Skip to main content

Advertisement

Log in

STAT Signaling in the Pathogenesis and Treatment of Cancer

  • Review Article
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Exceptional advances have been made recently in our understanding of the signaling pathways that control cellular growth, differentiation, and survival. These processes are regulated by extracellular stimuli such as cytokines, cell-cell interactions, and cell-matrix interactions, which trigger a series of intracellular events culminating in the modulation of specific genes. STATs are a highly homologous group of transcription factors that are activated by various pathways and regulate many of the genes controlling cellular function. STATs are activated by tyrosine phosphorylation and modulated by serine phosphorylation, placing them at a convergence point for numerous intracellular signaling pathways. Given the importance of STATs in the control of normal physiologic processes, it is not surprising that inappropriate activation of these proteins has been found in human malignancies. A number of distinct mechanisms have been elucidated by which STATs are activated inappropriately, including autocrine or paracrine stimulation of normal receptors and increased activity of tyrosine kinases through enhanced expression, mutations, or the presence of activating proteins. Furthermore, inappropriate STAT serine phosphorylation has been found in several tumors as well. The increased understanding of signaling pathways in tumors can be translated into therapeutic strategies that have the potential to be more selective and less toxic than current anti-cancer treatments. Approaches which may be effective include the development of antagonists of receptors that can trigger STAT activation, inhibitors of the tyrosine and serine kinases that phosphorylate and activate STATs, agents that decrease STAT levels or inhibit their recruitment to kinases, and molecules that can prevent the binding of STATs to target DNA sequences. Thus, elucidation of cellular and biochemical processes in tumors has enhanced our understanding of the pathogenesis of malignancies and may provide the basis for significant advances in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Levy DE, Kessler DS, Pine R, Reich N, Darnell JE Jr. (1988) Interferon-induced nuclear factors that bind a shared promoter correlate with positive and negative transcriptional control. Genes Dev. 2: 383–393.

    Article  CAS  PubMed  Google Scholar 

  2. Khan KD, Shuai K, Lindwall G, Maher SE, Darnell JE Jr, Bothwell AL. (1993) Induction of the Ly-6A/E gene by interferon alpha/beta and gamma requires a DNA element to which a tyrosine-phosphorylated 91-kDa protein binds. Proc. Natl. Acad. Sci. U.S.A. 90: 6806–6810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fu X-Y, Schindler C, Improta T, Aebersold R, Darnell JE Jr. (1992) The proteins of ISGF-3, the interferon α-induced transcriptional activator, define a gene family involved in signal transduction. Proc. Natl. Acad. Sci. U.S.A. 89: 7840–7843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shuai K, Schindler C, Prezioso VR, Darnell JE Jr. (1992) Activation of transcription by IFN-γ: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258: 1808–1812.

    Article  CAS  PubMed  Google Scholar 

  5. Velazquez L, Fellous M, Stark G, Pellegrini S. (1992) A protein tyrosine kinase in the interferon α/β signaling pathway. Cell 70: 313–322.

    Article  CAS  PubMed  Google Scholar 

  6. Muller M, Briscoe J, Laxton C, et al. (1993) The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and gamma signal transduction. Nature 366: 129–135.

    Article  CAS  PubMed  Google Scholar 

  7. Waiting D, Guschin D, Muller M. (1993) Complementation by the protein tyrosine kinase JAK-2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature 366: 166–170.

    Article  Google Scholar 

  8. Silvennoinen O, Ihle JN, Schlessinger J, Levy DE. (1993) Interferon-induced nuclear signaling by Jak protein tyrosine kinases. Nature 366: 583–585.

    Article  CAS  PubMed  Google Scholar 

  9. Colamonici OR, Uyttendaele H, Domanski P, Yan H, Krolewski JJ. (1994) p135tyk2, an interferon-α-activated tyrosine kinase, is physically associated with an interferon-α receptor. J. Biol. Chem. 269: 3518–3522.

    CAS  PubMed  Google Scholar 

  10. Heim MH, Kerr IM, Stark GR, Darnell JE Jr. (1995) Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 267: 1347–1349.

    Article  CAS  PubMed  Google Scholar 

  11. Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE Jr, Yancopoulos GD. (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267: 1349–1353.

    Article  CAS  PubMed  Google Scholar 

  12. Shuai K, Stark GR, Kerr IM, Darnell JE Jr. (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferon-γ. Science 261: 1744–1746.

    Article  CAS  PubMed  Google Scholar 

  13. Shuai K, Horvath CM, Huang LHT, Qureshi SA, Cowburn D, Darnell JE Jr. (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76: 821–828.

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr, Kuriyan J. (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93: 827–839.

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharya S, Eckner R, Grossman S, et al. (1996) Cooperation of Stat2 and p300/CBP in signalling induced by interferon-α. Nature 383: 344–347.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE Jr. (1996) Two contact regions between Stat1 and CBP/p300 in interferon γ signaling. Proc. Natl. Acad. Sci. U.S.A. 93: 15092–15096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Horvai AE, Xu L, Korzus E, et al. (1997) Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl. Acad. Sci. U.S.A. 94: 1074–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kurokawa R, Kalafus D, Ogliastro M-H, et al. (1998) Differential use of CREB binding protein-coactivator complexes. Science 279: 700–703.

    Article  CAS  PubMed  Google Scholar 

  19. Korzus E, Torchia J, Rose DW, et al. (1998) Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279: 703–707.

    Article  CAS  PubMed  Google Scholar 

  20. David M, Grimely PM, Finbloom DS. (1993) A nuclear tyrosine phosphatase downregulates interferon-induced gene expression. Mol. Cell. Biol. 13: 5715–5721.

    Article  Google Scholar 

  21. Haque SJ, Flati V, Deb A, Williams BR. (1995) Roles of protein-tyrosine phosphatases in Stat1 alpha-mediated cell signaling. J. Biol. Chem. 270: 25709–25714.

    Article  CAS  PubMed  Google Scholar 

  22. Kim TK, Maniatis T. (1996) Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway. Science 273: 1717–1719.

    Article  CAS  PubMed  Google Scholar 

  23. Haspel RL, Salditt-Georgieff M, Darnell JE Jr. (1996) The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EMBO J. 15: 6262–6268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu CL, Burakoff SJ. (1997) Involvement of proteasomes in regulating Jak-STAT pathways upon interleukin-2 stimulation. J. Biol. Chem. 272: 14017–14020.

    Article  CAS  PubMed  Google Scholar 

  25. Matsumoto A, Masuhara M, Mitsui K, et al. (1997) CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89: 3148–3154.

