1 Introduction and Statement of the Results

In 2001, Momiyama [7] used methods from p-adic analysis to prove the following remarkable identity for the classical Bernoulli numbers \(B_{\nu }\), defined by

$$\begin{aligned} \frac{z}{e^z-1}=\sum _{\nu =0}^\infty B_{\nu } \frac{z^{\nu }}{\nu !}. \end{aligned}$$

Proposition 1

For all nonnegative integers m and n with \(m+n>0\), we have

$$\begin{aligned} & (-1)^m \sum _{\nu =0}^m (\nu +n+1) {m+1\atopwithdelims ()\nu }B_{\nu +n}\nonumber \\ & \quad =(-1)^{n+1} \sum _{\nu =0}^n (\nu +m+1) {n+1\atopwithdelims ()\nu }B_{\nu +m}. \end{aligned}$$
(1.1)

From (1.1) with \(m=n\) we obtain

$$\begin{aligned} \sum _{\nu =0}^m (\nu +m+1) {m+1\atopwithdelims ()\nu } B_{\nu +m}=0, \end{aligned}$$

which is attributed to von Ettingshausen [8, pp. 284-285]; see also Kaneko [5]. In 2004, Wu et al. [9] used properties of power series to prove an interesting generalization of (1.1) involving the Bernoulli polynomials

$$\begin{aligned} B_n(z)= \sum _{\nu =0}^n {n\atopwithdelims ()\nu } B_{n-\nu } z^{\nu }. \end{aligned}$$

Proposition 2

For all nonnegative integers m and n and complex numbers z, we have

$$\begin{aligned} & (-1)^m \sum _{\nu =0}^m (\nu +n+1) {m+1\atopwithdelims ()\nu }B_{\nu +n}(z)+ (-1)^{n} \sum _{\nu =0}^n (\nu +m+1)\nonumber \\ & \quad \ \times {n+1\atopwithdelims ()\nu }B_{\nu +m}(-z) \nonumber \\ & \quad = (-1)^m (m+n+1) (m+n+2) z^{m+n}. \end{aligned}$$
(1.2)

If \(m+n>0\) and \(z=0\), then (1.2) reduces to (1.1). Chen and Sun [2] applied Zeilberger’s algorithm to prove (1.2). We show that (1.2) can be written in a slightly shorter and more elegant form as follows.

Theorem 1

Let m and n be nonnegative integers. Then, for \(z\in {\mathbb {C}}\),

$$\begin{aligned} & (-1)^m \sum _{\nu =0}^{m+1} (\nu +n+1) {m+1\atopwithdelims ()\nu }B_{\nu +n}(z)\nonumber \\ & \quad =(-1)^{n+1} \sum _{\nu =0}^ {n+1} (\nu +m+1) {n+1\atopwithdelims ()\nu }B_{\nu +m}(-z). \end{aligned}$$
(1.3)

We apply some basic properties of Bernoulli polynomials to settle (1.3). In particular, we provide a new proof of (1.2).

The main aim of this paper is to present a new generalization of (1.2). We define

$$\begin{aligned} S(m,n;k;z)=(-1)^m \sum _{\nu =0}^m (\nu +n+1){m+1\atopwithdelims ()\nu } {\nu +n\atopwithdelims ()k} B_{\nu +n-k}(z). \end{aligned}$$

The following reciprocity formula holds. (As usual, if \(p<0\), then \(B_p(z)=0\).)

Theorem 2

Let m, n and k be nonnegative integers. Then, for \(z\in {\mathbb {C}}\),

$$\begin{aligned} S(m,n;k;z) + (-1)^{k} S(n,m;k;-z) & =(-1)^m (m+n+1)(m+n+2)\nonumber \\ & \quad \ \times {m+n\atopwithdelims ()k} z^{m+n-k}. \end{aligned}$$
(1.4)

Remark 1

The special case \(k=0\) gives (1.2).

If we set \(z=0\), then (1.4) yields an extension of Momiyama’s identity (1.1).

