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Abstract. In this paper, we discuss an initial value problem for the semilinear time-fractional diffusion equation. The local
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continuation of solution and finite time blowup result are presented when the reaction terms are logarithmic functions (local
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1. Introduction

Let Ω ⊂ R
N , (N ≥ 1) be a bounded open set with boundary Ωc. The main aim of the paper is

to study the properties of the solutions of a class of time-fractional diffusion equations involving the
so-called Riemann–Liouville (R–L) time-fractional derivative. More precisely, we consider the following
initial value problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂

∂t
u(x, t) = −∂1−α

∂t
Au(x, t) + F (u), x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, x ∈ Ωc, 0 < t < T,

u(x, 0) = u0(x), x ∈ Ω,

(P)

where T > 0, α ∈ (0, 1) is real number and
∂1−α

∂t
u denotes the R–L time-fractional derivative of order

1 − α of the function u formally given by

∂1−α

∂t
f(t) :=

d
d

t (J αf) (t), t > 0, (1.1)

where the Riemann–Liouville fractional integral operator J α : L2(0, T ) → L2(0, T ) is defined by the
formula (see, e.g., [1])

(J αf)(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ(α)

t∫

0

τα−1f(t − τ)dτ, 0 < α < 1,

f(t), α = 0,

(1.2)

and Γ(·) is the Gamma function. The operator A is a linear, positive definite, self-adjoint operator with
compact inverse in L2(Ω), u = u(x, t) is the state of the unknown function and u0(x) is a given function.
The function F is a nonlinear source term which appears in some physical phenomena [2–4].
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When α = 1 and A = −Δ problem P describes the nonlinear heat Eq. [2,5–7]

∂

∂t
u(x, t) − Δu(x, t) = F (u). (1.3)

If α ∈ (0, 1), Problem P is called an initial value problem for the semilinear time-fractional diffusion
equation; we refer the reader to [3,8–10] and the references therein. Many important physical models
and practical problems require one to consider the diffusion model with a fractional derivative rather
than a classical one, like physical models considering memory effects [2–4,11–13] and some corresponding
engineering problems [2,3,14,15] with power-law memory (non-local effects) in time [4,8,16–20]. For
nonlinearities of power-type F (u) = |u|p−1u for p ≥ 1, Bruno de Andrade et al. [3] considered the
fractional reaction–diffusion equation to discuss the global well-posedness and asymptotic behavior of
solutions; see also [7,21] and the references therein. Studies of logarithmic nonlinearity have a long history
in physics as they occur naturally in inflation cosmology, quantum mechanics, and nuclear physics [22]
and PDEs with logarithmic nonlinearity have attracted many authors; see [23–26] and the references
therein.

Results on initial value problems for R–L time-fractional diffusion equation with logarithmic nonlin-
earity are quite limited. The solution operator of our problem Eα,1 (−Atα) brings some difficulties in
estimating and analyzing the solution (existence and regularity estimate of the solutions). We consider
the model with the source terms Fp(u) = ηVp(u) log |u| and Vp(u) = |u|p−2u, p ≥ 2, η > 0 (locally
Lipschitz type). To present the properties of the solutions in W s,q(Ω), we need to consider the Lipschitz
properties of the source function (both global Lipschitz property and local Lipschitz property). Based on
the conditions of the constants s, q depending on the dimensions N ≥ 1 and the constant s > 0, we set
up the Sobolev embeddings X

s(Ω) ↪→ W s,q(Ω) ↪→ Lp(Ω) (see the definition of the spaces W s,q(Ω) and
X

s(Ω) in (2.3) and (2.7) below).
In Sect. 2, we present some basic definitions and the setting for our work. Moreover, we obtain a precise

representation of solutions using Mittag–Leffler operators. In Sect. 3, we first present local well-posedness
results when the source term satisfies a global Lipschitz condition. Also local existence, continuation of
solutions and finite time blowup results are presented when the source terms are logarithmic functions.

2. Notations and preliminaries

2.1. Relevant notations and the functional spaces

Given two positive quantities y, z, we write y � z if there exists a constant C > 0 such that y ≤ Cz. Let
us recall that the spectral problem

{
Aφj(x) = λjφj(x), x ∈ Ω, σ ∈ (0, 1],
φj(x) = 0, x ∈ ∂Ω,

(2.1)

admits a family of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λj ≤ · · · ↗ ∞.

Given a Banach space B, let C([0, T ];B) be the set of all continuous functions which map [0, T ] into B.
The norm of the function space Ck([0, T ];B), for 0 ≤ k ≤ ∞ is denoted by

‖v‖Ck([0,T ];B) =
k∑

i=0

sup
t∈[0,T ]

∥
∥v(i)(t)

∥
∥

B
< ∞. (2.2)

For any real numbers s > 0 and 1 ≤ p < ∞, we recall the fractional Sobolev-type spaces W s,p(Ω) via
the Gagliardo approach (also called Aronszajn or Slobodeckij spaces). Fix a number s ∈ (0, 1) and for
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any p ∈ [1,∞), define W s,p(Ω) as follows

W s,p(Ω) =

{

v ∈ Lp(Ω) s.t.
|v(x) − v(y)|
|x − y|N+ps

p

∈ Lp(Ω × Ω)

}

. (2.3)

For 0 < s < 1, it can be said that W s,p(Ω) is an intermediate Banach space between Lp(Ω) and W 1,p(Ω),
endowed the corresponding norm

∥
∥v
∥
∥

W s,p(Ω)
=

⎛

⎝

∫

Ω

|v|pdx +
∫

Ω

∫

Ω

|v(x) − v(y)|p
|x − y|N+sp

dxdy

⎞

⎠

1
p

, (2.4)

where the seminorm

∣
∣v
∣
∣
W s,p(Ω)

=

⎛

⎝

∫

Ω

∫

Ω

|v(x) − v(y)|p
|x − y|N+sp

dxdy

⎞

⎠

1
p

, (2.5)

denotes the Gagliardo (semi)norm of v. For p = 2 in (2.3), together with the norm ‖·‖W s,2(Ω) the space

becomes a Hilbert space. Let us also set W s,2
0 (Ω) = C∞

c (Ω)
W s,2(Ω)

. It is well known that if Ω is bounded,
then we have the following continuous embeddings:

W s,2
0 (Ω) ↪→

⎧
⎪⎨

⎪⎩

L
2N

N−2s (Ω), if s < N
2 ,

Lp(Ω), if s = N
2 ,

C0,s− N
2 (Ω), if s > N

2 ;
(2.6)

for more details on fractional Sobolev spaces see [17,27] and the references therein.
For each number s ≥ 0, we define

X
s(Ω) :=

⎧
⎨

⎩
v =

∞∑

j=1

vjφj ∈ L2(Ω) : ‖v‖2
Xs(Ω) =

∞∑

j=1

v2
j λs

j < ∞
⎫
⎬

⎭
, vj =

∫

Ω

v(x)φj(x)dx. (2.7)

Let us denote by Hs(Ω) the Sobolev–Slobodecki space W s,p(Ω) when p = 2, and by Hs
0(Ω) the closure of

C∞
c (Ω) in Hs(Ω). Throughout this paper, Ω is assumed to be smooth enough such that C∞

c (Ω) is dense
in Hs(Ω) for 0 < s < 1

2 . This guarantees Hs
0(Ω) = Hs(Ω). Moreover, it is well-known that

X
s(Ω) =

⎧
⎪⎪⎨

⎪⎪⎩

Hs
0(Ω), for 0 ≤ s < 1

2 ,

H
1/2
00 (Ω) � H

1/2
0 (Ω), for s = 1

2 ,
Hs

0(Ω), for 1
2 < s ≤ 1,

H1
0 (Ω) ∩ Hs(Ω), for 1 < s ≤ 2,

where we denote by H
1/2
00 (Ω) the Lions–Magenes space. Let X

−s(Ω) be the duality of X
s which corresponds

to the dual inner product (·, ·)−s,s. Then, the operator As : X
s(Ω) → X

−s(Ω) of the fractional power s
can be defined by

Asv :=
∞∑

j=1

λs
j (v, φj)−s,s φj , ∀v ∈ X

s.

The above settings can be found in [28] (Sect. 3) and [29] (Sect. 2). In the next lemmas, we present some
useful embeddings between the spaces mentioned above.