    CAS  PubMed  Google Scholar 

  26. Starr R, Willson TA, Viney EM, et al. (1997) A family of cytokine-inducible inhibitors of signaling. Nature 387: 917–921.

    Article  CAS  PubMed  Google Scholar 

  27. Endo TA, Masuhara M, Yokouchi M, et al. (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387: 921–924.

    Article  CAS  PubMed  Google Scholar 

  28. Naka T, Narazaki M, Hirata M, et al. (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387: 924–928.

    Article  CAS  PubMed  Google Scholar 

  29. Chung CD, Liao J, Liu B, et al. (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278: 1803–1805.

    Article  CAS  PubMed  Google Scholar 

  30. Liu B, Liao J, Rao X, et al. (1998) Inhibition of Statl-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. U.S.A. 95: 10626–10631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beadling C, Guschin D, Witthuhn BA, et al. (1994) Activation of JAK kinases and STAT proteins by interleukin-2 and interferon α, but not the T cell antigen receptor, in human T lymphocytes. EMBO J. 13: 5605–5615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nielsen M, Svejgaard A, Skov S, Odum N. (1994) Interleukin-2 induces tyrosine phosphorylation and nuclear translocation of stat3 in human T lymphocytes. Eur. J. Immunol 24: 3082–3086.

    Article  CAS  PubMed  Google Scholar 

  33. Frank DA, Robertson M, Bonni A, Ritz J, Greenberg ME. (1995) IL-2 signaling involves the phosphorylation of novel Stat proteins. Proc. Natl. Acad. Sci. U.S.A. 92: 7779–7783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hou J, Schindler U, Henzel WJ, Wong SC, McKnight SL. (1995) Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity 2: 321–329.

    Article  CAS  PubMed  Google Scholar 

  35. Wang KS, Ritz J, Frank DA. (1999) IL-2 induces STAT4 activation in primary NK cells and NK cell lines but not in T cells. J. Immunol. 162: 299–304.

    CAS  PubMed  Google Scholar 

  36. Larner AC, David M, Feldman GM, et al. (1993) Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science 261: 1730–1733.

    Article  CAS  PubMed  Google Scholar 

  37. Kotanides H, Reich NC. (1993) Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4. Science 262: 1265–1267.

    Article  CAS  PubMed  Google Scholar 

  38. Schindler C, Kashleva H, Pernis A, Pine R, Rothman P. (1994) STF-IL-4: a novel IL-4-induced signal transducing factor. EMBO J. 13: 1350–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wegenka UM, Buschmann J, Lutticken C, Heinrich PC, Horn F. (1993) Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol. Cell. Biol. 13: 276–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan J, Wegenka UM, Lutticken C, et al. (1994) The signalling pathways of interleukin-6 and gamma interferon converge by the activation of different transcription factors which bind to common responsive DNA elements. Mol. Cell. Biol. 14: 1657–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bacon CM, Petricoin EFI, Ortaldo JR, et al. (1995) Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 92: 7307–7311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wegenka UM, Lutticken C, Buschmann J, et al. (1994) The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family. Mol. Cell. Biol. 14: 186–196.

    Article  Google Scholar 

  43. Lowe C, Gillespie GA, Pike JW. (1995) Leukemia inhibitory factor as a mediator of JAK/STAT activation in murine osteoblasts. J. Bone Min. Res. 10: 1644–1650.

    Article  CAS  Google Scholar 

  44. Symes AJ, Corpus L, Fink JS. (1995) Differences in nuclear signaling by leukemia inhibitory factor and interferon-gamma: the role of STAT proteins in regulating vasoactive intestinal peptide gene expression. J. Neurochem. 65: 1926–1933.

    Article  CAS  PubMed  Google Scholar 

  45. Boulton TG, Zhong Z, Wen Z, Darnell JE Jr, Stahl N, Yancopoulos GD. (1995) STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc. Natl. Acad. Sci. U.S.A. 92: 6915–6919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao Y, Nichols JE, Bulun SE, Mendelson CR, Simpson ER. (1995) Aromatase P450 gene expression in human adipose tissue. Role of a Jak/STAT pathway in regulation of the adipose-specific promoter. J. Biol. Chem. 270: 16449–16457.

    Article  CAS  PubMed  Google Scholar 

  47. Morella KK, Bruno E, Kumaki S, et al. (1995) Signal transduction by the receptors for thrombopoietin (c-mpl) and interleukin-3 in hematopoietic and nonhematopoietic cells. Blood 86: 557–571.

    CAS  PubMed  Google Scholar 

  48. Pallard C, Gouilleux F, Benit L, et al. (1995) Thrombopoietin activates a STAT5-like factor in hematopoietic cells. EMBO J. 14: 2847–2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sattler M, Durstin MA, Frank DA, et al. (1995) The thrombopoietin receptor c-MPL activates JAK2 and TYK2 tyrosine kinases. Exp. Hematol. 23: 1040–1048.

    CAS  PubMed  Google Scholar 

  50. Silvennoinen O, Schindler C, Schlessinger J, Levy DE. (1993) Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science 261: 1736–1739.

    Article  CAS  PubMed  Google Scholar 

  51. Novak U, Mui A, Miyajima A, Paradiso L. (1996) Formation of STAT5-containing DNA binding complexes in response to colony-stimulating factor-1 and platelet-derived growth factor. J. Biol. Chem. 271: 18350–18354.

    Article  CAS  PubMed  Google Scholar 

  52. Tweardy DJ, Wright TM, Ziegler SF, et al. (1995) Granulocyte colony-stimulating factor rapidly activates a distinct STAT-like protein in normal myeloid cells. Blood 86: 4408–4416.

    Google Scholar 

  53. Chakraborty A, White SM, Schaefer TS, Ball ED, Dyer KF, Tweardy DJ. (1996) Granulocyte colony-stimulating factor activation of Stat3α and Stat3β in immature normal and leukemic human myeloid cells. Blood 88: 2442–2448.

    CAS  PubMed  Google Scholar 

  54. Argetsinger LS, Campbell GS, Yang X, et al. (1993) Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell 74: 237–244.

    Article  CAS  PubMed  Google Scholar 

  55. Meyer DJ, Campbell GS, Cochran BH, et al. (1994) Growth hormone induces a DNA binding factor related to the interferon-stimulated 91-kDa transcription factor. J. Biol. Chem. 269: 4701–4704.

    CAS  PubMed  Google Scholar 

  56. Symes A, Lewis S, Corpus L, Rajan P, Hyman SE, Fink JS. (1994) STAT proteins participate in the regulation of the vasoactive intestinal peptide gene by the ciliary neurotrophic factor family of cytokines. Mol. Endocrinol 8: 1750–1763.

