of the limit

$$
\lim_{t \to T_{\max}^-} \|u(\cdot,t)\|_{W^{s,q}(\Omega)} < \infty.
$$

FRom our previos result we deduce that the solution can extended to some larger interval $(u \text{ can be})$ continued beyond T_{max}), and this contradict the definition of T_{max} . Thus, either $T_{\text{max}} = \infty$ or if $T_{\text{max}} < \infty$
then $\lim_{n \to \infty} |y(n+1)|_{\text{max}} \leq \infty$. The proof of Theorem 3.4 is finished then $\lim_{t \to T_{\text{max}}} ||u(\cdot, t)||_{W^{s,q}(\Omega)} = \infty$. The proof of Theorem [3.4](#page-19-0) is finished.

Acknowledgements

Vo Van Au and Nguyen Huy Tuan were supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.02-2019.09. Bruno de Andrade is partially supported by CNPQ, Brazil under Grant Number 308931/2017-3 and CAPES, Brazil under Grant Number 88881.157450/2017-01.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Gorenflo, R., Vessella, S.: Abel Integral Equations. Springer, Berlin (1991)
- [2] de Andrade, B., Viana, A.: Abstract Volterra integrodifferential equations with applications to parabolic models with memory. Math. Ann. **369**, 1131–1175 (2017)
- [3] Andrade, B., Viana, A.: On a fractional reaction-diffusion equation. Z. Angew. Math. Phys. **68**, 59 (2017). 11 pages
- [4] del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas **11**, 3854 (2004)
- [5] Arrieta, J.M., Carvalho, A.N.: Abstract parabolic problems with critical nonlinearities and applications to Navier–Stokes and heat equations. Trans. Am. Math. Soc. **352**(1), 285–310 (1999)
- [6] Giga, Y.: Solutions for semilinear parabolic equations in *L^p* and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equ. **62**(2), 186–212 (1986)
- [7] Weissler, F.B.: Existence and non-existence of global solutions for a semilinear heat equation. Isr. J. Math. **38**, 29–40 (1981)
- [8] Dong, H., Kim, D.: *Lp*-estimates for time fractional parabolic equations with coefficients measurable in time. Adv. Math. **345**, 289–345 (2019)
- [9] Gal, C.G., Warma, M.: Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete Contin. Dyn. Syst. Ser. A **36**(3), 1279–1319 (2016)
- [10] Li, L., Liu, J.G., Wang, L.: Cauchy problems for Keller–Segel type time-space fractional diffusion equation. J. Differ. Equ. **265**(3), 1044–1096 (2018)
- [11] Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. **33**(2), 239 (1961)
- [12] Clément, P., Nohel, J.A.: Asymptotic behavior of solutions of nonlinear volterra equations with completely positive kernels. SIAM J. Math. Anal. **12**(4), 514–535 (1981)
- [13] Shivanian, E., Jafarabadi, A.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
- [14] Allouba, H., Zheng, W.: Brownian-time processes: the PDE connection and the half-derivative generator. Ann. Probab. **29**(4), 1780–1795 (2001)
- [15] Ralf, M., Joseph, K.: The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. **339**, 1–77 (2000)
- [16] Mandelbrot, B.B., Ness, J.W.V.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. **10**(4), 422–437 (1968)
- [17] Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. **136**(5), 521–573 (2012)
- [18] Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. **54**, 848–873 (2016)
- [19] Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann. Probab. **37**(1), 206–249 (2009)
- [20] Trong, D.D., Nane, E., Minh, N.D., Tuan, N.H.: Continuity of solutions of a class of fractional equations. Potential Anal. **49**, 423–478 (2018)
- [21] Ferreira, L.C.F., Villamizar-Roa, E.J.: Self-similar solutions, uniqueness and long-time asymptotic behavior for semilinear heat equations. Differ. Integral Equ. **19**(12), 1349–1370 (2006)
- [22] Barrow, J., Parsons, P.: Inflationary models with logarithmic potentials. Phys. Rev. D **52**, 5576–5587 (1995)
- [23] Chen, Y., Xu, R.: Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity. Nonlinear Anal. **192**, 111664 (2020)
- [24] Papageorgiouae, N.S., Rǎdulescu, V.D., Repovǎ, D.D.: Positive solutions for nonlinear Neumann problems with singular terms and convection. J. Math. Pures Appl. **136**, 1–21 (2020)
- [25] Papageorgiouae, N.S., Rǎdulescu, V.D., Repovǎ, D.D.: Anisotropic equations with indefinite potential and competing nonlinearities. Nonlinear Anal. **20**, 111861 (2020)
- [26] Wang, X., Chen, Y., Yang, Y., Li, J., Xu, R.: Kirchhoff-type system with linear weak damping and logarithmic nonlinearities. Nonlinear Anal. **188**(2019), 475–499 (2019)
- [27] Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. **55**(2), 472–495 (2017)
- [28] Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. Ser. A **35**(12), 5725–5767 (2015)
- [29] Caffarelli, L.A., Stinga, P.R.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. Henri Poincar´e Anal. Non Lin´eaire **33**(3), 767–807 (2016)
- [30] Gorenflo, R., Kilbas, A.A., Mainardi, F.: Mittag–Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)
- [31] Keyantuo, V., Warma, M.: On the interior approximate controllability for fractional wave equations. Discrete Contin. Dyn. Syst. Ser. A **36**(7), 3719–3739 (2016)
- [32] Gorenflo, R., Luchko, Y., Mainardi, F.: Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. **2**, 383–414 (1999)
- [33] Webb, J.R.L.: Weakly singular Gronwall inequalities and applications to fractional differential equations. J. Math. Anal. Appl. **471**(1–2), 692–711 (2019)
- [34] Ye, H., Gao, J., Ding, Y.: A generalized Grönwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. **328**, 1075–1081 (2007)
- [35] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Second Printing Corrected. Springer, Berlin (1969)
- [36] Chen, Y., Gao, H., Garrido-Atienza, M., Schmalfuß, B.: Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems. Discrete Cont. Dyn. Syst. A **34**, 79–98 (2014)

Bruno de Andrade Departamento de Matemática Universidade Federal de Sergipe Avenue Rosa Else São Cristóvão SE Brazil e-mail: bruno@mat.ufs.br

Vo Van Au Institute of Fundamental and Applied Sciences Duy Tan University Ho Chi Minh City 700000 Vietnam e-mail: vovanau@duytan.edu.vn

Vo Van Au Faculty of Natural Sciences Duy Tan University Da Nang 550000 Vietnam

Donal O'Regan School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway Ireland e-mail: donal.oregan@nuigalway.ie

Nguyen Huy Tuan Department of Mathematics and Computer Science University of Science Ho Chi Minh City Vietnam

Nguyen Huy Tuan Vietnam National University Ho Chi Minh City Vietnam e-mail: nhtuan@hcmus.edu.vn

(Received: April 23, 2020; revised: June 15, 2020)