Lemma 2.1. Given 1 ≤ p, p′ < ∞, 0 ≤ s ≤ s′ < ∞ and s′ − N
p′ ≥ s − N

p . Then

W s′,p′
(Ω) ↪→ W s,p(Ω). (2.8)
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Lemma 2.2. Let 0 ≤ s ≤ s′ ≤ 2 and let H−s(Ω) be the dual space of Hs
0(Ω). Then the following embeddings

hold

X
s(Ω) ↪→ L2(Ω) ↪→ X

−s(Ω), (2.9)

and

X
s′

(Ω) ↪→ X
s(Ω) ↪→ Hs(Ω) ↪→ L2(Ω) ↪→ H−s(Ω) ↪→ X

−s(Ω) ↪→ X
−s′

(Ω). (2.10)

2.2. Properties of Mittag–Leffler functions and some related results

The Mittag–Leffler function is defined by (see [30])

Eα,α′(z) =
∞∑

j=0

zj

Γ (αj + α′)
, z ∈ C, (2.11)

where α > 0 and α′ ∈ R are arbitrary constants, Γ is the usual gamma function.
Next, we give some properties of the Mittag–Leffler function. Let α′ ∈ R, and α ∈ (0, 2), we have:

|Eα,α′(−z)| ≤ C

1 + |z| , τ ≤ arg(z) ≤ π,

where C > 0 depends on α, α′, τ and πα′
2 < τ < min{π, πα′} (see e.g. [30]).

Lemma 2.3. (See [30,31]) For 0 < α1 < α2 < 1 and α ∈ [α1, α2], there exist positive constants C,C, such
that

(a) Eα,1(−z) > 0, for any z > 0; (2.12a)

(b)
C

1 + z
≤ Eα,α′(−z) ≤ C

1 + z
, for α′ ∈ R, z > 0. (2.12b)

Lemma 2.4. (See [31]) Let α, λ, γ are positive constants, and for every t > 0, n ∈ N, we have

(a)
dn

dtn
[Eα,1(−λtα)] = −λtα−nEα,α−n+1(−λtα); (2.13a)

(b)
∣
∣λγtα−1Eα,α′(−λtα)

∣
∣ ≤ Ctα−1−αγ . (2.13b)

Lemma 2.5. (See [32]) The following equality holds

Eα,1(−z) =

∞∫

0

Mα(s)e−zsds, for z ∈ C, (2.14)

where we recall the definition of the Wright-type function

Mα(s) :=
∞∑

j=0

sj

j!Γ (−αj + 1 − α)
, 0 < α < 1. (2.15)

Moreover, Mα(s) is a probability density function, that is,

Mα(s) ≥ 0, for s > 0; and

∞∫

0

Mα(s)ds = 1. (2.16)
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Lemma 2.6. (See [3], expression (6), for A = −Δ) The function u is a mild solution of P if u ∈
C([0, T ];L2(Ω)) and satisfies the following integral equation

u(t) = Eα,1(−tαA)u0 +

t∫

0

Eα,1(−(t − τ)αA)F (u)(τ)dτ (2.17)

for all t < T , and α ∈ (0, 1).

Lemma 2.7. (a) (Weakly singular Grönwall’s inequality, see [33], Theorem 1.2, page 2) Let a, b, β, β′ be
non-negative constants and β, β′ < 1. Assume that ϕ ∈ L1[0, T ] satisfies

ϕ(t) ≤ at−β + b

t∫

0

(t − s)−β′
ϕ(s)ds, for a.e. t ∈ (0, T ]. (2.18)

Then there exists a constant C(b, β′, T ) such that

ϕ(t) ≤ C(b, β′, T )
at−β

1 − β
, for a.e. t ∈ (0, T ]. (2.19)

(b) (Fractional Grönwall’s inequality, see [34], Corollary 2) Assume β > 0, ϕ is nonnegative, locally
integrable, and

ϕ(t) ≤ a + b

t∫

0

(t − τ)β−1ϕ(s)ds,

on (0, T ), where a, b are positive constants. Then,

ϕ(t) ≤ aEβ,1

(
bΓ(β)tβ

)
, on (0, T ).

Lemma 2.8. (a) For z > 0, then there exists a constant C > 0 depending on θ such that
{∣
∣ log z

∣
∣ ≤ Cz−θ, for θ > 0, 0 < z < 1,

∣
∣ log z

∣
∣ ≤ Czθ, for θ > 0, z ≥ 1.

(2.20)

(b) (Hölder’s inequality for negative exponents) (see [35]) Let k′ < 0, and k ∈ R be such that 1
k′ + 1

k = 1
and f(x), g(x) ≥ 0, ∀x ∈ Ω are Lebesgue measurable functions. Then

∫

Ω

fgdx ≥
⎛

⎝

∫

Ω

|f |k′
dx

⎞

⎠

1
k′ ⎛

⎝

∫

Ω

|g|kdx

⎞

⎠

1
k

. (2.21)

Proof. The proof of inequalities (2.20) and (2.21) are elementary, so we omit them here. �

Lemma 2.9. (See [17,27]) Let Ω ⊂ R
N , k,m ∈ N with k ≥ m satisfying (k − m)p < N and 1 ≤ p < ∞.

Then we have the following Sobolev embeddings

(SE1) : W k,p(Ω) ↪→ Wm,q(Ω), for 1 ≤ q < p∗
k,m,

(SE2) : X
s(Ω) ↪→ Hs(Ω), for s > 0,

(SE3) : Lp(Ω) ↪→ X
s(Ω), for −N

2 < s ≤ 0, p ≥ 2∗
s,

(SE4) : X
s(Ω) ↪→ Lp(Ω), for 0 ≤ s < N

2 , p ≤ 2∗
s,

⎫
⎪⎪⎬

⎪⎪⎭

(2.22)

where p∗
k,m, 2∗

s are the so-called fractional Sobolev exponents, given by

1
p∗

k,m

=
1
p

+
m

N
− k

N
, and

1
2∗

s

=
1
2

− s

N
. (2.23)
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3. Main results

3.1. The case when the source terms are globally Lipchitz functions

In this section, we will study the existence and uniqueness of mild solutions to problem P. First we assume
the global Lipschitz continuity and the time Hölder continuity on the nonlinear term. More precisely, we
suppose that F : X

p(Ω) → X
q(Ω), F (0) = 0, and
∥
∥F (v1) − F (v2)

∥
∥
Xq(Ω)

≤ K
∥
∥v1 − v2

∥
∥
Xp(Ω)

, (3.1)

where K : [0, T ] → R+ and p, q are real numbers.
Our results in this section present the local well-posedness of the problem. Here, Zβ,d((0, T ]; Xq(Ω))

denotes the weighted space of all functions v ∈ C((0, T ]; Xq(Ω)) such that

‖v‖Zβ,d((0,T ];Xq(Ω)) := sup
t∈(0,T ]

tβe−dt‖v(t, ·)‖Xq(Ω) < ∞

where β > 0, d > 0. First we state the following lemma which will be useful in our main results. (This
lemma can be found in [36], Lemma 8, page 9.)

Lemma 3.1. Let a > −1, b > −1 such that a + b ≥ −1, h > 0 and t ∈ [0, T ]. For μ > 0, the following
limit holds

lim
μ→∞

⎛

⎝ sup
t∈[0,T ]

th
1∫

0

sa(1 − s)be−μt(1−s)ds

⎞

⎠ = 0.

Now, we are in the position to introduce the main contributions of this work. Our main results address
the existence and regularity of the mild solution.

Theorem 3.1. Let 0 < β < 1. Assume that q − p < min
{

2(1−β)
α , 2β

α

}
. Let u0 ∈ X

q−2γ(Ω)) for any

0 < γ < min
{

β
α ; 1
}
. Then Problem P has a unique solution u in Zβ,d0((0, T ]; Xq(Ω)) with some d0 > 0.