    CAS  PubMed  Google Scholar 

  57. Gouilleux F, Pallard C, Dusanter-Fourt I, et al. (1995) Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J. 14: 2005–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gouilleux F, Wakao H, Mundt M, Groner B. (1994) Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J. 13: 4361–4369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rui H, Kirken RA, Farrar WL. (1994) Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J. Biol. Chem. 269: 5364–5368.

    CAS  PubMed  Google Scholar 

  60. Bonni A, Frank DA, Schindler C, Greenberg ME. (1993) Characterization of a pathway for ciliary neurotrophic factor signaling to the nucleus. Science 262: 1575–1579.

    Article  CAS  PubMed  Google Scholar 

  61. Guo D, Dunbar JD, Yang CH, Pfeffer LM, Donner DB. (1998) Induction of Jak/STAT signaling by activation of the type 1 TNF receptor. J. Immunol. 160: 2742–2750.

    CAS  PubMed  Google Scholar 

  62. Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM. (1994) Angiotensin II stimulates sis-inducing factor-like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein. J. Biol. Chem. 269: 31443–31449.

    CAS  PubMed  Google Scholar 

  63. Marrero MB, Schieffer B, Paxton WG, et al. (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375: 247–250.

    Article  CAS  PubMed  Google Scholar 

  64. Chaturvedi P, Reddy MV, Reddy EP. (1998) Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation. Oncogene 16: 1749–1758.

    Article  CAS  PubMed  Google Scholar 

  65. Saharinen P, Ekman N, Sarvas K, Parker P, Alitalo K, Silvennoinen O. (1997) The Bmx tyrosine kinase induces activation of the Stat signaling pathway, which is specifically inhibited by protein kinase Cδ. Blood 90: 4341–4353.

    CAS  PubMed  Google Scholar 

  66. Yamashita Y, Watanabe S, Miyazato A, et al. (1998) Tec and Jak2 cooperate to mediate cytokine-driven activation of c-fos transcription. Blood 91: 1496–1507.

    CAS  PubMed  Google Scholar 

  67. Fu X, Zhang J. (1993) Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell 74: 1135–1145.

    Article  CAS  PubMed  Google Scholar 

  68. Ruff-Jamison S, Chen K, Cohen S. (1993) Induction by EGF and interferon-γ of tyrosine phosphorylated DNA binding proteins in mouse liver nuclei. Science 261: 1733–1736.

    Article  CAS  PubMed  Google Scholar 

  69. Sadowski HB, Shuai K, Darnell JE Jr, Gilman MZ. (1993) A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261: 1739–1744.

    Article  CAS  PubMed  Google Scholar 

  70. Park OK, Schaeffer TS, Nathans D. (1996) In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc. Natl. Acad. Sci. U.S.A. 93: 13704–13708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leaman DW, Pisharody S, Flickinger TW, et al. (1996) Roles of JAKs in activation of STATs and stimulation of c-fos gene expression by epidermal growth factor. Mol. Cel. Biol. 16: 369–375.

    Article  CAS  Google Scholar 

  72. Chen J, Sadowski HB, Kohanski RA, Wang L-H. (1997) Stat5 is a physiologic substrate of the insulin receptor. Proc. Natl. Acad. Sci. U.S.A. 94: 2295–2300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karras JG, Wang Z, Coniglio SJ, Frank DA, Rothstein TL. (1996) Antigen-receptor engagement in B cells induces nuclear expression of STAT5 and STAT6 proteins that bind and transactivate an IFN-gamma activation site. J. Immunol. 157: 39–47.

    CAS  PubMed  Google Scholar 

  74. Frank DA, Mahajan S, Ritz J. (1998) Activation of T cells through CD2 leads to the delayed and prolonged activation of STAT1 Blood 92: 701a.

    Google Scholar 

  75. Simon AR, Rai U, Fanburg BL, Cochran BH. (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol. 275: C1640–1652.

    Article  CAS  PubMed  Google Scholar 

  76. Sattler M, Winkler T, Verma S, et al. (1999) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93: 2928–2935.

    CAS  PubMed  Google Scholar 

  77. Wen Z, Zhong Z, Darnell JE Jr. (1995) Maximal activation of transcription by Statl and Stat3 requires both tyrosine and serine phosphorylation. Cell 82: 241–250.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang X, Blenis J, Li H-C, Schindler C, Chen-Kiang S. (1995) Requirement of serine phosphorylation for formation of Stat-promoter complexes. Science 267: 1990–1994.

    Article  CAS  PubMed  Google Scholar 

  79. Wen Z, Darnell JE Jr. (1997) Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Statl and Stat3. Nucl. Acids Res. 25: 2062–2067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Turkson J, Bowman T, Adnane J, et al. (1999) Requirement of Rac-1 mediated p38 and JNK signaling for Stat3 transcriptional activity induced by the Src oncoprotein. Mol. Cell. Biol. (in press).

  81. Gollob JA, Schnipper CP, Murphy EA, Ritz J, Frank DA. (1999) The functional synergy between IL-12 and IL-2 involves p38 MAP kinase and is associated with the augmentation of STAT serine phosphorylation. J. Immunol. 162: 4472–4481.

    CAS  PubMed  Google Scholar 

  82. Rajotte D, Sadowski HB, Haman A, et al. (1996) Contribution of both STAT and SRF/TCF to c-fos promoter activation by granulocyte-macrophage colony stimulating factor. Blood 88: 2906–2916.

    CAS  PubMed  Google Scholar 

  83. Frank DA, Mahajan S, Ritz J. (1997) B lymphocytes from patients with chronic lymphocytic leukemia contain STAT1 and STAT3 constitutively phosphorylated on serine residues. J. Clin. Invest. 100: 3140–3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ihle JN. (1996) STATs: signal transducers and activators of transcription. Cell 84: 331–334.

    Article  CAS  PubMed  Google Scholar 

  85. Ihle JN, Kerr IM. (1995) Jaks and stats in signaling by the cytokine receptor superfamily. Trends Genet. 11: 69–74.

    Article  CAS  PubMed  Google Scholar 

  86. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O. (1995) Signaling through hematopoietic cytokine receptors. Annu. Rev. Immunol 13: 369–398.

    Article  CAS  PubMed  Google Scholar 

  87. Darnell JE Jr. (1997) STATs and gene regulation. Science 277: 1630–1635.

    Article  CAS  PubMed  Google Scholar 

  88. Darnell JE Jr, Kerr IM, Stark GR. (1994) JakSTAT pathway and transcription activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415–1420.

