Skip to main content

Advertisement

Log in

Anti-Tumor Efficacy of a Novel Antisense Anti-MDM2 Mixed-Backbone Oligonucleotide in Human Colon Cancer Models: p53-Dependent and p53-Independent Mechanisms

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The MDM2 oncogene is amplified or overexpressed in many human cancers and MDM2 levels are associated with poor prognosis. MDM2 not only serves as a negative regulator of p53 but also has p53-independent activities. This study investigates the functions of the MDM2 oncogene in colon cancer growth and the potential value of MDM2 as a drug target for cancer therapy, by inhibiting MDM2 expression with an antisense antihuman-MDM2 oligonucleotide.

Materials and Methods

The selected antisense mixed-backbone oligonucleotide was evaluated for its in vitro and in vivo antitumor activity in human colon cancer models: LS174T cell line containing wild-type p53 and DLD-1 cell line containing mutant p53. The levels of MDM2, p53 and p21 proteins were quantified by Western blot analysis.

Results

In vitro antitumor activity was found in both cell lines, resulting from specific inhibition of MDM2 expression. In vivo antitumor activity of the oligonucleotide occurred in a dose-dependent manner in both models and synergistically or additive therapeutic effects of MDM2 inhibition and the cancer chemotherapeutic agents 10-hydroxycamptothecin and 5-fluorouracil were also observed.

Conclusions

These results suggest that MDM2 have a role in tumor growth through both p53-dependent and p53-independent mechanisms. We speculate that MDM2 inhibitors have a broad spectrum of antitumor activities in human cancers regardless of p53 status. This study should provide a basis for future development of anti-MDM2 antisense oligonucleotides as cancer therapeutic agents used alone or in combination with conventional chemotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prives C, Hall PA. (1999) The p53 pathway. J. Pathol. 187: 112–126.

    Article  CAS  PubMed  Google Scholar 

  2. Fakharzadeh SS, Trusko SP, George DL. (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10: 1565–1569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Piette J, Neel H, Marechal V. (1997) Mdm2: keeping p53 under control. Oncogene 15: 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  4. Momand J, Zambetti GP. (1997) Mdm-2: “big brother” of p53. J. Cell. Biochem. 64: 343–352.

    Article  CAS  PubMed  Google Scholar 

  5. Lozano G, Montes de Oca Luna R. (1998) MDM2 function. Biochim. Biophys. Acta 1377: M55–M59.

    PubMed  CAS  Google Scholar 

  6. Juven-Gershon T, Oren M. (1999) Mdm2: the ups and downs. Mol. Med. 5: 71–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Freedman DA, Wu L, Levine AJ. (1999) Functions of the MDM2 oncoprotein. Cell Mol. Life Sci. 55: 96–107.

    Article  CAS  PubMed  Google Scholar 

  8. Freedman DA, Levine AJ. (1999) Regulation of p53 protein by MDM2 oncoprotein-Thirty eighth G.H.A. Clowes memorial award lecture. Cancer Res. 59: 1–7.

    PubMed  CAS  Google Scholar 

  9. Momand J, Jung D, Wilczynski S, Niland J. (1998) The MDM2 gene amplification database. Nucleic Acids Res. 26: 3453–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bueso-Ramos CE, Yang Y, deLeon E, McCown P, Stass, SA, Albitar M. (1993) The human MDM-2 oncogene is overexpressed in leukemias. Blood 82: 2617–2623.

    PubMed  CAS  Google Scholar 

  11. Watanabe T, Hotta T, Ichikawa A, et al. (1994) The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin. Blood 84: 3158–3165.

    PubMed  CAS  Google Scholar 

  12. Landers JE, Haines DS, Strauss JF, George DL. (1994) Enhanced translation: a novel mechanism of mdm2 oncogene overexpression identified in human tumor cells. Oncogene 9: 2745–2750.

    PubMed  CAS  Google Scholar 

  13. Landers JE, Cassel SL, George DL. (1997) Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res. 57: 3562–3568.

    PubMed  CAS  Google Scholar 

  14. Lonardo F, Ueda T, Huvos AG, Healey J, Ladanyi M. (1997) P53 and MDM2 alterations in osteosarcomas. Cancer 79: 1541–1547.

    Article  CAS  PubMed  Google Scholar 

  15. Wurl P, Meye A, Berger D, et al. (1997) Prognostic relevance of C-terminal mdm2 detection is enhanced by p53 positivity in soft tissue sarcomas. Diagnostic Mol. Pathol. 6: 249–254.

