Skip to main content
Log in

Influence of Aqueous Si and Fe Speciation on Tetrahedral Fe(III) Substitutions in Nontronites: A Clay Synthesis Approach

  • Published:
Clays and Clay Minerals

Abstract

Most dioctahedral 2:1 swelling clays in natural systems contain ferric iron, Fe(III), which can be located in both the tetrahedral and the octahedral sheets. The distribution of Fe(III) between octahedral and tetrahedral sites in nontronite depends on the Fe and Si speciation during nontronite synthesis. The role played by the chemical properties of solutions in the Fe(III) distribution between structural sites was studied through nontronite syntheses. A chemical series of Fe(III)-nontronites with variable tetrahedral [4]Fe(III) content (x) ([Si4-xFe(III)x]Fe(III)2O10(OH)2Nax) was synthesized at 150°C across a range of initial aqueous pH values between 11 and 14. The permanent layer charge, due to Fe(III)-for-Si(IV) tetrahedral substitutions only, ranged from 0.43 to as high as 1.54 per half-unit cell. A d063̄3 value of 1.562 Å was measured by X-ray diffraction (XRD) for the highest charged nontronite (x = 1.54). This high d063̄3 value has not been reported in the literature for a dioctahedral smectite until now. The [4]Fe(III) content (x) of the synthetic nontronites, estimated using Fourier-transform infrared spectroscopy (FTIR) through the wavenumber of the main stretching nSi-O band, was correlated with synthesis pH and its influence on calculated aqueous Si speciation. The increase in synthesis pH induced the increase in anionic aqueous Si species ratios (i.e. H3Si 4(aq) and H2Si 4(aq) ), and favored the incorporation of Fe(III) in tetrahedral sites of synthesized nontronites. During nontronite formation in natural systems, the level of tetrahedral Fe(III)-for-Si(IV) substitutions may, therefore, be partly linked to the aqueous Si speciation and thus strongly dependent on the pH of the crystallization fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Andrieux, P. and Petit, S. (2010) Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series: Part I: Influence of experimental conditions. Applied Clay Science, 48, 5–17.

    Article  Google Scholar 

  • Baron, F. and Petit, S. (2016) Interpretation of the infrared spectra of the lizardite-nepouite series in the near- and midinfrared range. American Mineralogist, 101, 423–430.

    Article  Google Scholar 

  • Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177–186.

    Article  Google Scholar 

  • Brindley, G.W. (1966) Ethylene glycol and glycerol complexes of smectites and vermiculites. Clay Minerals, 6, 237–259.

    Article  Google Scholar 

  • Brindley, G.W. and Brown, G. (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London.

    Book  Google Scholar 

  • Cariati, F., Erre, L., Micera, G., Piu, P., and Gessa, C. (1983a) Effects of layer charge on the near-infrared spectra of water molecules in smectites and vermiculites. Clays and Clay Minerals, 31, 447–449.

    Article  Google Scholar 

  • Cariati, F., Erre, L., Micera, G., Piu, P., and Gessa, C. (1983b) Polarization of water molecules in phyllosilicates in relation to exchange cations as studied by near infrared spectroscopy. Clays and Clay Minerals, 31, 155–157.

    Article  Google Scholar 

  • Cariati, F., Erre, L., Micera, G., Piu, P., and Gessa, C. (1981) Water molecules and hydroxyl groups in montmorillonites as studied by near infrared spectroscopy. Clays and Clay Minerals, 29, 157–159.

    Article  Google Scholar 

  • Chassin, P. (1972) Érretude de la conformation de la molécule d’éthane 1–2 diol adsorbée sur les phyllites 2-1. Bulletin du Groupe Français des Argiles, 24, 79–88.

    Article  Google Scholar 

  • Decarreau, A. and Petit, S. (2014) Fe3+/Al3+ partitioning between tetrahedral and octahedral sites in dioctahedral smectites. Clay Minerals, 49, 657–665.

    Article  Google Scholar 

  • Decarreau, A., Petit, S., Vieillard, P., and Dabert, N. (2004) Hydrothermal synthesis of aegirine at 200°C. European Journal of Mineralogy, 16, 85–90.

    Article  Google Scholar 

  • Decarreau, A., Petit, S., Martin, F., Farges, F., Vieillard, P., and Joussein, E. (2008) Hydrothermal synthesis, between 75 and 150°C, of high-charge, ferric nontronites. Clays and Clay Minerals, 56, 322–337.

    Article  Google Scholar 

  • Eggleton, R.A. (1977) Nontronite: Chemistry and X-ray diffraction. Clay Minerals, 12, 181–194.