    Article  CAS  PubMed  Google Scholar 

  89. Schindler C, Fu X-Y, Improta T, Aebersold R, Darnell JE Jr. (1992) Proteins of transcription factor ISGF-3: one gene encodes the 91 and 84 kDa ISGF-3 proteins that are activated by interferon-α. Proc. Natl. Acad. Sci. U.S.A. 89: 7836–7839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schaefer TS, Sanders LK, Nathans D. (1995) Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc. Natl Acad. Sci. USA. 92: 9097–9101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mikita T, Campbell D, Wu P, Williamson K, Schindler U. (1996) Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol. Cell. Biol. 16: 5811–5820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Delphin S, Stavenezer J. (1995) Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter: regulation by NF-IL-4, a C/EBP family member and NF-kappa B/p50. J. Exp. Med. 181: 181–192.

    Article  CAS  PubMed  Google Scholar 

  93. Look DC, Pelletier MR, Tidwell RM, Roswit WT, Holtzman MJ. (1995) Statl depends on transcriptional synergy with Spl. J. Biol Chem. 270: 30264–30267.

    Article  CAS  PubMed  Google Scholar 

  94. Stocklin E, Wissler M, Gouilleux F, Groner B. (1996) Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383: 726–728.

    Article  CAS  PubMed  Google Scholar 

  95. Wagner BJ, Hayes TE, Hoban CJ, Cochran BH. (1990) The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J. 9: 4477–4484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhong Z, Wen Z, Darnell Jr JE. (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264: 95–98.

    Article  CAS  PubMed  Google Scholar 

  97. Ruff-Jamison S, Chen K, Cohen S. (1995) Epidermal growth factor induces the tyrosine phosphorylation and nuclear translocation of Stat 5 in mouse liver. Proc. Natl Acad. Sci. U.S.A. 92: 4215–4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ruff-Jamison S, Zhong Z, Wen Z, Chen K, Darnell JE Jr, Cohen S. (1994) Epidermal growth factor and lipopolysaccharide activate Stat3 transcription factor in mouse liver. J. Biol. Chem. 269: 21933–21935.

    CAS  PubMed  Google Scholar 

  99. Mui AL, Wakao H, Kinoshita T, Kitamura T, Miyajima A. (1996) Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. EMBO J. 15: 2425–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Grandis JR, Drenning SD, Chakraborty A, et al. (1998) Requirement of Stat3 but not Stat1 activation for epidermal growth factor-mediated cell growth in vitro. J. Clin. Invest. 102: 1385–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marra F, Choudhury GG, Abboud HE. (1996) Interferon-γ-mediated activation of STAT1α regulates growth factor-induced mitogenesis. J. Clin. Invest. 98: 1218–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chin YE, Kitagawa M, Su W-CS, You Z-H, Iwamoto Y, Fu X–Y. (1996) Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21WAF1/CIP1 mediated by STAT1. Science 272: 719–722.

    Article  CAS  PubMed  Google Scholar 

  103. Wakao H, Gouilleux F, Groner B. (1994) Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 13: 2182–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Coffman RL, Lebman DA, Rothman P. (1993) Mechanism and regulation of immunoglobulin isotype switching. Adv. Immunol. 54: 229.

    Article  CAS  PubMed  Google Scholar 

  105. Rothman P, Li SC, Gorham B, Glimcher L, Alt F, Boothby M. (1991) Identification of a conserved lipopolysaccharide-plus-interleukin-4-respon-siveelement located at the promoter of germ line epsilon transcripts. Mol. Cell. Biol. 11: 5551–5561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. (1996) Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity 4: 313–319.

    Article  CAS  PubMed  Google Scholar 

  107. Miller DM, Rahill BM, Boss JM, et al. (1998) Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J. Exp. Med. 187: 675–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kaplan MH, Sun Y-L, Hoey T, Grusby MJ. (1996) Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382: 174–177.

    Article  CAS  PubMed  Google Scholar 

  109. Thierfelder WE, van Deursen JM, Yamamoto K, et al. (1996) Requirement for Stat4 in interleukin-12-mediated response of natural killer and T cells. Nature 382: 171–174.

    Article  CAS  PubMed  Google Scholar 

  110. Bonni A, Sun Y, Nadal-Vicens M, et al. (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278: 477–483.

    Article  CAS  PubMed  Google Scholar 

  111. Hauser PJ, Agrawal D, Hackney J, Pledger WJ. (1998) STAT3 activation accompanies keratinocyte differentiation. Cell Growth Differ. 9: 847–855.

    CAS  PubMed  Google Scholar 

  112. Shimozaki K, Nakajima K, Hirano T, Nagata S. (1997) Involvement of STAT3 in the granulocyte colony-stimulating factor-induced differentiation of myeloid cells. J. Biol. Chem. 272: 25184–25189.

    Article  CAS  PubMed  Google Scholar 

  113. Boccaccio C, Ando M, Tamagnone L, et al. (1998) Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391: 285–288.

    Article  CAS  PubMed  Google Scholar 

  114. Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR. (1997) Defective TNF-α-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278: 1630–1632.

    Article  CAS  PubMed  Google Scholar 

  115. Xu X, Fu X–Y, Plate J, Chong AS-F. (1998) IFN-γ induces cell growth inhibition by fas-mediated apoptosis: requirement of STATl protein for upregulation of Fas and FasL expression. Cancer Res. 58: 2832–2837.

    CAS  PubMed  Google Scholar 

  116. Skov S, Nielsen M, Bregenholt S, Odum N, Claesson MH. (1998) Activation of Stat-3 is involved in the induction of apoptosis after ligation of major histocompatibility complex class I molecules on human Jurkat T cells. Blood 91: 3566–3573.

    CAS  PubMed  Google Scholar 

  117. Frank DA, Mahajan S, Yuan H. (1999) The chemoprotectant butyrate downregulates IL-6 induced signaling events in colorectal carcinoma cells. Proc. Amer. Assoc. Cancer Res. 40: 318.

    Google Scholar 

  118. Fujio Y, Kunisada K, Hirota H, Yamauchi-Takihara K, Kishimoto T. (1997) Signals through gp130 upregulate bcl-x gene expression via STAT1-binding cis-element in cardiac myocytes. J. Clin. Invest. 99: 2898–2905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Binari R, Perrimon N. (1994) Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev. 8: 300–312.

    Article  CAS  PubMed  Google Scholar 

  120. Hou XS, Melnick MB, Perrimon N. (1996) marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to mammalian STATs. Cell 84: 411–419.

    Article  CAS  PubMed  Google Scholar 

  121. Yan R, Small S, Desplan C, Dearolf CR, Darnell JE Jr. (1996) Identification of a Stat gene that functions in Drosophila development. Cell 84: 421–430.