Moreover, there exist positive constant C independently of t, x and for 1/2 < β < 1, 1 − β < α < 1/2
such that

∥
∥u(·, t)∥∥

Xp(Ω))
≤ Ct−βedt

∥
∥u0

∥
∥
Xq−2γ(Ω)

. (3.2)

Proof. Define the mapping B : Zβ,d((0, T ]; Xp(Ω)) → Zβ,d((0, T ]; Xp(Ω)), d > 0, by

Bw(t) := Eα,1(−tαA)u0 +

t∫

0

Eα,1(−(t − τ)αA)F (w)(τ)dτ. (3.3)

In what follows, we shall prove the existence of a unique solution of Problem P. This is based on the
Banach principal argument. First, since 0 < γ < 1, we have

∥
∥
∥Eα,1(−tαA)u0

∥
∥
∥

2

Xp(Ω))
=

∞∑

j=1

(u0, φj)
2 (Eα,1 (−λjt

α))2 λp
j

≤
∞∑

j=1

(u0, φj)
2 C2

(1 + λjtα)2γ
λp

j ≤ C2t−2αγ
∞∑

j=1

(u0, φj)
2
λp−2γ

j . (3.4)

It follows from the condition β > αγ that

tβe−dt
∥
∥
∥Eα,1(−tαA)u0

∥
∥
∥
Xp(Ω))

≤ Ctβ−αγ‖u0‖Xp−2γ(Ω)) ≤ CT β−αγ‖u0‖Xp−2γ(Ω)). (3.5)
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From the latter inequality, we deduce that u0 ∈ Zβ,d((0, T ]; Xp(Ω)). Indeed, for w1, w2 ∈ Zβ,d((0, T ];
X

p(Ω)), we have
∥
∥Bw1 − Bw2

∥
∥
Zβ,d((0,T ];Xp(Ω))

= sup
t∈(0,T ]

tβe−dt
∥
∥
∥

t∫

0

Eα,1(−(t − τ)αA)
[
F (w1(τ)) − F (w2(τ))

]
dτ
∥
∥
∥
Xp(Ω)

≤ sup
t∈(0,T ]

tβe−dt

t∫

0

∥
∥
∥Eα,1(−(t − τ)αA)

[
F (w1(τ)) − F (w2(τ))

]∥∥
∥
Xp(Ω)

dτ

≤ C sup
t∈(0,T ]

tβe−dt

t∫

0

(t − τ)− α(q−p)
2

∥
∥
∥F (w1(τ)) − F (w2(τ))

∥
∥
∥
Xq(Ω)

dτ

≤ CK
∥
∥v1 − v2

∥
∥
Zβ,d((0,T ];Xp(Ω))

sup
t∈(0,T ]

tβ
t∫

0

(t − τ)− α(q−p)
2 τ−βe−d(t−τ)dτ. (3.6)

We derive the estimate
∥
∥Bw1 − Bw2

∥
∥
Zβ,d((0,T ];Xp(Ω))

≤ Ld

∥
∥v1 − v2

∥
∥
Zβ,d((0,T ];Xp(Ω))

,

where

Ld = tβ
t∫

0

(t − τ)− α(q−p)
2 τ−βe−d(t−τ)dτ.

From the conditions of α, β, p, q, we find that

β − α(q − p)
2

> 0, −α(q − p)
2

> −1, −β > −1, −α(q − p)
2

− β > −1.

Applying Lemma 3.1, we obtain that

lim
d→∞

Ld := K lim
μ→∞

⎛

⎝ sup
t∈(0,T ]

tβ
t∫

0

(t − τ)− α(q−p)
2 τ−βe−(t−τ)ddτ

⎞

⎠

= K lim
d→∞

⎛

⎝ sup
t∈(0,T ]

tβ− α(q−p)
2

1∫

0

(1 − τ)− α(q−p)
2 τ−βe−t(1−τ)ddτ

⎞

⎠

= 0. (3.7)

Hence, there exists a positive d > 0 such that B is a contraction mapping on Zβ,d0((0, T ]; Xp(Ω)). This
together with (3.5) leads to Bw ∈ Zβ,d0((0, T ]; Xp(Ω)) if w ∈ Zβ,d0((0, T ]; Xp(Ω)). Hence, we conclude
that B has a fixed point u in Zβ,d0((0, T ]; Xp(Ω)), i.e, u is a unique mild solution of Problem P.

This and the technique in (3.6) yields

∥
∥u(t, ·)∥∥

Xp(Ω)
≤
∥
∥
∥Eα,1(−tαA)u0

∥
∥
∥
Xp(Ω))

+

t∫

0

∥
∥
∥Eα,1(−(t − τ)αA)F (u(τ))

∥
∥
∥
Xp(Ω)

dτ

≤ Ct−αγ‖u0‖Xp−2γ(Ω)) + CK

t∫

0

(t − τ)− α(q−p)
2
∥
∥u(τ))

∥
∥
Xp(Ω)

dτ. (3.8)
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Multiplying both sides to tβe−dt, we find that

tβe−dt
∥
∥u(t, ·)∥∥

Xp(Ω)
≤ Ce−dttβ−αγ‖u0‖Xp−2γ(Ω)) + CKtβe−dt

t∫

0

(t − τ)− α(q−p)
2
∥
∥u(τ))

∥
∥
Xp(Ω)

ds. (3.9)

By applying the Hölder inequality, and then using e−2d(t−τ) < 1, we can find some positive constant M
such that

tβe−dt

t∫

0

(t − τ)− α(q−p)
2
∥
∥u(τ))

∥
∥
Xp(Ω)

dτ

≤
⎛

⎝t2β

t∫

0

(t − τ)− α(q−p)
2 τ−2βe−2d(t−τ)dτ

⎞

⎠

1
2
⎛

⎝

t∫

0

(t − τ)− α(q−p)
2

(
τβe−dτ

∥
∥u(s, ·))∥∥

Xp(Ω)

)2

dτ

⎞

⎠

1
2

≤
⎛

⎝t2βt−
α(q−p)

2

1∫

0

(1 − τ)− α(q−p)
2 τ−2βdτ

⎞

⎠

1
2
⎛

⎝

t∫

0

(t − τ)− α(q−p)
2

(
τβe−dτ

∥
∥u(τ, ·))∥∥

Xp(Ω)

)2

dτ

⎞

⎠

1
2

≤ M

⎛

⎝

t∫

0

(t − τ)− α(q−p)
2

(
τβe−dτ

∥
∥u(τ, ·))∥∥

Xσ(Ω)

)2

dτ

⎞

⎠

1
2

. (3.10)

Taking the estimate (3.8), and (3.10) together gives that

Uβ,d(t) ≤ 2C2e−2dtt2β−2αγ‖u0‖2
Xp−2γ(Ω)) + |M |2C2K2

t∫

0

(t − τ)− α(q−p)
2 Uβ,d(τ)dτ, (3.11)

where

Uβ,d(t) :=
(
tβe−dt

∥
∥u(t, ·)∥∥

Xp(Ω)

)2

.

Applying Lemma 2.7(b), we deduce that

Uβ,d(t) ≤ 2C2T 2β−2αγ‖u0‖2
Xp−2γ(Ω))E1− α(q−p)

2 ,1

(

|M |2C2K2Γ
(

1 − α(q − p)
2

)

t1− α(q−p)
2

)

. (3.12)

The proof of Theorem 3.1 is completed. �

3.2. The case when the source terms are locally Lipschitz functions

Next, we shall present the results when the source terms are logarithmic nonlinearities of the following
type Fp(u) = ηVp(u) log |u| and Vp(u) = |u|p−2u, for p ≥ 2, η > 0.

Remark 3.1. For the source terms of polynomial type nonlinearities, i.e., Fp(u) = Vp(u) a simpler result
was considered in [2,5].

Lemma 3.2. For Fp(u)(x, t) = ηVp(u) log |u| ∈ L∞(Ω × (0, T ) × R), p ≥ 2, η > 0, there exists a positive
constant C such that

|Fp(u) − Fp(w)| ≤ C
(∣
∣ log |u|∣∣ |u − w| + |u|p−2

∣
∣ log |u|∣∣ |u − w|)

+ C
(
|w|p−2

∣
∣ log |u|∣∣ |u − w| + |w|p−2 |u − w|

)
, (3.13)

for all (x, t) ∈ Ω × (0, T ), ∀u,w ∈ R.
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Proof. For (x, t) ∈ Ω × (0, T ) and u,w ∈ R, we have
∣
∣Fp(u) − Fp(w)

∣
∣ = η

∣
∣Vp(u) log |u| − Vp(w) log |w|∣∣

≤ η
(∣
∣Vp(u) − Vp(w)

∣
∣
∣
∣ log |u|∣∣+ |Vp(u)| ∣∣ log |u| − log |w|∣∣) . (3.14)

Thanks to the results in [5], we have that
∣
∣Vp(u) − Vp(w)

∣
∣ =
∣
∣
∣u|p−2u − |w|p−2w

∣
∣
∣

≤ C(1 + |u|p−2 + |w|p−2)|u − w|. (3.15)

Using the basic inequality log(1 + z) < z for z > 0, one has

∣
∣ log |u| − log |w|∣∣ =

∣
∣
∣
∣log

∣
∣
∣
∣1 +

|u| − |w|
|w|

∣
∣
∣
∣

∣
∣
∣
∣

<

∣
∣
∣
∣log

(

1 +
|u − w|

|w|
)∣
∣
∣
∣ <

|u − w|
|w| . (3.16)

From (3.14)–(3.16), we have the proof of Lemma 3.2. �

Theorem 3.2. (Local existence) Let α ∈ (0, 1), N ≥ 1, p ≥ 2, 0 ≤ s < s2, for 0 ≤ s2 < N/2. Let
1 ≤ q ≤ min

{
2�

s2,s;
Nθ

N+θs

}
with 2�

s2,s satisfying 1
2�

s2,s
= 1

2+ s
N − s2

N and qs < N . Let u0 ∈ X
s2(Ω)∩W s,q(Ω),

and for the nonlinearity source of logarithmic function type

Fp(u) = ηVp(u) log |u|, for Vp(u) = |u|p−2u, with p ≥ 2, η > 0,

then there is a time constant T > 0 (depending only on u0) such that Problem P has a unique mild
solution belonging to C([0, T ];W s,q(Ω)).