    Article  CAS  Google Scholar 

  16. Stefanou DG, Nonni AV, Agnantis NJ, Athanassiadou SE, Briassoulis E, Pavlidis N. (1998) P53/MDM-2 immunohistochemical expression correlated with proliferative activity in different subtypes of human sarcomas: a ten-year follow-up study. Anticancer Res. 18: 4673–4682.

    PubMed  CAS  Google Scholar 

  17. Yokoyama R, Schneider-Stock R, Radig K, Wex T, Roessner A. (1998) Clinicopathologic implications of MDM2, p53 and K-ras gene alterations in osteosarcomas: MDM2 amplification and p53 mutations found in progressive tumors. Pathol. Res. Pract. 194: 615–621.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang M, Shao Z-M, Wu J, et al. (1997) P21/waf1/cip1 and mdm-2 expression in breast carcinoma patients as related to prognosis. Int. J. Cancer (Pred. Oncol.) 74: 529–534.

    Article  CAS  Google Scholar 

  19. Tanner B, Hengstler JG, Laubscher S, et al. (1997) Mdm2 mRNA expression is associated with survival in ovarian cancer. Int. J. Cancer (Pred. Oncol.) 74: 438–442.

    Article  CAS  Google Scholar 

  20. Dellas A, Schultheiss E, Almendral AC, et al. (1997) Altered expression of mdm2 and its association with p53 protein status, tumor-cell-proliferation rate and prognosis in cervical neoplasia. Int. J. Cancer (Pred. Oncol.) 74: 421–425.

    Article  CAS  Google Scholar 

  21. Girod SC, Pfeiffer P, Ries J, Pape H-D. (1998) Proliferative activity and loss of function of tumor suppressor genes as biomarkers in diagnosis and prognosis of benign and preneoplastic oral lesions and oral squamous cell carcinoma. Br. J. Oral Maxillofacial Surg. 36: 252–260.

    Article  CAS  Google Scholar 

  22. Agrawal S, Mathur M, Srivastava A, Ealhan R. (1999) MDM2/p53 co-expression in oral premalignant and malignant lesions: potential prognostic implication. Oral Oncol. 35: 209–216.

    Article  Google Scholar 

  23. Ehrmann J, Kolar Z, Vojtesek B, Kala M, Komenda S, Oulton A. (1997) Prognostic factors in astrocytomas: relationship of p53, MDM-2, Bcl-2 and PCNA immunohistochemical expression to tumor grade and overall patient survival. Neoplasma 44: 299–304.

    PubMed  Google Scholar 

  24. Shimada Y, Imamura M, Shibagaki I, et al. (1997) Genetic alterations in patients with esophageal cancer with short- and long-term survival rates after curative esophagectomy. Ann. Surg. 226: 162–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Valassiadou K, Stenfanaki K, Tzardi M, et al. (1997) Immunohistochemical expression of p53, bcl2, mdm2 and waf1/p21 proteins in colorectal adenocarcinomas. Anticancer Res. 17: 2571–2576.

    PubMed  CAS  Google Scholar 

  26. Korkolopoulou P, Christodoulou P, Kapralos P, et al. (1997) The role of p53, MDM2 and c-erb B-2 oncoproteins, epidermal growth factor receptor and proliferation markers in the prognosis of urinary bladder cancer. Pathol. Res. Pract. 193: 767–775.

    Article  CAS  PubMed  Google Scholar 

  27. Osman I, Scher H, Zhang Z-F, et al. (1997) Alterations affecting the p53 control pathway in Bilharzial-related bladder cancer. Clin. Cancer Res. 3: 531–536.

    PubMed  CAS  Google Scholar 

  28. Shiina H, Igawa M, Shigeno K, et al. (1999) Clinical significance of mdm2 and p53 expression in bladder cancer. A comparison with cell proliferation and apoptosis. Oncology 56: 239–247.

    Article  CAS  PubMed  Google Scholar 

  29. Ozdemir E, Kakehi Y, Okuno H, Habuchi T, Okada Y, Yoshida O. (1997) Strong correlation of basement membrane degradation with p53 inactivation and/or MDM2 overexpression in superficial urithelial carcinomas. J. Urol. 158: 206–211.

    Article  CAS  PubMed  Google Scholar 

  30. Marks DI, Kurz BW, Link MP, et al. (1997) Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia. J. Clin. Oncol. 15: 1158–1162.

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez E, Chacon I, Plaza MM, et al. (1998) Clinical outcome in diffuse large B-cell lymphoma is dependent on the relationship between different cell-cycle regulator proteins. J. Clin. Oncol. 16: 1931–1939.