    Article  CAS  PubMed  Google Scholar 

  122. Luo H, Hanratty WP, Dearolf CR. (1995) An amino acid substitution in the Drosophila hopTum-1 Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 14: 1412–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Harrison DA, Binari R, Nahrenini TS, Gilman M, Perrimon N. (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14: 2857–2865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gouilleux-Gruart V, Gouilleux F, Desaint C, et al. (1996) STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 87: 1692–1697.

    CAS  PubMed  Google Scholar 

  125. Weber-Nordt RM, Egen C, Wehinger J, et al. (1996) Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 88: 809–816.

    CAS  PubMed  Google Scholar 

  126. Xia Z, Baer MR, Block AW, Baumann H, Wetzler M. (1998) Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts. Cancer Res. 58: 3173–3180.

    CAS  PubMed  Google Scholar 

  127. Nowell PC, Hungerford DA. (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132: 1497–1499.

    Google Scholar 

  128. Rowley JD. (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa banding. Nature 243: 290–291.

    Article  CAS  PubMed  Google Scholar 

  129. Konopka JB, Watanabe SM, Witte ON. (1984) An alteration of the human c-abl protein in K562 unmasks associated tyrosine kinase activity. Cell 37: 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  130. Shtivelman E, Lifshitz B, Gale RP, Canaani E. (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukemia. Nature 315: 550–554.

    Article  CAS  PubMed  Google Scholar 

  131. Gishizky ML, Witte ON. (1992) Initiation of deregulated growth of multipotent progenitor cells by bcr-abl in vitro. Science 256: 836–839.

    Article  CAS  PubMed  Google Scholar 

  132. Daley GQ, Van Etten RA, Baltimore D. (1990) Induction of chronic myelogenous leukemia in mice by the P21OberIabl gene of the Philadelphia chromosome. Science 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  133. Daley GQ, Baltimore D. (1988) Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc. Natl. Acad. Sci. U.S.A. 85: 9312–9316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Carlesso N, Frank DA, Griffin JD. (1996) Tyrosyl phosphorylation and DNA-binding activity of STAT proteins in hematopoietic cell lines transformed by Bcr/Abl. J. Exp. Med 183: 811–820.

    Article  CAS  PubMed  Google Scholar 

  135. Frank DA, Varticovski L. (1996) BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 10: 1724–1730.

    CAS  PubMed  Google Scholar 

  136. Ilaria RL Jr, Van Etten RA. (1996) P210 and P190BCR/ABL induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J. Biol Chem. 271: 31704–31710.

    Article  CAS  PubMed  Google Scholar 

  137. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL. (1996) Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 13: 247–254.

    CAS  PubMed  Google Scholar 

  138. Chai SK, Nichols GL, Rothman P. (1997) Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J. Immunol. 159: 4720–4728.

    CAS  PubMed  Google Scholar 

  139. Kurzrock R, Gutterman J, Talpaz M. (1988) The molecular genetics of Philadelphia chromosome-positive leukemias. N. Engl J. Med. 319: 990–998.

    Article  CAS  PubMed  Google Scholar 

  140. Nieborowska-Skorska M, Wasik MA, Salomoni P, Kitamura T, Calabretta B, Skorski T. (1998) STAT5 activation by Bcr/Abl is dependent on its intact SH3 and SH2 domains and is required for leukemogenesis. Blood 92: 91a.

    Google Scholar 

  141. Rozman C, Montserrat E. (1995) Chronic lymphocytic leukemia. New Engl J. Med. 333: 1052–1057.

    Article  CAS  PubMed  Google Scholar 

  142. Lin J-X. (1995) The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2: 331–339.

    Article  CAS  PubMed  Google Scholar 

  143. Tanner JE, Tosato G. (1992) Regulation of B-cell growth and immunoglobulin gene transcription by interleukin-6. Blood 19: 452–459.

    Google Scholar 

  144. Nielsen M, Kaltoft K, Nordahl M, et al. (1997) Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc. Natl. Acad. Sci. U.S.A. 94: 6764–6769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang Q, Nowak I, Vonderheid EC, et al. (1996) Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc. Natl Acad. Sci. U.S.A. 93: 9148–9153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Migone T-S, Lin J-X, Cereseto A, et al. (1995) Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269: 79–81.

    Article  CAS  PubMed  Google Scholar 

  147. Takemoto S, Mulloy JC, Cereseto A, et al. (1997) Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc. Natl Acad. Sci. U.S.A. 94: 13897–13902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Xu X, Kang SH, Heidenreich O, Okerholm M, O’Shea JJ, Nerenberg MI. (1995) Constitutive activation of different Jak kinases in human T cell leukemia virus type 1 (HTLV-1) tax protein or virus-transformed cells. J. Clin. Invest. 96: 1548–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Smith D, Buckle GJ, Hafler DA, Frank DA, Hollsberg P. (1999) HTLV-I infected T cells evade the anti-proliferative action of IFN-beta. Virology 257: 314–321.

    Article  CAS  PubMed  Google Scholar 

  150. Kawano M, Hirano T, Matsuda T, et al. (1988) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332: 83–85.

    Article  CAS  PubMed  Google Scholar 

  151. Anderson KC, Jones RM, Morimoto C, Leavitt P, Barut BA. (1989) Response patterns of purified myeloma cells to hematopoietic growth factors. Blood 73: 1915–1924.

    CAS  PubMed  Google Scholar 

  152. Levy Y, Tsapis A, Brouet JC. (1991) Interleukin-6 antisense oligonucleotides inhibit the growth of human myeloma cell lines. J. Clin. Invest. 88: 696–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Klein B, Zhang XG, Yang LZ, Bataille R. (1995) Interleukin-6 in human multiple myeloma. Blood 85: 863–874.

    CAS  PubMed  Google Scholar 

  154. Hilbert DM, Kopf M, Mock BA, Kohler G, Rudikoff S. (1995) Interleukin 6 is essential for in vivo development of B lineage neoplasms. J. Exp. Med. 182: 243–248.

    Article  CAS  PubMed  Google Scholar 

  155. Hilbert DM, Migone T-S, Kopf M, Leonard WJ, Rudikoff S. (1996) Distinct tumorigenic potential of abl and raf in B cell neoplasia: abl activates the IL-6 signaling pathway. Immunity 5: 81–89.

    Article  CAS  PubMed  Google Scholar 

  156. Catlett-Falcone R, Landowski TH, Oshiro MM, et al. (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10: 105–115.