Remark 3.2. In Theorem 3.2, for N ≥ 1, and 0 ≤ s2 < N/2 let us choose N = 3, s2 = 1. From the
conditions

{
s < 2s2, s ∈ N,

1 ≤ q ≤ 2N
N+2s−2s2

,
this implies that

{
s = 0, q ∈ [1, 6], or,
s = 1, q ∈ [1, 2].

(3.17)

Then, the Problem P has a unique mild solution u ∈ C([0, T ];Lq(Ω)), 1 ≤ q ≤ 6, or u ∈ C([0, T ];W 1,q(Ω)),
for 1 ≤ q ≤ 2.

Proof. For N ≥ 1, p ≥ 2, 0 < θ ≤ p − 1 (θ is defined in Lemma 2.8), we put

0 ≤ s2 < min
{

1;
(p − 1)N

2p

}

, s1 = ps2 − s∗, (3.18)

s ∈ N satisfies s < s2, 1 ≤ q ≤ min
{

2∗
s2,s;

Nθ

N + θs

}

, (3.19)

max {ps2;Z(a, b)} < s∗ < min
{

ps2 +
N

2
; 1 + (p − 1)s2

}

, (3.20)

where 2∗
s2,s = 1

2 + s
N − s2

N , and Z(a, b) be defined by

Z(a, b) =
N(2pa − qb) + 2pq(s2b − sa)

2qb
, (3.21)

with the pairs (a, b) as follows:

(a, b) ∈ {(1, 1), (θ, 1), (p − 2, 1), (θ, p − 1), (θ, p − 1), (p − 2, p − 1)} , for θ > 0.
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Let T > 0 and R > 0 to be chosen later, and we consider the following space

W :=
{

u ∈ C([0, T ];W s,q(Ω)) : u(·, 0) = u0, and
∥
∥u(·, t) − u0

∥
∥

W m,q(Ω)
≤ R

}

, (3.22)

for 0 < α < 1, and we define the mapping M on W by

Mu(t) = Eα,1(−tαA)u0 +

t∫

0

Eα,1(−(t − τ)αA)Fp(u)(τ)dτ

:= Eα,1(−tαA)u0 + J(F (u))(t). (3.23)

We show that M is invariant in W and M is a contraction.
• Claim I If u0 ∈ X

s2(Ω) ∩ W s,q(Ω), then M is W-invariant. In fact, from Lemma 2.3(b), we have

‖Eα,1(−Atα)u0 − u0‖2
Xs2 (Ω) =

∞∑

j=1

(u0, φj)
2 (Eα,1 (−λjt

α) − 1)2 λs2
j

≤ 2(C
2

+ 1)
∞∑

j=1

(u0, φj)
2
λs2

j

≤ C ‖u0‖2
Xs2 (Ω) , ∀t ∈ (0, T ]. (3.24)

From (3.19), one has s < s2 and 1 ≤ q ≤ 2∗
s2,s, and we have that X

s2(Ω) ↪→ Hs2(Ω) ↪→ W s,q(Ω) and
then, we conclude from (3.24) that

‖Eα,1 (−Atα) u0 − u0‖W s,q(Ω) ≤ C ‖u0‖Xs2 (Ω) , t ∈ (0, T ]. (3.25)

From (3.20), we have ps2 < s∗ < 1+(p−1)s2, this implies that 0 < s2−s1 < 1 and for ps2 < s∗ < ps2+ N
2 ,

or −N
2 < ps2 − s∗ < 0 thus −N

2 < s1 < 0. Taking 1
2∗

s1
= 1

2 − s1
N and combine with Lemma 2.9, we obtain

L2∗
s1 (Ω) ↪→ X

s1(Ω). Using Lemma 2.3(b), we have for t ∈ (0, T ]

∥
∥J(F (u))(t)

∥
∥
Xs2 (Ω)

≤
t∫

0

‖Eα,1(−(t − τ)αA)Fp(u)(τ)‖
Xs2 (Ω) dτ

≤
t∫

0

⎛

⎝
∞∑

j=1

λs2−s1
j (Fp(u)(·, τ), φj)

2
λs1

j

(
C

1 + λj(t − τ)α

)2
⎞

⎠

1
2

dτ

≤ C

λ
2−s2+s1

2
1

t∫

0

(t − τ)−α
∥
∥Fp(u)(·, τ)

∥
∥
Xs1 (Ω)

dτ

≤ C

t∫

0

(t − τ)−α
∥
∥Fp(u)(·, τ)

∥
∥

L
2∗

s1 (Ω)
dτ. (3.26)



ZAMP Semilinear time-fractional diffusion equations Page 11 of 24 161

Let us set Ω− := {x ∈ Ω : |u(x)| < 1} and Ω+ := {x ∈ Ω : |u(x)| ≥ 1}. Using Hölder’s inequality, we have
∫

Ω

∣
∣Fp(u)

∣
∣2

∗
s1 dx ≤ η2∗

s1

∫

Ω

|u|(p−1)2∗
s1
∣
∣ log |u|∣∣2

∗
s1 dx

≤ C

⎛

⎝

∫

Ω

∣
∣log

∣
∣u
∣
∣
∣
∣p2∗

s1 dx

⎞

⎠

1
p
⎛

⎝

∫

Ω

∣
∣u
∣
∣p2∗

s1 dx

⎞

⎠

p−1
p

≤ C

⎛

⎝

∫

Ω−

∣
∣ log |u|∣∣p2∗

s1 dx +
∫

Ω+

∣
∣ log |u|∣∣p2∗

s1 dx

⎞

⎠

1
p
⎛

⎝

∫

Ω

∣
∣u
∣
∣p2∗

s1 dx

⎞

⎠

p−1
p

≤ C

⎛

⎜
⎝

⎛

⎝

∫

Ω−

∣
∣ log |u|∣∣p2∗

s1 dx

⎞

⎠

1
p

+

⎛

⎝

∫

Ω+

∣
∣ log |u|∣∣p2∗

s1 dx

⎞

⎠

1
p

⎞

⎟
⎠

⎛

⎝

∫

Ω

∣
∣u
∣
∣p2∗

s1 dx

⎞

⎠

p−1
p

, (3.27)

where we have used the elementary inequality (a+b)c ≤ ac +bc, for 0 < c < 1. From the inequality (2.20)
for |u(x)| < 1, ∀x ∈ Ω, by applying Lemma 2.8b) for k′ = − 1

p2∗
s1

< 0, we have

⎛

⎝

∫

Ω−

∣
∣ log |u|∣∣p2∗

s1 dx

⎞

⎠

1
p

≤ C

⎛

⎝

∫

Ω−

∣
∣u(x)

∣
∣−pθ2∗

s1 dx

⎞

⎠

1
p

≤ C

⎛

⎜
⎝

⎛

⎝

∫

Ω−

∣
∣u(x)

∣
∣−pθ2∗

s1 dx

⎞

⎠

− 1
p2∗

s1

⎞

⎟
⎠

−2∗
s1

≤ C

⎛

⎜
⎜
⎝

⎛

⎝

∫

Ω−

|u(x)|θdx

⎞

⎠

⎛

⎝

∫

Ω−

1dx

⎞

⎠

− 1+p2∗
s1

p2∗
s1

⎞

⎟
⎟
⎠

−2∗
s1

≤ C
∥
∥u
∥
∥−θ2∗

s1
Lθ(Ω)

|Ω|
1+p2∗

s1
p , (3.28)

From the inequality (2.20) for |u(x)| ≥ 1, we have
⎛

⎝

∫

Ω+

∣
∣ log |u|∣∣p2∗

s1 dx

⎞

⎠

1
p

≤ C

⎛

⎝

∫

Ω+

∣
∣u(x)

∣
∣pθ2∗

s1 dx

⎞

⎠

1
p

≤ C
∥
∥u
∥
∥θ2∗

s1

L
pθ2∗

s1 (Ω)
. (3.29)

From (3.27), (3.28) and (3.29), we conclude that
∥
∥Fp(u)

∥
∥

L
2∗

s1 (Ω)
≤ C

(∥
∥u
∥
∥−θ

Lθ(Ω)
+
∥
∥u
∥
∥θ

L
pθ2∗

s1 (Ω)

)∥
∥u
∥
∥p−1

L
p2∗

s1 (Ω)
. (3.30)

For s > 0, qs < N , and q < Nθ
N+θs , this implies that q∗

s ≤ θ with q∗
s satisfies

1
q∗
s

=
1
q

− s

N
,

we deduce from Lemma 2.9 that the following Sobolev embedding holds Lθ(Ω) ↪→ W s,q(Ω). Then we get
that

∥
∥u
∥
∥

W s,q(Ω)
≤ C

∥
∥u
∥
∥

Lθ(Ω)
,
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and for θ > 0, we have that
∥
∥u
∥
∥−θ

Lθ(Ω)
≤ C

∥
∥u
∥
∥−θ

W s,q(Ω)
.