Corollary 1

Let m, n, k be nonnegative integers. Then

$$\begin{aligned} S^*(m,n;k) = (-1)^{k+1} S^*(n,m;k), \end{aligned}$$
(1.5)

where

$$\begin{aligned} S^*(m,n;k)= (-1)^m \sum _{\nu =0}^m (\nu +n+1) {m+1\atopwithdelims ()\nu }{\nu +n\atopwithdelims ()k} B_{\nu +n-k}. \end{aligned}$$

An application of Theorem 2 leads to an identity for the alternating sum

$$\begin{aligned} A(m,n;k)= \sum _{\nu =0}^m (-1)^{\nu } (\nu +n+1){m+1\atopwithdelims ()\nu } {\nu +n\atopwithdelims ()k}B_{\nu +n-k}. \end{aligned}$$

We obtain the following companion to (1.5).

Corollary 2

Let k, m, n be nonnegative integers with \(k+2\le \min (m,n)\). Then

$$\begin{aligned} A(m,n;k)=(-1)^{k+1} A(n,m;k). \end{aligned}$$
(1.6)

A second application of Theorem 2 gives a reciprocity formula for the polynomial

$$\begin{aligned} P(m,n;k;z)=\sum _{\nu =0}^{m} {m\atopwithdelims ()\nu } {\nu +n \atopwithdelims ()k} z^{\nu +n-k}. \end{aligned}$$

Corollary 3

Let k, m, n be nonnegative integers. Then, for \(z\in {\mathbb {C}}\),

$$\begin{aligned} P(m,n;k;z)=(-1)^{m+n+k} P(n,m;k;-z-1). \end{aligned}$$
(1.7)

Remark 2

From (1.7) with \(z=-1/2\) we get

$$\begin{aligned} (-1)^m \sum _{\nu =0}^m (-2)^{\nu } {m+n-\nu \atopwithdelims ()k}{m\atopwithdelims ()\nu } =(-1)^{k+n} \sum _{\nu =0}^n (-2)^{\nu } {m+n-\nu \atopwithdelims ()k}{n\atopwithdelims ()\nu }. \end{aligned}$$

By using differentiation or integration certain summation formulas involving Bernoulli polynomials lead to interesting new identities. Hereby, the recurrence relation \(B'_n(x)=nB_{n-1}(x)\) plays an important role. We show that by applying an integral formula and (1.3) we obtain the following counterpart of

$$\begin{aligned} (-1)^m \sum _{\nu =0}^m {m\atopwithdelims ()\nu } B_{\nu +n}= (-1)^n\sum _{\nu =0}^n {n\atopwithdelims ()\nu } B_{\nu +m} \end{aligned}$$
(1.8)

which is due to Gessel [3].

Corollary 4

Let m and n be nonnegative integers. Then

$$\begin{aligned} & (-1)^n \sum _{\nu =0}^m {m\atopwithdelims ()\nu } (2^{-\nu -n}-1) B_{\nu +n} - (-1)^m \sum _{\nu =0}^n {n\atopwithdelims ()\nu } (2^{-\nu -m}-1) B_{\nu +m}\nonumber \\ & \qquad =\frac{m-n}{2^{m+n}}. \end{aligned}$$
(1.9)

Remark 3

Combining (1.8) and (1.9) gives

$$\begin{aligned} (-1)^n \sum _{\nu =0}^m{m\atopwithdelims ()\nu } 2^{m-\nu } B_{\nu +n} - (-1)^m \sum _{\nu =0}^n{n\atopwithdelims ()\nu } 2^{n-\nu } B_{\nu +m} = m-n. \end{aligned}$$

2 Proofs

I. We need the following formulas:

$$\begin{aligned} B_n(x+y)= & \sum _{\nu =0}^n {n\atopwithdelims ()\nu } B_{\nu }(x) y^{n-\nu } \quad (n=0,1,\ldots ), \end{aligned}$$
(2.1)
$$\begin{aligned} B_n(x+1)= & (-1)^n B_{n}(-x) =B_n(x)+n x^{n-1} \quad (n=0,1,\ldots ). \end{aligned}$$
(2.2)