    Article  CAS  PubMed  Google Scholar 

  32. Prives C. (1998) Signaling to p53: breaking the MDM2-p53 circuit. Cell 95: 5–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bottger A, Bottger V, Sparks A, Liu WL, Howard SF, Lane DP. (1997) Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol. 7: 860–869.

    Article  CAS  PubMed  Google Scholar 

  34. Midgley CA, Lane DP. (1997) P53 protein stability in tumor cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15: 1179–1189.

    Article  CAS  PubMed  Google Scholar 

  35. Bottger A, Bottger A, Garcia EC, et al. (1997) Molecular characterization of the hdm2-p53 interaction. J. Mol. Biol. 269: 744–756.

    Article  CAS  PubMed  Google Scholar 

  36. Blattner C, Sparks A, Lane D. (1999) Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell. Biol. 19: 3704–3713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen L, Agrawal S, Zhou W, Zhang R, Chen J. (1998) Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc. Natl. Acad. Sci. U.S.A. 95: 195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen L, Agrawal S, Zhou W, Zhang R, Chen J. (1999) Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression. Mol. Med. 5: 21–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang H, Oliver P, Zeng X, et al. (1999) MDM2 oncogene as a target for cancer therapy: an antisense approach. Int. J. Oncol. 15: 653–660.

    PubMed  CAS  Google Scholar 

  40. Mandel JS. (1996) Screening for colon and rectal cancer. Cancer Cont. 3: 170–177.

    Article  CAS  Google Scholar 

  41. Agrawal S, Jiang Z, Zhao Q, et al. (1997) Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: In vitro and in vivo studies. Proc. Natl. Acad. Sci. U.S.A. 94: 2620–2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang R, Li Y, Cai Q, Liu T, Sun H, Chambless B. (1998) Preclinical pharmacology of the natural product anticancer agent 10-hydroxycamptothecin, an inhibitor of topoisomerase I. Cancer Chemother. Pharm. 41: 257–267.

    Article  CAS  Google Scholar 

  43. Cai Q, Lindsey JR, Zhang R. (1997) Regression of human colon cancer xenografts in SCID mice following oral administration of water-insoluble camptothecins, natural product topoisomerase I inhibitors. Int. J. Oncol. 10: 953–960.

    PubMed  CAS  Google Scholar 

  44. Wang H, Cai Q, Zeng X, Yu D, Agrawal S, Zhang R. (1999) Anti-tumor activity and pharmacokinetics of a mixed-backbone antisense oligonucleotide targeted to RIαsubunit of protein kinase A after oral administration. Proc. Natl. Acad. Sci. U.S.A. 96: 13989–13994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu W, Zhang R. (1998) Upregulation of p21/WAF1/CIP1 in human breast cancer cell lines MCF-7 and MDA-MB-468 undergoing apoptosis induced by natural product anticancer, agents 10-hydroxycamptothecin and camptothecin through p53-dependent and independent pathways. Int. J. Oncol. 12: 793–804.

    PubMed  CAS  Google Scholar 

  46. Freedman DA, Levine AJ. (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18: 7288–7293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang R, Wang H. (2000) MDM2 oncogene as a novel target for human cancer therapy. Curr. Pharm. Design 6: 393–416.

    Article  CAS  Google Scholar 

  48. Wang H, Nan L, Yu D, Agrawal S, Zhang R. (2001) Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: in vitro and in vivo activities and mechanisms. Clin. Cancer Res. 7: 3613–3624.

    PubMed  CAS  Google Scholar 

  49. Wurl P, Meye A, Schmidt H, et al. (1998) High prognostic significance of mdm2/p53 co-overexpression in soft tissue sarcomas of the extremities. Oncogene 16: 1183–1185.

    Article  CAS  PubMed  Google Scholar 

  50. Burton EC, Lamborn KR, Forsyth P, et al. (2002) Aberrant p53, MDM2, and proliferation differ in glioblastomas from long-term compared with typical survivors. Clin. Cancer Res. 8: 180–187.

    PubMed  CAS  Google Scholar 

  51. Lu M-L, Wikman F, Orntoft TF, et al. (2002) Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clin. Cancer Res. 8: 171–179.

    PubMed  CAS  Google Scholar 

  52. Dorigo O, Turla ST, Lebedeva S, Gjerset RA. (1998) Sensitization of rat glioblastoma multiforme to cisplatin in vivo following restoration of wild-type p53 function. J. Neurosurg. 88: 535–540.

    Article  CAS  PubMed  Google Scholar 

  53. Seth P, Katayose D, Li Z, et al. (1997). A recombinant adenovirus expressing wild type p53 induces apotosis in drug resistant human breast cancers: a gene therapy approach for drug-resistant cancers. Cancer Gene Ther. 4: 383–390.