From (3.21), the constant s∗ > Z(1, 1), [for Z(1, 1) defined in (3.21)] and observe that

p2∗
s1

=
2Np

N − 2s1
=

2Np

N + 2s∗ − 2ps2
<

2Np

N + 2Z(1, 1) − 2ps2
=

Nq

N − sq
= q∗

s , (3.31)

then we also obtain W s,q(Ω) ↪→ Lp2∗
s1 (Ω). For s∗ > Z(θ, 1) [for Z(θ, 1) defined in (3.21)], we infer that

pθ2∗
s1

= pθ
2N

N − 2s1
=

2Np

N + 2s∗ − 2ps2
= pθ

2N

N + 2Z(θ, 1) − 2ps2
≤ q∗

s ,

this implies that W s,q(Ω) ↪→ Lpθ2∗
s1 (Ω). This implies that

‖Fp(u)‖
L

2∗
s1 (Ω)

≤ C
(∥
∥u
∥
∥−θ

W s,q(Ω)
+
∥
∥u
∥
∥θ

W s,q(Ω)

)∥
∥u
∥
∥p−1

W s,q(Ω)
,

and from (3.26), and for 0 < θ < p − 1, we have

The (RHS) of (3.26) ≤ C

t∫

0

(t − τ)−α
(
‖u(·, τ)‖−θ

W s,q(Ω) +
∥
∥u(·, τ)

∥
∥θ

W s,q(Ω)

)∥
∥u(·, τ)

∥
∥p−1

W s,q(Ω)
dτ

≤ C

t∫

0

(t − τ)−α
(
‖u(·, τ)‖p−1−θ

W s,q(Ω) +
∥
∥u(·, τ)

∥
∥p−1+θ

W s,q(Ω)

)
dτ

≤ C

((
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
) t∫

0

(t − τ)−αdτ

≤ C

((
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

t1−α

1 − α
, (3.32)

where from (3.22), we have that
∥
∥u(·, τ)

∥
∥

W s,q(Ω)
≤ R+

∥
∥u0

∥
∥

W s,q(Ω)
, for all τ ∈ [0, T ]. From (3.26), (3.32),

we obtain that for t ∈ (0, T ]

∥
∥J(F (u))(t)

∥
∥
Xs2 (Ω)

≤ C

((
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

t1−α. (3.33)

For the constants s, q satisfying (3.19), we have that X
s2(Ω) ↪→ W s,q(Ω) and α ∈ (0, 1), and for all

t ∈ [0, T ], we get

∥
∥J(F (u))(t)

∥
∥

W s,q(Ω)
≤ C

((
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

T 1−α. (3.34)

Hence, from (3.24) and (3.34), for every t ∈ (0, T ],

‖Mu(t) − u0‖W s,q(Ω)

≤ C ‖u0‖Xs2 (Ω) + C

((
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

T 1−α. (3.35)
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Therefore we see that if R = 2C ‖u0‖Xs2 (Ω) and for the constant C > 0, θ < p − 1 such that

R ≥ 2C
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

T 1−α,

and

R ≥ 2C
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ

T 1−α.

Then, we imply M is invariant in W.
• Claim II M : W → W is a contraction map. Let u,w ∈ W, and similar to (3.26) and using

Lemma 2.3(b), one has for every t ∈ (0, T ],

‖Mu(t) − Mw(t)‖
Xs2 (Ω) = ‖J(F (u))(t) − J(F (w))(t)‖

Xs2 (Ω)

≤ C

t∫

0

(t − τ)−α
∥
∥Fp(u)(·, τ) − Fp(w)(·, τ)

∥
∥
Xs1 (Ω)

dτ

≤ C

t∫

0

(t − τ)−α ‖Fp(u)(·, τ) − Fp(w)(·, τ)‖
L

2∗
s1 (Ω)

dτ, (3.36)

in which we used the Sobolev embedding L2∗
s1 (Ω) ↪→ X

s1(Ω), for 1
2∗

s1
= 1

2 − s1
N and −N

2 < s1 ≤ 0. By
recalling Lemma 3.2, we arrive at

‖Fp(u) − Fp(w)‖
L

2∗
s1 (Ω)

≤ C
∥
∥
∥
∣
∣ log |u|∣∣ |u − w|

∥
∥
∥

L
2∗

s1 (Ω)
+ C

∥
∥
∥|u|p−2 ∣∣ log |u|∣∣ |u − w|

∥
∥
∥

L
2∗

s1 (Ω)

+ C
∥
∥
∥|w|p−2 ∣∣ log |u|∣∣ |u − w|

∥
∥
∥

L
2∗

s1 (Ω)
+ C

∥
∥
∥|w|p−2 |u − w|

∥
∥
∥

L
2∗

s1 (Ω)
. (3.37)

For the constant 2∗
s1

≥ 1, using Hölder’s inequality, we get

∥
∥
∥
∣
∣ log |u|∣∣ |u − w|

∥
∥
∥

2∗
s1

L
2∗

s1 (Ω)
=
∫

Ω

(∣
∣ log |u|∣∣∣∣u − w

∣
∣
)2∗

s1 dx =
∫

Ω

∣
∣ log |u|∣∣2

∗
s1
∣
∣u − w

∣
∣2

∗
s1 dx

≤
⎛

⎝

∫

Ω

∣
∣ log |u|∣∣

p2∗
s1

p−1 dx

⎞

⎠

p−1
p
⎛

⎝

∫

Ω

∣
∣u − w

∣
∣p2∗

s1 dx

⎞

⎠

1
p

≤
⎛

⎝

∫

Ω−

∣
∣ log |u|∣∣

p2∗
s1

p−1 dx +
∫

Ω+

∣
∣ log |u|∣∣

p2∗
s1

p−1 dx

⎞

⎠

p−1
p
⎛

⎝

∫

Ω

∣
∣u − w

∣
∣p2∗

s1 dx

⎞

⎠

1
p

≤

⎛

⎜
⎝

⎛

⎝

∫

Ω−

∣
∣ log |u|∣∣

p2∗
s1

p−1 dx

⎞

⎠

p−1
p

+

⎛

⎝

∫

Ω+

∣
∣ log |u|∣∣

p2∗
s1

p−1 dx

⎞

⎠

p−1
p

⎞

⎟
⎠

⎛

⎝

∫

Ω

∣
∣u − w

∣
∣p2∗

s1 dx

⎞

⎠

1
p

. (3.38)
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From the inequality (2.20) for |u(x)| < 1, ∀x ∈ Ω, we have

⎛

⎝

∫

Ω−

∣
∣ log |u|∣∣

p2∗
s1

p−1 dx

⎞

⎠

p−1
p

≤ C

⎛

⎝

∫

Ω−

∣
∣u(x)

∣
∣−

pθ2∗
s1

p−1 dx

⎞

⎠

p−1
p

≤

⎛

⎜
⎝

⎛

⎝

∫

Ω−

∣
∣u(x)

∣
∣−

pθ2∗
s1

p−1 dx

⎞

⎠

− p−1
p2∗

s1

⎞

⎟
⎠

−2∗
s1

≤ C

⎛

⎜
⎜
⎝

⎛

⎝

∫

Ω−

|u(x)|θdx

⎞

⎠

⎛

⎝

∫

Ω−

1dx

⎞

⎠

− p−1+p2∗
s1

p2∗
s1

⎞

⎟
⎟
⎠

−2∗
s1

≤ C
∥
∥u
∥
∥−θ2∗

s1
Lθ(Ω)

|Ω|
p−1+p2∗

s1
p , (3.39)

where we have chosen k′ = − p−1
p2∗

s1
< 0 in Lemma 2.8(b). For |u(x)| ≥ 1, ∀x ∈ Ω, we have

⎛

⎝

∫

Ω+

∣
∣ log |u|∣∣

p2∗
s1

p−1 dx

⎞

⎠

p−1
p

≤ C

⎛

⎝

∫

Ω+

∣
∣u(x)

∣
∣

pθ2∗
s1

p−1 dx

⎞

⎠

p−1
p

≤ C
∥
∥u
∥
∥θ2∗

s1

L

pθ2∗
s1

p−1 (Ω)