    Article  CAS  PubMed  Google Scholar 

  157. Barut B, Chauhan D, Uchiyama H, Anderson KC. (1993) Interleukin-6 functions as an intracellular growth factor in hairy cell leukemia in vitro. J. Clin. Invest. 92: 2346–2352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Seymour JF, Talpaz M, Cabanillas F, Wetzler M, Kurzrock R. (1995) Serum interleukin-6 levels correlate with prognosis in diffuse large cell lymphoma. J. Clin. Oncol. 13: 575–582.

    Article  CAS  PubMed  Google Scholar 

  159. Pallard C, Gouilleux F, Charon M, Groner B, Gisselbrecht S, Dusanter-Fourt I. (1995) Interleukin-3, erythropoietin, and prolactin activate a STAT5-like factor in lymphoid cells. J. Biol. Chem. 270: 15942–15945.

    Article  CAS  PubMed  Google Scholar 

  160. Watson CJ, Miller WR. (1995) Elevated levels of members of the STAT family of transcription factors in breast carcinoma nuclear extracts. Br. J. Cancer 71: 840–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Garcia R, Yu C-L, Hudnall A, et al. (1997) Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ. 8: 1267–1276.

    CAS  PubMed  Google Scholar 

  162. Sartor CI, Dziubinski ML, Yu CL, Jove R, Ethier SP. (1997) Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells. Cancer Res. 57: 978–987.

    CAS  PubMed  Google Scholar 

  163. Manni A, Trout D, Verderame MF, Beaston-Wimmer PR. (1999) Ornithine decarboxylase (ODC) overexpression activates Src and STAT signaling in MCF-10A human breast epithelial cells. Proc. Am. Assoc. Cancer Res. 40: 99.

    Google Scholar 

  164. Endo S, Zeng Q, He Y, et al. (1999) Increased Stat3 activation in head and neck tumors in vivo. Proc. Am. Assoc. Cancer Res. 40: 336.

    Google Scholar 

  165. Rubin Grandis J, Chakraborty A, Meinem MF, Zeng Q, Tweardy DJ. (1997) Inhibition of epidermal growth factor receptor gene expression and function decreases proliferation of head and neck squamous carcinoma but not normal mucosal epithelial cells. Oncogene 15: 409–416.

    Article  CAS  PubMed  Google Scholar 

  166. Zhou MY, Zeng Q, Drenning SD, Rubin Grandis J. (1999) Differential activation of STAT5 isoforms and growth control in head and neck cancer. Proc. Am. Assoc. Cancer Res. 40: 335.

    Google Scholar 

  167. Reddy MVR, Chaturvedi P, Reddy EP. (1999) Src kinase mediated activation of STAT-3 plays an essential role in the proliferation and oncogenicity of human breast, prostate and ovarian carcinomas. Proc. Am. Assoc. Cancer Res. 40: 376.

    Google Scholar 

  168. Kirkwood JM, Farkas DL, Chakraborty A, et al. (1999) Systemic interferon-α (IFN-α) treatment leads to Stat3 inactivation in melanoma precursor lesions. Mol. Med. 5: 11–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shirota K, LeDuy L, Yuan SY, Jothy S. (1990) Interleukin-6 and its receptor are expressed in human intestinal epithelial cells. Virchows Arch B Cell Pathol 58: 303–308.

    Article  CAS  Google Scholar 

  170. Burkitt DP. (1971) Epidemiology of cancer of the colon and rectum. Cancer 28: 3–13.

    Article  CAS  PubMed  Google Scholar 

  171. Howe GR, Benito E, Castelleto R, et al. (1992) Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies. J. Natl. Cancer Inst. 84: 1887–1896.

    Article  CAS  PubMed  Google Scholar 

  172. Reddy BS, Hedges AR, Laakso K, Wynder EL. (1978) Metabolic epidemiology of large bowel cancer: fecal bulk and constituents of high-risk North American and low-risk Finnish population. Cancer 42: 2832–2838.

    Article  CAS  PubMed  Google Scholar 

  173. Trock B, Lanza E, Greenwald P. (1990) Dietary fiber, vegetables, and colon cancer: critical review and meta-analyses of the epidemiologic evidence. J. Natl Cancer Inst. 82: 650–661.

    Article  CAS  PubMed  Google Scholar 

  174. Mizutani Y, Bonavida B, Koishihara Y, Akamatsu K, Ohsugi Y, Yoshida O. (1995) Sensitization of human renal cell carcinoma cells to cis-diamminedichloroplatinum(II) by anti-interleukin 6 monoclonal antibody or anti-interleu-kin 6 receptor monoclonal antibody. Cancer Res. 55: 590–596.

    CAS  PubMed  Google Scholar 

  175. Borsellino N, Belldegrun A, Bonavida B. (1995) Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res. 55: 4633–4639.

    CAS  PubMed  Google Scholar 

  176. Kowalczyk J, Sandberg AA. (1983) A possible subgroup of ALL with 9p-. Cancer Genet. Cytogenet. 9: 383–388.

    Article  CAS  PubMed  Google Scholar 

  177. Chilcote RR, Brown E, Rowley JD. (1985) Lymphoblastic leukemia with features associated with abnormalities of the short arm of chromosome 9. N. Engl J. Med. 313: 286–289.

    Article  CAS  PubMed  Google Scholar 

  178. Pollack C, Hagemeijer A. (1987) Abnormalities of the short arm of chromosome 9 with partial loss of material in hematological disorders. Leukemia 1: 541–548.

    Google Scholar 

  179. Peeters P, Raynaud SD, Cools J, et al. (1997) Fusion of Tel the ETS-variant gene 6 (ETV6), to the receptor-associated kinase Jak2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90: 2535–2540.

    CAS  PubMed  Google Scholar 

  180. Lacronique V, Boureux A, Della Valle V, et al. (1997) A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  181. Wasylyk B, Hahn SL, Giovane A. (1993) The Ets family of transcription factors. Eur. J. Biochem. 211: 7–18.

    Article  CAS  PubMed  Google Scholar 

  182. Ho JM-Y, Beattie BK, Squire JA, Frank DA, Barber DL. (1999) Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood 93: 4354–4364.

    CAS  PubMed  Google Scholar 

  183. Schwaller J, Frantsve J, Aster J, et al. (1998) Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J. 17: 5321–5333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Janssen JW, Ridge SA, Papadopoulos P, et al. (1995) The fusion of TEL and ABL in human acute lymphoblastic leukemia is a rare event. Br. J. Haematol. 90: 222–224.

    Article  CAS  PubMed  Google Scholar 

  185. Golub TR, Goga A, Barker G, et al. (1996) Oligomerization of the ABL tyrosine kinase by the ETS protein TEL in human leukemia. Mol. Cell. Biol. 16: 4107–4116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Morris SW, Kirstein MN, Valentine MB, et al. (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263: 1281–1284.