These formulas can be found in Abramowitz and Stegun [1, (23.1.7), (23.1.8), (23.1.9)]. The integral formula

$$\begin{aligned} \int _0^{1/2} B_n(x)dx= \frac{1-2^{n+1}}{(n+1) 2^n} B_{n+1} \quad (n=0,1,\ldots ) \end{aligned}$$
(2.3)

is given in Moll and Vignat [6]. Applying (2.2) and (2.3) leads to

$$\begin{aligned} \int _0^{1/2} B_n(-x)dx= \Bigl (\frac{-1}{2}\Bigr )^n \Bigl (\frac{1-2^{n+1}}{n+1} B_{n+1}+1\Bigr ) \quad (n=1,2,\ldots ). \end{aligned}$$
(2.4)

The next two identities can be found in Gould [4, (1.13), (3.49)]:

$$\begin{aligned} & \sum _{\nu =0}^{m+1} (-1)^{\nu } {m+1\atopwithdelims ()\nu } {\nu }^p =0 \quad (0\le p\le m), \end{aligned}$$
(2.5)
$$\begin{aligned} & \sum _{\nu =0}^k (-1)^{\nu } {k\atopwithdelims ()\nu } {x-\nu \atopwithdelims ()r} ={x-k\atopwithdelims ()r-k} \quad (k=0,1,\ldots ). \end{aligned}$$
(2.6)

Applying the binomial theorem gives

$$\begin{aligned} \sum _{\nu =0}^r(\nu +s){r\atopwithdelims ()\nu } t^{\nu } =(t+1)^{r-1} \bigl ( (r+s)t+s\bigr ) \quad (r=0,1,\ldots ). \end{aligned}$$
(2.7)

II. We show that the identities (1.2) and (1.3) are equivalent. Let

$$\begin{aligned} T(m,n;z)=\sum _{\nu =0}^{m+1} a_{\nu }(m,n;z) \quad \text{ and }\quad T^*(m,n;z)= \sum _{\nu =0}^{m} a_{\nu }(m,n;z) \end{aligned}$$
(2.8)

with

$$\begin{aligned} a_{\nu }(m,n;z)=(-1)^m (\nu +n+1){m+1\atopwithdelims ()\nu } B_{\nu +n}(z). \end{aligned}$$

Using (2.2) gives

$$\begin{aligned} T(m,n;z)+T(n,m;-z)= & T^*(m,n;z)+a_{m+1}(m,n;z)+T^*(n,m;-z)\\ & \qquad +a_{n+1}(n,m;-z) \\ & \quad = T^*(m,n;z) +T^*(n,m;-z)\\ & \quad -(-1)^m (m+n+1)(m+n+2) z^{m+n}. \end{aligned}$$

This implies that (1.2) and (1.3) are equivalent.

III. Now, we prove the theorems and corollaries stated in Sect. 1.

Proof of Theorem 1

Using (2.8), (2.2), (2.1) with \(x=-z\), \(y=1\) and the elementary formula

$$\begin{aligned} (r+1){r\atopwithdelims ()j} =(j+1){r+1\atopwithdelims ()j+1} \end{aligned}$$

with \(r=\nu + n\) gives

$$\begin{aligned} T(m,n;z)= & (-1)^{m+n} \sum _{\nu =0}^{m+1} (-1)^{\nu } (\nu +n+1) {m+1\atopwithdelims ()\nu } B_{\nu +n}(1-z) \\= & (-1)^{m+n} \sum _{\nu =0}^{m+1} (-1)^{\nu } (\nu +n+1) {m+1\atopwithdelims ()\nu } \sum _{j=0}^{\nu +n} {\nu +n\atopwithdelims ()j} B_{j}(-z) \\= & (-1)^{m+n} \sum _{\nu =0}^{m+1} (-1)^{\nu } {m+1\atopwithdelims ()\nu } \sum _{j=0}^{\nu +n} (j+1) {\nu +n+1\atopwithdelims ()j+1} B_j(-z) \\= & (-1)^{m+n}\sum _{j=0}^{m+n+1} (j+1) B_j(-z)\sum _{\nu =0}^{m+1} (-1)^{\nu } {m+1\atopwithdelims ()\nu } {\nu +n+1\atopwithdelims ()j+1}.\\ \end{aligned}$$