. (3.40)

From (3.38), (3.39) and (3.40), we conclude that

∥
∥
∥
∣
∣ log |u|∣∣∣∣u − w

∣
∣
∥
∥
∥

L
2∗

s1 (Ω)
≤ C

(
∥
∥u
∥
∥−θ

Lθ(Ω)
+
∥
∥u
∥
∥θ

L

pθ2∗
s1

p−1 (Ω)

)
∥
∥u − w

∥
∥

L
p2∗

s1 (Ω)
. (3.41)

Thanks to Hölder’s inequality, we get that
∫

Ω

(|u|p−2
∣
∣ log |u|∣∣∣∣u − w

∣
∣
)2∗

s1 dx =
∫

Ω

|u|(p−2)2∗
s1
∣
∣ log |u|∣∣2

∗
s1
∣
∣u − w

∣
∣2

∗
s1 dx

≤
⎛

⎝

∫

Ω

∣
∣ log |u|∣∣

p2∗
s1

p−2 dx

⎞

⎠

p−2
p
⎛

⎝

∫

Ω

|u|p(p−2)2∗
s1 dx

⎞

⎠

1
p
⎛

⎝

∫

Ω

∣
∣u − w

∣
∣p2∗

s1 dx

⎞

⎠

1
p

. (3.42)

Similar to (3.39) and (3.40), we have the following estimate

⎛

⎝

∫

Ω

∣
∣ log |u|∣∣

p2∗
s1

p−2 dx

⎞

⎠

p−2
p

≤
⎛

⎝

∫

Ω−

∣
∣ log |u|∣∣

p2∗
s1

p−2 dx

⎞

⎠

p−2
p

+

⎛

⎝

∫

Ω+

∣
∣ log |u|∣∣

p2∗
s1

p−2 dx

⎞

⎠

p−2
p

≤ C

(
∥
∥u
∥
∥−θ2∗

s1
Lθ(Ω)

+
∥
∥u
∥
∥θ2∗

s1

L

pθ2∗
s1

p−2 (Ω)

)

. (3.43)

Combining (3.42) and (3.43), we get that
∥
∥|u|p−2

∣
∣ log |u|∣∣∣∣u − w

∣
∣
∥
∥

L
2∗

s1 (Ω)

≤ C

(
∥
∥u
∥
∥−θ

Lθ(Ω)
+
∥
∥u
∥
∥θ

L

pθ2∗
s1

p−2 (Ω)

)
∥
∥u
∥
∥p−2

L
p(p−2)2∗

s1 (Ω)

∥
∥u − w

∥
∥

L
p2∗

s1 (Ω)
. (3.44)
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Similarly,
∥
∥|w|p−2

∣
∣ log |u|∣∣∣∣u − w

∣
∣
∥
∥

L
2∗

s1 (Ω)

≤ C

(
∥
∥u
∥
∥−θ

Lθ(Ω)
+
∥
∥u
∥
∥θ

L

pθ2∗
s1

p−2 (Ω)

)
∥
∥w
∥
∥p−2

L
p(p−2)2∗

s1 (Ω)

∥
∥u − w

∥
∥

L
p2∗

s1 (Ω)
. (3.45)

We use the Hölder’s inequality to obtain that
∥
∥|w|p−2

∣
∣u − w

∣
∣
∥
∥2∗

s1

L
2∗

s1 (Ω)
=
∫

Ω

(|w|p−2
∣
∣u − w

∣
∣
)2∗

s1 dx

≤
⎛

⎝

∫

Ω

|w|
p(p−2)2∗

s1
p−1 dx

⎞

⎠

p−1
p
⎛

⎝

∫

Ω

∣
∣u − w

∣
∣p2∗

s1 dx

⎞

⎠

1
p

≤ ∥∥w∥∥(p−2)2∗
s1

L

p(p−2)2∗
s1

p−1 (Ω)

∥
∥u − w

∥
∥2∗

s1

L
p2∗

s1 (Ω)
. (3.46)

Combining the results obtained in (3.37), (3.41), (3.44), (3.45) and (3.46), we have

∥
∥Fp(u)(·, t) − Fp(w)(·, t)∥∥

L
2∗

s1 (Ω)
≤ C

(
∥
∥u
∥
∥−θ

Lθ(Ω)
+
∥
∥u
∥
∥θ

L

pθ2∗
s1

p−1 (Ω)

)
∥
∥u − w

∥
∥

L
p2∗

s1 (Ω)

+ C

(
∥
∥u
∥
∥−θ

Lθ(Ω)
+
∥
∥u
∥
∥θ

L

pθ2∗
s1

p−2 (Ω)

)
∥
∥u
∥
∥p−2

L
p(p−2)2∗

s1 (Ω)

∥
∥u − w

∥
∥

L
p2∗

s1 (Ω)

+ C

(
∥
∥u
∥
∥−θ

Lθ(Ω)
+
∥
∥u
∥
∥θ

L

pθ2∗
s1

p−2 (Ω)

)
∥
∥w
∥
∥p−2

L
p(p−2)2∗

s1 (Ω)

∥
∥u − w

∥
∥

L
p2∗

s1 (Ω)

+ C
∥
∥w
∥
∥p−2

L

p(p−2)2∗
s1

p−1 (Ω)

∥
∥u − w

∥
∥

L
p2∗

s1 (Ω)
. (3.47)

From (3.18)–(3.21) we have the following:

� For q∗
s satisfying 1

q∗
s

= 1
q − s

N , for q ≤ Nθ
N+θs and sq < N , then q∗

s ≤ θ and we deduce from Lemma
2.9 that Lθ(Ω) ↪→ W s,q(Ω). This implies that

∥
∥u
∥
∥−θ

Lθ(Ω)
≤ C

∥
∥u
∥
∥−θ

W s,q(Ω)
, for 0 < θ ≤ p − 1.

� For s∗ > Z(1, 1), a similar argument with (3.31) and we observe that q∗
s ≥ p2∗

s1
, and then we deduce

from Lemma 2.9 that the following Sobolev embedding holds W s,q(Ω) ↪→ Lp2∗
s1 (Ω).

� For s∗ > Z(p − 2, 1), implies that

p(p − 2)2∗
s1

=
2p(p − 2)N

N − 2s1
<

2p(p − 2)N
N + 2Z(p − 2, 1) − 2ps2

≤ q∗
s , (3.48)

and we infer that W s,q(Ω) ↪→ Lp(p−2)2∗
s1 (Ω).

� For s∗ > Z(θ, p − 1), we observe that
pθ2∗

s1
p−1 ≤ q∗

s , then we get W s,q(Ω) ↪→ L
pθ2∗

s1
p−1 (Ω).

� For s∗ > Z(θ, p − 2), we have
pθ2∗

s1
p−2 ≤ q∗

s , and this implies that W s,q(Ω) ↪→ L
pθ2∗

s1
p−2 (Ω).

� For s∗ > Z(p − 2, p − 1), implies
p(p−2)2∗

s1
p−1 ≤ q∗

s , and we infer that W s,q(Ω) ↪→ L
p(p−2)2∗

s1
p−1 (Ω).

We can now combine the results above together with (3.47) to deduce that
∥
∥Fp(u)(·, t) − Fp(w)(·, t)∥∥

L
2∗

s1 (Ω)
≤ K(R, u0)

∥
∥u(·, t) − w(·, t)∥∥

W s,q(Ω)
, (3.49)



161 Page 16 of 24 B. de Andrade et al. ZAMP

for all t ∈ (0, T ], we have used that max
{‖u‖W s,q(Ω); ‖w‖W s,q(Ω)

} ≤ R+‖u0‖W s,q(Ω), and for the constant
K(R, u0) := K(N, p, θ, s1, R, ‖u0‖W s,q(Ω)) but independent of t. From this, one observes that

The (RHS) of (3.36) ≤ CK(R, u0)

t∫

0

(t − τ)−α ‖u(·, τ) − w(·, τ)‖W s,q(Ω) dτ

≤ CK(R, u0)

t∫

0

(t − τ)−α
(
‖u(·, τ) − w(·, τ)‖W s,q(Ω)

)
dτ

≤ CK(R, u0) ‖u(·, τ) − w(·, τ)‖C([0,T ];W s,q(Ω))

t∫

0

(t − τ)−αdτ

≤ CK(R, u0) ‖u − w‖C([0,T ];W s,q(Ω))

t1−α

1 − α
. (3.50)

Inserting the result of (3.50) into (3.36), we obtain that

‖Mu(t) − Mw(t)‖
Xs2 (Ω) ≤ CK(R, u0)T 1−α ‖u − w‖C([0,T ];W s,q(Ω)) .