    Article  CAS  PubMed  Google Scholar 

  187. Xiao S, Nalabolu SR, Aster JC, et al. (1998) FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat. Genet. 18: 84–87.

    Article  CAS  PubMed  Google Scholar 

  188. Golub TR, Barker GF, Lovett M, Gilliland DG. (1994) Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77: 307–316.

    Article  CAS  PubMed  Google Scholar 

  189. Abe A, Emi N, Tanimoto M, Terasaki H, Marunouchi T, Saito H. (1997) Fusion of the platelet-derived growth factor receptor β to a novel gene CEV14 in acute myelogenous leukemia after clonal evolution. Blood 90: 4271–4277.

    CAS  PubMed  Google Scholar 

  190. Ross T, Bernard O, Berger R, Gilliland DG. (1998) Fusion of the Huntington interacting protein 1 to platelet-derived growth factor β receptor (PDGFβR) in chronic myelomonocytic leukemia with t(5;7)(q33;qll.2). Blood 91: 4419–4426.

    CAS  PubMed  Google Scholar 

  191. Vignais ML, Sadowski HB, Watling D, Rogers NC, Gilman M. (1996) Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. Mol. Cell. Biol. 16: 1759–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Valgeirsdottir S, Paukku K, Silvennoinen O, Heldin CH, Claesson-Welsh L. (1998) Activation of Stat5 by platelet-derived growth factor (PDGF) is dependent on phosphorylation sites in PDGF beta-receptor juxtamembrane and kinase insert domains. Oncogene 16: 505–515.

    Article  CAS  PubMed  Google Scholar 

  193. Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG. (1996) The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc. Natl. Acad. Sci. U.S.A. 93: 14845–14850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Joussert C, Carron C, Boureux A, et al. (1997) A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J. 16: 69–82.

    Article  Google Scholar 

  195. Palmer AM, Mahajan S, Frank D, Gilliland DG, Carroll M. (1997) The TEL-PDGFβR transforming protein activates STATL Blood 90: 178a.

    Google Scholar 

  196. Garcia R, Jove R. (1998) Activation of STAT transcription factors in oncogenic tyrosine kinase signaling. J. Biomed. Sci. 5: 79–85.

    Article  CAS  PubMed  Google Scholar 

  197. Danial NN, Pernis A, Rothman PB. (1995) JakSTAT signaling induced by the v-abl oncogene. Science 269: 1875–1877.

    Article  CAS  PubMed  Google Scholar 

  198. Danial NN, Losman JA, Lu T, et al. (1998) Direct interaction of Jakl and v-Abl is required for v-Abl-induced activation of STATs and proliferation. Mol. Cel. Biol. 18: 6795–6804.

    Article  CAS  Google Scholar 

  199. Yu C, Meyer DJ, Campbell GS, et al. (1995) Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269: 81–83.

    Article  CAS  PubMed  Google Scholar 

  200. Cao X, Tay A, Guy GR, Tan YH. (1996) Activation and association of Stat3 with Src in v-Srctransformed cell lines. Mol. Cell. Biol. 16: 1595–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chaturvedi P, Sharma S, Reddy EP. (1997) Abrogation of interleukin-3 dependence of myeloid cells by the v-src oncogene requires SH2 and SH3 domains which specify activation of STATs. Mol. Cell. Biol. 17: 3295–3304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE Jr. (1998) Stat3 activation is required for cellular transformation by v-src. Mol. Cell. Biol. 18: 2553–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Caldenhoven E, van Dijk TB, Solari R, et al. (1996) STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J. Biol. Chem. 271: 13221–13227.

    Article  CAS  PubMed  Google Scholar 

  204. Turkson J, Bowman T, Garcia R, Caldenhoven E, de Groot RP, Jove R. (1998) Stat3 activation by src induces specific gene regulation and is required for cell transformation. Mol. Cell. Biol. 18: 2545–2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Campbell GS, Yu C-L, Jove R, Carter-Su C. (1997) Constitutive activation of Jakl in Srctransformed cells. J. Biol. Chem. 272: 2591–2594.

    Article  CAS  PubMed  Google Scholar 

  206. Yu CL, Jove R, Burakoff SJ. (1997) Constitutive activation of the Janus kinase-STAT pathway in T lymphoma overexpressing the Lck protein tyrosine kinase. J. Immunol. 159: 5206–5210.

    CAS  PubMed  Google Scholar 

  207. Lund TC, Garcia R, Medveczky MM, Jove R, Medveczky PG. (1997) Activation of STAT transcription factors by herpesvirus Saimiri Tip-484 requires p561ck. J. Virol. 71: 6677–6682.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Lund TC, Prator PC, Medveczky MM, Medveczky PG. (1999) The Lck binding domain of herpesvirus saimiri tip-484 constitutively activates Lck and STAT3 in T cells. J. Virol. 73: 1689–1694.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Zong C, Yan R, August A, Darnell JE Jr, Hanafusa H. (1996) Unique signal transduction of Eyk: constitutive stimulation of the JAK-STAT pathway by an oncogenic receptor-type tyrosine kinase. EMBO J. 15: 4515–4525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Besser D, Bromberg JF, Darnell JE Jr, Hanafusa H. (1999) A single amino acid substitution in the v-Eyk intracellular domain results in activation of Stat3 and enhances cellular transformation. Mol. Cell. Biol. 19: 1401–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Shimoda K, van Deursen J, Sangster MY, et al. (1996) Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380: 630–633.

    Article  CAS  PubMed  Google Scholar 

  212. Takeda K, Tanaka T, Shi W, et al. (1996) Essential role of Stat6 in IL-4 signalling. Nature 380: 627–630.

    Article  CAS  PubMed  Google Scholar 

  213. Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J. (1996) Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp. Hematol. 24: 406–415.

    CAS  PubMed  Google Scholar 

  214. Frank DA, Robertson M, Bonni A, Ritz J, Greenberg ME. (1995) IL-2 signaling involves the phosphorylation of novel Stat proteins. Proc. Natl. Acad. Sci. U.S.A. 92: 7779–7783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Teglund S, McKay C, Schuetz E, et al. (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93: 841–850.

    Article  CAS  PubMed  Google Scholar 

  216. Kaplan DH, Shankaran V, Digne AS, et al. (1998) Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. U.S.A. 95: 7556–7561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Takeda K, Noguchi K, Shi W, et al. (1997) Targeted disruption of the mouse STAT3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA. 94: 3801–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Peppard JV, Loo P, Sills MA, Munster D, Pomponi SA, Wright AE. (1996) Characterization of an interleukin 6 cytokine family antagonist protein from a marine sponge, Callyspongia sp. J. Biol. Chem. 271: 7281–7284.