    Article  Google Scholar 

  • Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 5, The Mineralogical Society, London.

  • Ferrage, E., Lanson, B., Sakharov, B.A., Geoffroy, N., Jacquot, E., and Drits, V.A. (2007) Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location. American Mineralogist, 92, 1731–1743.

    Article  Google Scholar 

  • Ferrage, E., Lanson, B., Michot, L.J., and Robert, J.-L. (2010) Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 1. Results from X-ray diffraction profile modeling. The Journal of Physical Chemistry C, 114, 4515–4526.

    Google Scholar 

  • Fialips, C.-I., Huo, D., Yan, L., Wu, J., and Stucki, J.W. (2002) Effect of Fe oxidation state on the IR spectra of Garfield nontronite. American Mineralogist, 87, 630–641.

    Article  Google Scholar 

  • Gates, W.P. (2005) Infrared spectroscopy and the chemistry of dioctahedral smectites. Pp. 125–168 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (J. Theo Kloprogge, editor). The Clay Minerals Society, Aurora, Colorado, USA.

    Google Scholar 

  • Gates, W.P. (2008) Cation mass-valence sum (CM-VS) approach to assigning OH-bending bands in dioctahedral smectites. Clays and Clay Minerals, 56, 10–22.

    Article  Google Scholar 

  • Gates, W.P., Slade, P.G., Manceau, A., and Lanson, B. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223–239.

    Article  Google Scholar 

  • Gaudin, A., Buatier, M.D., Beaufort, D., Petit, S., Grauby, O., and Decarreau, A. (2005) Characterization and origin of Fe3+-montmorillonite in deep-water calcareous sediments (Pacific Ocean, Costa Rica margin). Clays and Clay Minerals, 53, 452–465.

    Article  Google Scholar 

  • Gaudin, A., Petit, S., Rose, J., Martin, F., Decarreau, A., Noack, Y., and Borschneck, D. (2004) The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. Clay Minerals, 39, 453–467.

    Google Scholar 

  • Goodman, B.A., Russell, J.D., Fraser, A.R., and Woodhams, F.W.D. (1976) A Mössbauer and I.R. spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 53–59.

    Article  Google Scholar 

  • Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. (1994) The nontronite-saponite series; an experimental approach. European Journal of Mineralogy, 6, 99–112.

    Article  Google Scholar 

  • Gupta, V.K., Mohan, D., and Saini, V.K. (2006) Studies on the interaction of some azo dyes (naphthol red-J and direct orange) with nontronite mineral. Journal of Colloid and Interface Science, 298, 79–86.

    Article  Google Scholar 

  • Heuser, M., Andrieux, P., Petit, S., and Stanjek, H. (2013) Iron-bearing smectites: a revised relationship between structural Fe, b cell edge lengths and refractive indices. Clay Minerals, 48, 97–103.

    Article  Google Scholar 

  • Hofstetter, T.B., Neumann, A., and Schwarzenbach, R.P. (2006) Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Environmental Science & Technology, 40, 235–242.

    Article  Google Scholar 

  • Iler, R.K. (1979) The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. Wiley, New York.

    Google Scholar 

  • Ilgen, A.G., Foster, A.L., and Trainor, T.P. (2012) Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochimica et Cosmochimica Acta, 94, 128–145.

    Article  Google Scholar 

  • Jaisi, D.P., Dong, H., Plymale, A.E., Fredrickson, J.K., Zachara, J.M., Heald, S., and Liu, C. (2009) Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chemical Geology, 264, 127–138.

    Article  Google Scholar 

  • Keeling, J.L., Raven, M.D., and Gates, W.P. (2000) Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clays and Clay Minerals, 48, 537–548.

    Article  Google Scholar 

  • Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E., and Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579–599.

    Article  Google Scholar 

  • Li, H., Li, Y., Xiang, L., Huang, Q., Qiu, J., Zhang, H., Sivaiah, M.V., Baron, F., Barrault, J., Petit, S., and Valange, S. (2015) Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: Response surface approach, degradation pathway, and toxicity evaluation. Journal of Hazardous Materials, 287, 32–41.

    Article  Google Scholar 

  • Liu, R., Xiao, D., Guo, Y., Wang, Z., and Liu, J. (2014) A novel photosensitized Fenton reaction catalyzed by sandwiched iron in synthetic nontronite. RSC Advances, 4, 12958–12963.

    Article  Google Scholar 

  • MacEwan, D.M.C. (1948) Complexes of clays with organic compounds. I. Complex formation between montmorillonite and halloysite and certain organic liquids. Transactions of the Faraday Society, 44, 349–367.