For the constants s, q satisfying (3.19), we have that X
s2(Ω) ↪→ W s,q(Ω), and

‖Mu − Mw‖C([0,T ];W s,q(Ω)) ≤ CK(R, u0)T 1−α ‖u − w‖C([0,T ];W s,q(Ω)) . (3.51)

Choosing T,K(R, u0) small enough such that CK(R, u0)T 1−α < 1, it follows that M is a contraction
map on W. So, we invoke the contraction mapping principle to conclude that the map M has a unique
fixed point u in W. The proof of Theorem 3.2 is completed. �

Since we already know that the mild solution of P does exist, the question is whether it will continue
(continuation to a bigger interval of existence) and in what situation it is non-continuation by blowup.

Definition 3.1. Given a mild solution u ∈ C([0, T ];W s,q(Ω)) of P for α ∈ (0, 1), we say that u� is a
continuation of u in (0, T �] for T � > T if it is satisfies

{
u� ∈ C([T, T �];W s,q(Ω)) is a mild solution of (P) for all t ∈ [T, T �],
u�(x, t) = u(x, t) whenever t ∈ [0, T ], x ∈ Ω.

(3.52)

Theorem 3.3. (Continuation) Suppose that the assumptions of Theorem 3.2 are satisfied. Then, the mild
solution (unique) on (0, T ] of Problem P can be extended to the interval (0, T �], for some T � > T , so
that, the extended function is also the mild solution (unique) of Problem P on (0, T �].

Proof. Let u : [0, T ] → W s,q(Ω) be a mild solution of Problem P (T is the time from Theorem 3.2). Fix
R� > 0, and for T � > T, (T � depending on R�), we shall prove that u� : [0, T �] → W s,q(Ω) is a mild
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solution of Problem P. Assume the following estimates hold:

CT−α(T �)α ‖u0‖Xs2 (Ω) ≤ R�

4
, (3.53)

C
(
R� +

∥
∥u(·, T )

∥
∥

W s,q(Ω)

)p−1−θ

(T �)1−α ≤ R�

8
, (3.54)

C
(
R� +

∥
∥u(·, T )

∥
∥

W s,q(Ω)

)p−1+θ

(T �)1−α ≤ R�

8
, (3.55)

C
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

(T �)
αs1−αs2+2

2 <
R�

8
, (3.56)

C
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ

(T �)
αs1−αs2+2

2 <
R�

8
, (3.57)

CK(R, u0)(T �)α+αγ−2αγ ≤ R�

4
, (3.58)

where 0 < θ ≤ p − 1 and K(R, u0) is defined in the proof of Theorem 3.2. For T � ≥ T > 0 and R� > 0,
let us define

W
� :=

{

u� ∈ C([0, T �];W s,q(Ω)) : | u�(·, t) = u(·, t), ∀t ∈ (0, T ],
‖u�(·, t) − u(·, T )‖C([T,T �];W s,q(Ω)) ≤ R�, ∀t ∈ [T, T �].

}

(3.59)

• Step I We show that M defined as in (3.23) is the operator on W
�. Let u� ∈ W

� and we consider
two cases.

∗ If t ∈ (0, T ], then by virtue of Theorem 3.2, we have the Problem P has a unique solution and we
also have u�(·, t) = u(·, t). Thus Mu�(t) = Mu(t) = u(·, t) for all t ∈ (0, T ].

∗ If t ∈ [T, T �], we have

‖Mu�(t) − u(·, T )‖W s,q(Ω)

≤ ‖(Eα,1 (−tαA) − Eα,1 (−TαA)) u0‖W s,q(Ω)

+

t∫

T

‖Eα,1 (−(t − τ)αA) Fp(u�)(τ)‖W s,q(Ω) dτ

+

T∫

0

‖(Eα,1 (−(t − τ)αA) − Eα,1 (−(T − τ)αA)) Fp(u�)(τ)‖W s,q(Ω) dτ

=: ‖J2(u0)(t)‖W s,q(Ω) + ‖J3(u�)(t)‖W s,q(Ω) + ‖J4(u�)(t)‖W s,q(Ω) . (3.60)

Estimating the term ‖J2(u0)(t)‖W s,q(Ω), using Lemma 2.5, we have for all t ∈ [T, T �],

‖J2(u0)(t)‖2
Xs2 (Ω) =

∞∑

j=1

λs2
j (u0, φj)

2 (Eα,1 (−λjt
α) − Eα,1 (−λjT

α))2

=
∞∑

j=1

λs2
j (u0, φj)

2

⎛

⎝

∞∫

0

Mα(z)
∣
∣
∣e−zλjtα − e−zλjT α

∣
∣
∣ dz

⎞

⎠

2

≤
∞∑

j=1

λs2
j (u0, φj)

2

⎛

⎝

∞∫

0

Mα(z)e−zλjT α
∣
∣
∣e−zλj(t

α−T α) − 1
∣
∣
∣ dz

⎞

⎠

2

.
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For z > 0, using the inequality 1 − e−z ≤ z, and ze−z ≤ 1, one obtains

‖J2(u0)(t)‖2
Xs2 (Ω) ≤

∞∑

j=1

λs2
j (u0, φj)

2

⎛

⎝λj(tα − Tα)

∞∫

0

Mα(z) (zλjT
α)−1

zdz

⎞

⎠

2

≤
∞∑

j=1

λs2
j (u0, φj)

2

⎛

⎝(tα − Tα) T−α

∞∫

0

Mα(z)dz

⎞

⎠

2

≤ (t − T )2α
T−2α ‖u0‖2

Xs2 (Ω) , (3.61)

where we have use the inequalities

ac − bc ≤ (a − b)c, for a > b > 0, c ∈ (0, 1), and

∞∫

0

Mα(z)dz = 1.

For the constants s, q satisfying (3.19), we have that X
s2(Ω) ↪→ W s,q(Ω). Hence, we get that

‖J2(u0)(t)‖W s,q(Ω) ≤ C (t − T )α
T−α ‖u0‖Xs2 (Ω) ≤ C (T �)α

T−α ‖u0‖Xs2 (Ω) . (3.62)

From (3.53), this implies that the following estimate holds

‖J2(u0)‖C([0,T �];W s,q(Ω)) ≤ CT−α(T �)α ‖u0‖Xs2 (Ω) ≤ R�

4
. (3.63)

Similar to (3.32), we have the following estimate for all t ∈ [T, T �] (note that we can choose T � > T and
close enough to T )

‖J3(u�)(t)‖W s,q(Ω) ≤ C
∥
∥J3(u)(t)

∥
∥
Xs2 (Ω)

≤ C

((
R� +

∥
∥u(·, T )

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R� +

∥
∥u(·, T )

∥
∥

W s,q(Ω)

)p−1+θ
)

(t − T )1−α, (3.64)

where from (3.59), for all t ∈ [T, T �], we have used that

‖u�(·, t)‖W s,q(Ω) ≤ R� +
∥
∥u(·, T )

∥
∥

W s,q(Ω)
.

Using (3.54) and (3.55), we infer that

‖J3(u�)‖C([0,T �];W s,q(Ω))

≤ C

((
R� +

∥
∥u(·, T )

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R� +

∥
∥u(·, T )

∥
∥

W s,q(Ω)

)p−1+θ
)

(T �)1−α ≤ R�

4
. (3.65)

We continue with the estimate on the third term of (3.60), and using Lemma 2.3(b) and Lemma 2.4, we
obtain for all t ∈ [T, T �]

|Eα,1 (−λj (t − τ)α) − Eα,1 (−λj (T − τ)α)| =

∣
∣
∣
∣
∣
∣

t−τ∫

T−τ

−λjz
α−1Eα,α (−λjz

α) dz

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

t−τ∫

T−τ

λ
1+

s2−s1
2

j zα−1Eα,α (−λjz
α) dz

∣
∣
∣
∣
∣
∣
λ

s1−s2
2

j

≤ C

∣
∣
∣
∣
∣
∣

t−τ∫

T−τ

z
αs1−αs2

2 −1dz

∣
∣
∣
∣
∣
∣
λ

s1−s2
2

j ≤ Cλ
s1−s2

2
j (T − τ)

αs1−αs2
2 .