    PubMed  CAS  Google Scholar 

  54. Xiao Z, Chen J, Levine AJ, et al. (1995) Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375: 694–698.

    Article  CAS  PubMed  Google Scholar 

  55. Martin K, Trouche D, Hagemeier C, Sorensen TS, La Thangue NB, Kouzarides T. (1995) Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 375: 691–694.

    Article  CAS  PubMed  Google Scholar 

  56. Thomas A, White E. (1998) Suppression of the p300-dependent mdm2 negative-feedback loop induces the p53 apoptotic function. Genes Dev. 12: 1975–1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pomerantz J, Schreiber-Agus N, Liegeois NJ, et al. (1998) The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92: 713–723.

    Article  CAS  PubMed  Google Scholar 

  58. Honda R, Yasuda H. (1999) Association of p19 ARF with mdm2 inhibits ubiquitin ligase activity of mdm2 for tumor suppressor p53. EMBO J. 18: 22–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. (1998) Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. U.S.A. 95: 8292–8297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zeng X, Chen L, Jost CA, et al. (1999) Mdm2 suppresses p73 function without promoting p73 degradation. Mol. Cell. Biol. 19: 3257–3266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Juven-Gershon T, Shifman O, Unger T, Elkeles A, Haupt Y, Oren M. (1998) The Mdm2 oncoprotein interacts with the cell fate regulator numb. Mol. Cell. Biol. 18: 3974–3982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marechal V, Elenbass B, Piette J, Nicolas JC, Levine AJ. (1994) The ribosomal L5 protein is associated with mdm2 and mdm-2-p53 complexes. Mol. Cell. Biol. 14: 7414–7420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Elenbaas B, Dobbelstein M, Roth J, Shenk T, Levine AJ. (1996) The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol. Med. 2: 439–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fiddler TA, Smith L, Tapscott SJ, Thayer MJ. (1996) Amplification of MDM2 inhibits MyoD-mediated myogenesis. Mol. Cell Biol. 16: 5048–5057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Olson DC, Marechal V, Momand J, Chen J, Romocki C, Levine A. (1993) Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. Oncogene 8: 2353–2360.

    PubMed  CAS  Google Scholar 

  66. Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J. (1996) Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat. Med. 2: 912–917.

    Article  CAS  PubMed  Google Scholar 

  67. Matsumoto R, Tada M, Nozaki M, Zhang C-L, Sawamura Y, Abe H. (1998) Short alternative splice transcripts of the mdm2 oncogene correlate to malignancy in human astrocytic neoplasms. Cancer Res. 58: 609–613.

    PubMed  CAS  Google Scholar 

  68. Pinkas J, Naber SP, Butel JS, Medina D, Jerry DJ. (1999) Expression of MDM2 during mammary tumorigenesis. Int. J. Cancer 81: 292–298.

    Article  CAS  PubMed  Google Scholar 

  69. Lundgren K, Montes de Oca Luna R, Mcneill YB, et al. (1997) Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev. 11: 714–725.

    Article  CAS  PubMed  Google Scholar 

  70. Sun P, Dong P, Dai K, Hannon GJ, Beach D. (1998) p53-independent role of MDM2 in TGFβ1 resistance. Science 282: 2270–2272.

    Article  CAS  PubMed  Google Scholar 

  71. Blaydes JP, Wynford-Thomas, D. (1998) The proliferation of normal human fibroblasts is dependent upon negative regulation of p53 function by mdm2. Oncogene 16: 3317–3322.

    Article  CAS  PubMed  Google Scholar 

  72. Komarov PG, Komarova EA, Kondratov RV, et al. (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285: 1733–1736.

    Article  CAS  PubMed  Google Scholar 

  73. Wang H, Prasad G, Buolamwini JK, Zhang R. (2001) Antisense anticancer oligonucleotide therapeutics. Curr. Cancer Drug Targets 1: 177–196.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institute of Health grant R01 CA 80698 (to R.Z.). We thank Dr. J. Chen for providing anti-MDM2 antibodies, L. P. Le, J. Sutton, M. Shackelford, and J. Hosmer for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiwen Zhang MD, PhD, DABT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Nan, L., Yu, D. et al. Anti-Tumor Efficacy of a Novel Antisense Anti-MDM2 Mixed-Backbone Oligonucleotide in Human Colon Cancer Models: p53-Dependent and p53-Independent Mechanisms. Mol Med 8, 185–199 (2002). https://doi.org/10.1007/BF03402011

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402011

Keywords

Navigation