Applying (2.5) we conclude that the inner sum is equal to zero, if \(0\le j\le m-1\). Thus

$$\begin{aligned} T(m,n;z)= & (-1)^{m+n} \sum _{j=m}^{m+n+1} (j+1)B_j(-z) \sum _{\nu =0}^{m+1} (-1)^{\nu } {m+1\atopwithdelims ()\nu } {\nu + n+1\atopwithdelims ()j+1} \nonumber \\= & (-1)^{m+n}\sum _{j=0}^{n+1} (j+m+1)B_{j+m}(-z) \sum _{\nu =0}^{m+1} (-1)^{\nu } {m+1\atopwithdelims ()\nu } {\nu + n+1\atopwithdelims ()j+m+1}. \nonumber \\ \end{aligned}$$
(2.9)

Using (2.6) with \(k=m+1\), \(r=j+m+1\), \(x=m+n+2\) we get

$$\begin{aligned} \sum _{\nu =0}^{m+1} (-1)^{\nu } {m+1\atopwithdelims ()\nu } {\nu +n+1\atopwithdelims ()j+m+1}= & (-1)^{m+1}\sum _{\nu =0}^{m+1} (-1)^{\nu } {m+1\atopwithdelims ()\nu } {m+n+2-\nu \atopwithdelims ()j+m+1} \nonumber \\= & (-1)^{m+1}{n+1\atopwithdelims ()j}. \end{aligned}$$
(2.10)

From (2.9) and (2.10) we obtain

$$\begin{aligned} T(m,n;z)=(-1)^{n+1} \sum _{j=0}^{n+1}(j+m+1){n+1\atopwithdelims ()j} B_{j+m}(-z)=-T(n,m;-z). \end{aligned}$$

This settles (1.3). \(\square \)

Proof of Theorem 2

Using (2.1) gives

$$\begin{aligned} & (-1)^m \sum _{\nu =0}^m (\nu +n+1){m+1\atopwithdelims ()\nu } B_{\nu +n}(x+z)\nonumber \\ & \qquad =(-1)^m \sum _{\nu =0}^m (\nu +n+1){m+1\atopwithdelims ()\nu } \sum _{k=0}^\infty {\nu +n\atopwithdelims ()k} B_{\nu +n-k}(z) x^k \nonumber \\ & \qquad =(-1)^m \sum _{k=0}^\infty \sum _{\nu =0}^m (\nu +n+1){m+1\atopwithdelims ()\nu } {\nu +n\atopwithdelims ()k} B_{\nu +n-k}(z) x^k.\nonumber \\ \end{aligned}$$
(2.11)

Next, we exchange m and n and we replace x and z by \(-x\) and \(-z\), respectively. Then we obtain from (2.11):

$$\begin{aligned} & (-1)^n \sum _{\nu =0}^n (\nu +m+1){n+1\atopwithdelims ()\nu } B_{\nu +m}(-(x+z) )\nonumber \\ & \qquad =(-1)^n \sum _{k=0}^\infty \sum _{\nu =0}^n (\nu +m+1){n+1\atopwithdelims ()\nu } {\nu +m\atopwithdelims ()k} B_{\nu +m-k}(-z) (-1)^k x^k.\nonumber \\ \end{aligned}$$
(2.12)

Moreover, we have

$$\begin{aligned} & (-1)^m (m+n+1) (m+n+2) (x+z)^{m+n}\nonumber \\ & \quad =(-1)^m (m+n+1)(m+m+2) \sum _{k=0}^{\infty }{m+n\atopwithdelims ()k} z^{m+n-k} x^k. \end{aligned}$$
(2.13)

We apply (1.2) with \(x+z\) instead of z and (2.11), (2.12), (2.13). A comparison of the coefficients yields

$$\begin{aligned} & (-1)^m \sum _{\nu =0}^m (\nu +n+1) {m+1\atopwithdelims ()\nu }{\nu +n\atopwithdelims ()k} B_{\nu +n-k}(z)\\ & \qquad \quad +(-1)^{k+n} \sum _{\nu =0}^n (\nu +m+1) {n+1\atopwithdelims ()\nu }{\nu +m\atopwithdelims ()k} B_{\nu +m-k}(-z)\\ & \qquad = (-1)^m (m+n+1) (m+n+2) {m+n\atopwithdelims ()k} z^{m+n-k}, \end{aligned}$$

as claimed. \(\square \)