    Article  CAS  PubMed  Google Scholar 

  219. Savino R, Lahm A, Salvati AL, et al. (1994) Generation of interleukin-6 antagonists by molecular-modeling guided mutagenesis of residues important for gp130 activation. EMBO J. 13: 1357–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Savino R, Ciapponi L, Lahm A, et al. (1994) Rational design of a receptor super-antagonist of human interleukin-6. EMBO J. 13: 5863–5870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kopf M, Baumann H, Freer G, et al. (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368: 339–342.

    Article  CAS  PubMed  Google Scholar 

  222. Klein B, Wijdenes J, Zhang XG, et al. (1991) Murine antiinterleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 78: 1198–1204.

    CAS  PubMed  Google Scholar 

  223. Meydan N, Grunberger T, Dadi H, et al. (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379: 645–648.

    Article  CAS  PubMed  Google Scholar 

  224. Buchdunger E, Mett H, Trinks U, et al. (1995) 4, 5-bis(4-fluoroanilino)phthalimide: a selective inhibitor of the epidermal growth factor receptor signal transduction pathway with potent in vivo antitumor activity. Clin. Cancer Res. 1: 813–821.

    CAS  PubMed  Google Scholar 

  225. Buchdunger E, Zimmermann J, Mett H, et al. (1996) Inhibition of the ABL protein-tyrosine kinase in vitro and in vivo by a 2-phenylamino-pyrimidine derivative. Cancer Res. 56: 100–104.

    CAS  PubMed  Google Scholar 

  226. Mologni L, Cleris L, Marchesi E, et al. (1999) In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J. Natl. Cancer Inst. 91: 163–168.

    Article  PubMed  Google Scholar 

  227. Carroll M, Ohno-Jones S, Tamura S, et al. (1997) CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90: 4947–4952.

    CAS  PubMed  Google Scholar 

  228. Traxler PM, Fyret P, Mett H, Buchdunger E, Meyer T, Lydon N. (1996) 4-(phenylamino)pyrrolopyrimidines: potent and selective, ATP site directed inhibitors of the EGF-receptor tyrosine kinase. J. Med. Chem. 39: 2285–2292.

    Article  CAS  PubMed  Google Scholar 

  229. Druker BJ, Tamura S, Buchdunger E, et al. (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  230. Tomasson MH, Williams IR, Hasserjian R, et al. (1999) TEL/PDGFbetaR induces hematologic malignancies in mice that respond to a specific tyrosine kinase inhibitor. Blood 93: 1707–1714.

    CAS  PubMed  Google Scholar 

  231. Frank DA, Mahajan S, Ritz J. (1999) Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling. Nat. Med. 5: 444–447.

    Article  CAS  PubMed  Google Scholar 

  232. Bromberg JF, Fan Z, Brown C, Mendelsohn J, Darnell JE Jr. (1998) Epidermal growth factor-induced growth inhibition requires Stat1 activation. Cell Growth Differ. 9: 505–512.

    CAS  PubMed  Google Scholar 

  233. Kirkwood JM, Strawdermann MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol. 14: 7–17.

    Article  CAS  PubMed  Google Scholar 

  234. Carson WE. (1998) Interferon-α-induced activation of signal transducer and activator of transcription proteins in malignant melanoma. Clin. Cancer Res. 4: 2219–2228.

    CAS  PubMed  Google Scholar 

  235. Wong LH, Krauer KG, Hatzinisiriou I, et al. (1997) Interferon-resistant human melanoma cells are deficient in ISGF3 components, STAT1, STAT2, and p48-ISGF3gamma. J. Biol Chem. 272: 28779–28785.

    Article  CAS  PubMed  Google Scholar 

  236. Sun WH, Pabon C, Alsayed Y, et al. (1998) Interferon-alpha resistance in a cutaneous T-cell lymphoma cell line is associated with lack of STAT1 expression. Blood 91: 570–576.

    CAS  PubMed  Google Scholar 

  237. Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE Jr. (1996) Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc. Natl Acad. Sci. U.S.A. 93: 7673–7678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Warreil RP Jr, Frankel SR, Miller WJJ, et al. (1991) Differentiation therapy of acute promyelocytic leukemia with triretinoin (all-trans retinoic acid). N Engl J. Med. 324: 1385–1391.

    Article  Google Scholar 

  239. Gianni M, Terao M, Fortino I, et al. (1997) Stat1 is induced and activated by all-trans retinoic acid in acute promyelocytic leukemia cells. Blood 89: 1001–1012.

    CAS  PubMed  Google Scholar 

  240. Weihua X, Kolla V, Kalvakolanu DV. (1997) Modulation of interferon action by retinoids. Induction of murine STAT1 gene expression by retinoic acid. J. Biol Chem. 272: 9742–9748.

    Article  CAS  PubMed  Google Scholar 

  241. Kalvakolanu DV, Sen GC. (1993) Differentiation-dependent activation of interferon-stimulated gene factors and transcription factor NF-kappa B in mouse embryonal carcinoma cells. Proc. Natl. Acad. Sä. U.S.A. 90: 3167–3171.

    Article  CAS  Google Scholar 

  242. Kolla V, Lindner DJ, Weihua X, Borden EC, Kalvakolanu DV. (1996) Modulation of interferon (IFN)-inducible gene expression by retinoic acid. Up-regulation of Statl protein in IFN-unresponsive cells. J. Biol Chem. 271: 10508–10514.

    Article  CAS  PubMed  Google Scholar 

  243. Matikainen S, Ronni T, Lehtonen A, et al. (1997) Retinoic acid induces signal transducer and activator of transcription (STAT) 1, STAT2, and p48 expression in myeloid leukemia cells and enhances their responsiveness to interferons. Cell Growth Differ. 8: 687–698.

    CAS  PubMed  Google Scholar 

  244. Aragane Y, Kulms D, Luger TA, Schwarz T. (1997) Down-regulation of interferon γ-activated STAT1 by UV light. Proc. Natl Acad. Sci. USA. 94: 11490–11495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Look DC, Roswit WT, Frick AG, et al. (1998) Direct suppression of Stat1 function during adenoviral infection. Immunity 9: 871–880.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant CA79547, the Cancer Research Foundation of America, and the Brent Leahey Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, D.A. STAT Signaling in the Pathogenesis and Treatment of Cancer. Mol Med 5, 432–456 (1999). https://doi.org/10.1007/BF03403538

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03403538

Navigation