(3.66)
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For the constant s1 satisfying −N
2 < s1 ≤ 0 and 1

2�
s1

= 1
2 − s1

N , from Lemma 2.9, we obtain L2�
s1 (Ω) ↪→

X
s1(Ω). Hence, we deduce that

‖J4(u�)(t)‖
Xs2 (Ω)

≤
T∫

0

( ∞∑

j=1

λs2
j (Fp(u�)(·, τ), φj)

2 |Eα,1 (−λj (t − τ)α) − Eα,1 (−λj (T − τ)α)|2
) 1

2

dτ

≤ C

T∫

0

( ∞∑

j=1

λs1
j (T − τ)αs1−αs2 (Fp(u�)(·, τ), φj)

2

) 1
2

dτ

≤ C

T∫

0

(T − τ)
αs1−αs2

2 ‖Fp(u�)(·, τ)‖
Xs1 (Ω) dτ

≤ C

T∫

0

(T − τ)
αs1−αs2

2 ‖Fp(u�)(·, τ)‖
L

2�
s1 (Ω)

dτ, (3.67)

In the same way as in (3.32), and from (3.59), one obtains

The (RHS) of (3.67)

≤ C

T∫

0

(T − τ)
αs1−αs2

2

(
‖u(·, τ)‖−θ

W s,q(Ω) +
∥
∥u(·, τ)

∥
∥θ

W s,q(Ω)

)∥
∥u(·, τ)

∥
∥p−1

W s,q(Ω)
dτ

≤ C

((
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
) T∫

0

(T − τ)
αs1−αs2

2 dτ

≤ C

((
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

T
αs1−αs2+2

2 , (3.68)

for θ < p − 1. From (3.67), we have that X
s2(Ω) ↪→ W s,q(Ω) and obtain

∥
∥J4(u�)(t)

∥
∥

W s,q(Ω)
≤ C

((
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

T
αs1−αs2+2

2 . (3.69)

Thus, for t ∈ (T, T �], we obtain

∥
∥J4(u�)(t)

∥
∥

W s,q(Ω)
≤ C

((
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

(T �)
αs1−αs2+2

2 . (3.70)

From (3.56) and (3.57), we get

‖J4(u�)‖C([0,T �];W s,q(Ω)) ≤ R�

4
. (3.71)

It follows from (3.63), (3.65), (3.71) that, for every t ∈ [T, T �]

‖Mu� − u(·, T )‖C([0,T �];W s,q(Ω)) ≤ R�

4
+

R�

4
+

R�

4
≤ R�.

We have shown that M is a map W
� into W

�.



161 Page 20 of 24 B. de Andrade et al. ZAMP

• Step II We show that M is a contraction on W
�. Let u,w ∈ W

�, and we have that for 0 ≤ t ≤ T �,

Mu(t) − Mw(t) =

t∫

0

Eα,1 (−A (t − τ)α) (Fp(u)(τ) − Fp(w)(τ)) dτ, (3.72)

where we note that Mu(t) − Mw(t) = 0, vanishes in W
� for all t ∈ (0, T ]. Then, for all t ∈ [0, T �],

proceeding as in Claim (2) of the last theorem, we have

∥
∥Mu(t) − Mw(t)

∥
∥
Xs2 (Ω)

≤ CK(R, u0)(T �)1−α ‖u − w‖C([0,T ∗];W s,q(Ω)) ≤ R�

4
‖u − w‖C([0,T ∗];W s,q(Ω)) .

Thus, using the Sobolev embedding X
s2(Ω) ↪→ W s,q(Ω) with s, q satisfying (3.19), for all T � > 0, so

without loss of generality, we may assume that 0 ≤ R� < 4, and we infer that

∥
∥Mu − Mw

∥
∥

C([0,T �];W s,q(Ω))
≤ R�

4

∥
∥u − v

∥
∥

C([0,T �];W s,q(Ω))
. (3.73)

This implies that M is a R�

4 -contraction. By the Banach contraction principle it follows that M has a
unique fixed point u� of M in W

�, which is a continuation of u. This finishes the proof. �

The next results are on global existence or non-continuation by a blowup.

Definition 3.2. Let u(x, t) be a solution of P. We define the maximal existence time Tmax of u(x, t) as
follows:

(i) If u(x, t) exists for all 0 ≤ t < ∞, then Tmax = ∞.
(ii) If there exists T ∈ (0,∞) such that u(x, t) exists for 0 ≤ t < T , but does not exist at t = T , then

Tmax = T .

Definition 3.3. Let u(x, t) be a solution of P. We say u(x, t) blows up in finite time if the maximal existence
time Tmax is finite and

lim sup
t→T −

max

‖u(·, t)‖W s,q(Ω) = ∞. (3.74)

Theorem 3.4. (Global existence or finite time blowup) For N ≥ 1, p ≥ 2, 0 ≤ s < 2s2, for 0 ≤ s2 < N/2
and 1 ≤ q ≤ min

{
2�

s2,s;
Nθ

N+θs

}
with 2�

s2,s satisfying 1
2�

s2,s
= 1

2 + s
N − s2

N and qs < N . For u0 ∈ X
s2(Ω) ∩

W s,q(Ω), there exists a maximal time Tmax > 0 such that u ∈ C([0, Tmax];W s,q(Ω)) is the mild solution
of P. Thus, either Problem P has a unique global mild solution on [0,∞) or there exists a maximal time
Tmax < ∞ such that

lim sup
t→T −

max

‖u(·, t)‖W s,q(Ω) = ∞.

Proof. Let u0 ∈ X
s2(Ω) ∩ W s,q(Ω) and define

Tmax := sup {T > 0 : there exits a solution on (0, T ]} .

Assume that Tmax < ∞, and ‖u(·, t)‖Xs2 (Ω) ≤ R0, for some R0 > 0. Now suppose there exists a sequence
{tn}n∈N ⊂ [0, Tmax) such that tn → Tmax and {u(·, tn)}n∈N ⊂ X

s2(Ω). Let us show that {u(·, tn)}n∈N is
a Cauchy sequence in X

s2(Ω). Indeed, given ε > 0, fix N ∈ N such that for all n,m > N , 0 < tn < tm <
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Tmax, we have
∥
∥u(·, tm) − u(·, tn)

∥
∥

W s,q(Ω)

≤ ‖(Eα,1 (−tαmA) − Eα,1 (−tαnA)) u0‖W s,q(Ω)

+

tm∫

tn

‖Eα,1 (− (tm − τ)α A)Fp(u)(τ)‖W s,q(Ω) dτ

+

tn∫

0

‖(Eα,1 (− (tn − τ)α A) − Eα,1 (− (Tmax − τ)α A)) Fp(u)(τ)‖W s,q(Ω) dτ

+

tm∫

0

‖(Eα,1 (− (Tmax − τ)α A) − Eα,1 (− (tm − τ)α) A)Fp(u)(τ)‖W s,q(Ω) dτ

= ‖J5(u0)‖W s,q(Ω) + ‖J6(u)‖W s,q(Ω) + ‖J7(u)‖W s,q(Ω) + ‖J8(u)‖W s,q(Ω) . (3.75)

Similar to (3.61), and using the Sobolev embedding X
s2(Ω) ↪→ W s,q(Ω), we have that

‖J5(u0)‖W s,q(Ω) ≤ C ‖J5(u0)(t)‖Xs2 (Ω) ≤ C |tm − tn|α t−α
n ‖u0‖Xs2 (Ω) . (3.76)

In the same way as in (3.32), we get

‖J6(u)(t)‖W s,q(Ω) ≤ C

((
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

|tm − tn|1−α. (3.77)

Similar to (3.68), we have

‖J7(u)‖W s,q(Ω) ≤ C

((
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

|Tmax − tn|αs1−αs2+2
2 ,

(3.78)

and

‖J8(u)‖W s,q(Ω) ≤ C

((
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

|Tmax − tm|αs1−αs2+2
2 .

(3.79)

Thus, since {tn}n∈N∗ is convergent we can take N := N(ε) ∈ N
∗ with m ≥ n ≥ N such that |tm − tn| is

as small as we want, and we have

C |tm − tn|α t−α
n ‖un‖

Xs2 (Ω) <
ε

4
,

C

((
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

|tm − tn|1−α <
ε

4
,

C

((
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

|Tmax − tm|αs1−αs2+2
2 <

ε

4
,

and

C

((
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1−θ

+
(
R0 +

∥
∥u0

∥
∥

W s,q(Ω)

)p−1+θ
)

|Tmax − tn|αs1−αs2+2
2 <

ε

4
.
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Hence, given ε > 0 there exists N ∈ N such that
∥
∥u(·, tm) − u(·, tn)

∥
∥

W s,q(Ω)
< ε, for m,n ≥ N. (3.80)

It follows that {u(·, tn)}n∈N ⊂ W s,q(Ω) is a Cauchy sequences and for {tn}n∈N∗ arbitrary we have proved
the existence of the limit

lim
t→T −

max

‖u(·, t)‖W s,q(Ω) < ∞.

FRom our previos result we deduce that the solution can extended to some larger interval (u can be
continued beyond Tmax), and this contradict the definition of Tmax. Thus, either Tmax = ∞ or if Tmax < ∞
then limt→T −

max
‖u(·, t)‖W s,q(Ω) = ∞. The proof of Theorem 3.4 is finished. �
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