Proof of Corollary 2

We define

$$\begin{aligned} C(m,n;k)= \sum _{\nu =0}^m (-1)^{\nu } (\nu +n+1)(\nu +n-k) {m+1\atopwithdelims ()\nu } {\nu +n\atopwithdelims ()k} \end{aligned}$$

and

$$\begin{aligned} D(m,n;k)= \sum _{\nu =0}^m (-1)^{\nu } {m+1\atopwithdelims ()\nu } {\nu +n+1\atopwithdelims ()k}. \end{aligned}$$

Then

$$\begin{aligned} C(m,n;k)=(k+1)(k+2)D(m,n;k+2). \end{aligned}$$

Using

$$\begin{aligned} B_n(1)=(-1)^n B_n \quad \text{ and }\quad B_n(-1)=B_n +(-1)^n n \quad (n=0,1,\ldots ) \end{aligned}$$

gives

$$\begin{aligned} S(m,n;k;1) & =(-1)^m \sum _{\nu =0}^m (\nu +n+1){m+1\atopwithdelims ()\nu } {\nu +n\atopwithdelims ()k}B_{\nu +n-k}(1)\nonumber \\ & = (-1)^{m+n+k} A(m,n;k) \end{aligned}$$
(2.14)

and

$$\begin{aligned} S(n,m;k;-1)= & (-1)^n \sum _{\nu =0}^n (\nu +m+1){n+1\atopwithdelims ()\nu } {\nu +m\atopwithdelims ()k}B_{\nu +m-k}(-1) \nonumber \\= & S^*(n,m;k) +(-1)^{m+n+k} C(n,m;k). \end{aligned}$$
(2.15)

We apply Theorem 2 with \(z=1\) and (2.14), (2.15). This yields

$$\begin{aligned} & (-1)^{m+k} (m+n+1)(m+n+2){m+n\atopwithdelims ()k} \nonumber \\ & \qquad = (-1)^k S(m,n;k;1)+S(n,m;k;-1)\nonumber \\ & \qquad = (-1)^{m+n} A(m,n;k) +S^*(n,m;k) +(-1)^{m+n+k} C(n,m;k).\nonumber \\ \end{aligned}$$
(2.16)

Next, we exchange m and n, multiply by \((-1)^{k+1}\), and use (1.5). Then

$$\begin{aligned} & (-1)^{n+1} (m+n+1)(m+n+2){m+n\atopwithdelims ()k}\nonumber \\ & \qquad = (-1)^{m+n+k+1}A(n,m;k) +(-1)^{k+1} S^*(m,n;k)\nonumber \\ & \qquad \quad \ +(-1)^{m+n+1} C(m,n;k)\nonumber \\ & \qquad = (-1)^{m+n+k+1} A(n,m;k) +S^*(n,m;k) +(-1)^{m+n+1} C(m,n;k).\nonumber \\ \end{aligned}$$
(2.17)

From (2.16) and (2.17) we obtain

$$\begin{aligned} A(m,n;k)+(-1)^k A(n,m;k)=F(m,n;k) \end{aligned}$$
(2.18)

with

$$\begin{aligned} F(m,n;k)= & \bigl ( (-1)^{n+k} +(-1)^m \bigr ) (m+n+1)(m+n+2){m+n\atopwithdelims ()k}\nonumber \\ & -(-1)^k C(n,m;k)-C(m,n;k) \nonumber \\ & = (-1)^k (k+1)(k+2) \Bigg [ (-1)^n {m+n+2\atopwithdelims ()k+2} -D(n,m;k+2) \Bigg ]\nonumber \\ & + (k+1)(k+2) \Bigg [ (-1)^m {m+n+2\atopwithdelims ()k+2} -D(m,n;k+2) \Bigg ].\nonumber \\ \end{aligned}$$
(2.19)

If \(0\le p\le m\), then we conclude from (2.5) that

$$\begin{aligned} D(m,n;p)= & \sum _{\nu =0}^{m+1} (-1)^{\nu }{m+1\atopwithdelims ()\nu }{ \nu +n+1\atopwithdelims ()p}+(-1)^m {m+n+2\atopwithdelims ()p}\\= & (-1)^m {m+n+2\atopwithdelims ()p}. \end{aligned}$$

Since \(k+2\le \min (m,n)\), we obtain from (2.19) that \(F(m,n;k)=0\), so that (2.18) implies (1.6). \(\square \)

Proof of Corollary 3

We present two proofs. First proof. A short calculation gives that (1.7) holds for \(k=0\) and \(k=1\). Moreover, since

$$\begin{aligned} (-1)^{n+k} P(n,0;k;-z-1)= & (-1)^{n+k} \sum _{\nu =0}^n {\nu \atopwithdelims ()k}{n\atopwithdelims ()\nu }(-z-1)^{\nu -k} \\= & (-1)^{n+k} {n\atopwithdelims ()k} \sum _{\nu =0}^n {n-k\atopwithdelims ()\nu -k}(-z-1)^{\nu -k} \\= & {n\atopwithdelims ()k} z^{n-k} =P(0,n;k;z), \end{aligned}$$

we conclude that (1.7) is valid for \(m=0\) and \(n=0\). Let \(m\ge 1\), \(n\ge 1\), \(k\ge 2\). Using (2.2) gives

$$\begin{aligned} & S(m-1,n-1;k-2;z+1)-S(m-1,n-1;k-2;z) \nonumber \\ & \quad = (-1)^{m-1} \sum _{\nu =0}^{m-1} (\nu +n){m\atopwithdelims ()\nu } {\nu +n-1\atopwithdelims ()k-2} \bigl ( B_{\nu +n+1-k}(z+1)-B_{\nu +n+1-k}(z) \bigr ) \nonumber \\ & \quad = (-1)^{m-1} \sum _{\nu =0}^{m-1} (\nu +n){m\atopwithdelims ()\nu } {\nu +n-1\atopwithdelims ()k-2} (\nu +n+1-k) z^{\nu +n-k} \nonumber \\ & \quad = (k-1)k (-1)^{m-1} \sum _{\nu =0}^{m-1} {m\atopwithdelims ()\nu } {\nu +n\atopwithdelims ()k} z^{\nu +n-k} \nonumber \\ & \quad = (k-1)k \Bigg [ (-1)^{m-1}P(m,n;k;z)-(-1)^{m-1} {m+n\atopwithdelims ()k}z^{m+n-k}\Bigg ] \end{aligned}$$
(2.20)

and

$$\begin{aligned} & (-1)^{k} \bigl ( S(n-1,m-1;k-2;-z-1)-S(n-1,m-1;k-2;-z) \bigr ) \nonumber \\ & \quad = (-1)^{k+n} \sum _{\nu =0}^{n-1} (\nu +m) {n\atopwithdelims ()\nu } {\nu +m-1\atopwithdelims ()k-2} \bigl ( B_{\nu +m+1-k}(-z)-B_{\nu +m+1-k}(-z-1)\bigr ) \nonumber \\ & \quad = (-1)^{m+n} \sum _{\nu =0}^{n-1} (-1)^{\nu } (\nu +m) (\nu +m+1-k) {\nu +m-1\atopwithdelims ()k-2}{n\atopwithdelims ()\nu } (z+1)^{\nu +m-k} \nonumber \\ & \quad = (k-1)k (-1)^{m+n} \sum _{\nu =0}^{n-1} (-1)^{\nu } {\nu +m\atopwithdelims ()k}{n\atopwithdelims ()\nu } (z+1)^{\nu +m-k} \nonumber \\ & \quad = (k-1)k \Bigg [ (-1)^{n +k} P(n,m;k;-z-1)+(-1)^{m-1}{m+n\atopwithdelims ()k} (z+1)^{m+n-k}\Bigg ].\nonumber \\ \end{aligned}$$
(2.21)

From Theorem 2 we obtain

$$\begin{aligned} & S(m-1,n-1;k-2;z+1)-S(m-1,n-1;k-2;z) \nonumber \\ & \qquad +(-1)^{k} S(n-1,m-1;k-2;-z-1)-(-1)^{k} S(n-1,m-1;k-2;-z) \nonumber \\ & \quad = (-1)^{m+1} (m+n-1)(m+n){m+n-2\atopwithdelims ()k-2} \bigl ( (z+1)^{m+n-k} -z^{m+n-k} \bigr ) \nonumber \\ & \quad = (k-1)k (-1)^{m-1} {m+n\atopwithdelims ()k}\bigl ( (z+1)^{m+n-k} -z^{m+n-k} \bigr ). \end{aligned}$$
(2.22)

Combining (2.20), (2.21) and (2.22) leads to (1.7).\(\square \)

Second proof. We have

$$\begin{aligned} P(m,n;k;z)= & \sum _{\nu =0}^m {m\atopwithdelims ()\nu } {\nu +n\atopwithdelims ()k}z^{\nu +n-k}= \frac{1}{k!} \sum _{\nu =0}^m{m\atopwithdelims ()\nu } (z^{\nu +n})^{(k)}\\= & \frac{1}{k!} \bigl ( z^n (z+1)^m\Bigr )^{(k)} \end{aligned}$$

and

$$\begin{aligned} (-1)^{m+n+k} P(n,m;k;-z-1)= & \sum _{\nu =0}^n (-1)^{n-\nu } {n\atopwithdelims ()\nu } {\nu +m\atopwithdelims ()k} (z+1)^{\nu +m-k} \\= & \frac{1}{k!} \sum _{\nu =0}^n (-1)^{n-\nu } {n\atopwithdelims ()\nu } \bigl ( (z+1)^{\nu +m} \bigr )^{(k)} \\= & \frac{1}{k!} \bigl ( z^n (z+1)^m\Bigr )^{(k)}. \end{aligned}$$

\(\square \)

Proof of Corollary 4

We assume that \(m>n\ge 0\). Since, for \(m\ge 1\),

$$\begin{aligned} \sum _{\nu =0}^m {m\atopwithdelims ()\nu } (2^{-\nu }-1)B_{\nu } =2^{-m} B_m(2)-B_m(1)= (-1)^m ( 2^{-m}-1) B_m +m 2^{-m}, \end{aligned}$$

we conclude that (1.9) holds for \(n=0\). Next, let \(m>n\ge 1\). Using (2.3) gives

$$\begin{aligned} & \frac{1}{2}\int _0^{1/2} (-1)^{m-1} \sum _{\nu =0}^{m} (\nu +n){m\atopwithdelims ()\nu } B_{\nu +n-1}(z) dz \nonumber \\ & \qquad =(-1)^{m-1} \sum _{\nu =0}^{m} {m\atopwithdelims ()\nu } (2^{-\nu -n}-1)B_{\nu +n} \end{aligned}$$
(2.23)

and from (2.4) and (2.7) with \(r=n\), \(s=m\), \(t=-1/2\) we get

$$\begin{aligned} & \frac{1}{2} \int _0^{1/2} (-1)^{n} \sum _{\nu =0}^{n} (\nu +m) {n\atopwithdelims ()\nu } B_{\nu +m-1}(-z)dz \nonumber \\ & \quad = \frac{(-1)^{n}}{2}\sum _{\nu =0}^{n} {n \atopwithdelims ()\nu } \Bigl ( -\frac{1}{2} \Bigr )^{\nu +m-1} \bigl [ (1-2^{\nu +m}) B_{\nu +m}+\nu +m\bigr ] \nonumber \\ & \quad = (-1)^{m+n-1} \Bigg [\sum _{\nu =0}^{n} (-1)^{\nu } {n\atopwithdelims ()\nu } \bigl ( 2^{-\nu -m} -1 \bigr ) B_{\nu +m} +\frac{m-n}{2^{m+n}}\Bigg ]. \end{aligned}$$
(2.24)

Applying (1.3), (2.23), (2.24) and

$$\begin{aligned} \sum _{\nu =0}^n (-1)^{\nu } {n\atopwithdelims ()\nu } (2^{-\nu -m}-1)B_{\nu +m} =(-1)^m \sum _{\nu =0}^n {n\atopwithdelims ()\nu } (2^{-\nu -m}-1)B_{\nu +m} \end{aligned}$$

we obtain (1.9). \(\square \)