    Google Scholar 

  • Madejová, J., Bujdak, J., Gates, W.P., and Komadel, P. (1996) Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents. Clay Minerals, 31, 233–241.

    Article  Google Scholar 

  • Madejová, J., Balan, E., and Petit, S. (2011) Application of vibrational spectroscopy to the characterization of phyllosilicates and other industrial minerals. Pp. 171–226 in: Advances in the Characterization of Industrial Minerals (G.E. Christidis, editor). EMU Notes in Mineralogy, 9, European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland.

    Article  Google Scholar 

  • Manceau, A., Drits, V.A., Lanson, B., Chateigner, D., Wu, J., Huo, D., Gates, W.P., and Stucki, J.W. (2000a) Oxidationreduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite. American Mineralogist, 85, 153–172.

    Google Scholar 

  • Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu, J., Huo, D., and Stucki, J.W. (2000b) Oxidationreduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites. American Mineralogist, 85, 133–152.

    Google Scholar 

  • Michot, L.J., Bihannic, I., Pelletier, M., Rinnert, E., and Robert, J.L. (2005) Hydration and swelling of synthetic Nasaponi tes: Influence of layer charge. American Mineralogist, 90, 166–172.

    Article  Google Scholar 

  • Neumann, A., Hofstetter, T.B., Lüssi, M., Cirpka, O.A., Petit, S., and Schwarzenbach, R.P. (2008) Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Environmental Science & Technology, 42, 8381–8387.

    Article  Google Scholar 

  • Neumann, A., Hofstetter, T.B., Skarpeli-Liati, M., and Schwarzenbach, R.P. (2009) Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites. Environmental Science & Technology, 43, 4082–4089.

    Article  Google Scholar 

  • Neumann, A., Petit, S., and Hofstetter, T.B. (2011) Evaluation of redox-active iron sites in smectites using middle and near infrared spectroscopy. Geochimica et Cosmochimica Acta, 75, 2336–2355.

    Article  Google Scholar 

  • Parkhurst, D.L. and Appelo, C.A.J. (2013) Description of input and examples for PHREEQC version 3 — A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, available at https://doi.org/www.pubs.usgs.gov/tm/06/a43/.

    Google Scholar 

  • Petit, S., Prot, T., Decarreau, A., Mosser, C., and Toledo-Groke, M.C. (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile. Clays and Clay Minerals, 40, 436–445.

    Article  Google Scholar 

  • Petit, S., Robert, J.-L., Decarreau, A., Besson, G., Grauby, O., and Martin, F. (1995) Apport des méthodes spectroscopiques à la caractérisation des phyllosilicates 2:1. Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine, 19, 119–147.

    Google Scholar 

  • Petit, S., Caillaud, J., Righi, D., Madejová, J., Elsass, F., and Köster, H.M. (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany. Clay Minerals, 37, 283–297.

    Article  Google Scholar 

  • Petit, S., Decarreau, A., Gates, W., Andrieux, P., and Grauby, O. (2015) Hydrothermal synthesis of dioctahedral smectites: The Al-Fe3+ chemical series. Part II: Crystal-chemistry. Applied Clay Science, 104, 96–105.

    Google Scholar 

  • Pokrovski, G.S., Schott, J., Farges, F., and Hazemann, J.-L. (2003) Iron (III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy. Geochimica et Cosmochimica Acta, 67, 3559–3573.

    Article  Google Scholar 

  • Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., and Gomez, C. (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature, 438, 623–627.

    Article  Google Scholar 

  • Poulet, F., Beaty, D.W., Bibring, J.-P., Bish, D., Bishop, J.L., Noe Dobrea, E., Mustard, J.F., Petit, S., and Roach, L.H. (2009) Key scientific questions and key investigations from the first international conference on Martian phyllosilicates. Astrobiology, 9, 257–267.

    Article  Google Scholar 

  • Reynolds, R.C. (1965) An X-ray study of an ethylene-glycol montmorillonite complex. American Mineralogist, 50, 990–1001.

    Google Scholar 

  • Sato, T., Watanabe, T., and Otsuka, R. (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103–113.

    Article  Google Scholar 

  • Strickland, J.D.H. and Parsons, T.R. (1972) A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa.

    Google Scholar 

  • Stubican, V. and Roy, R. (1961) Isomorphous substitution and infra-red spectra of the layer lattice silicates. American Mineralogist, 46, 32–51.

    Google Scholar 

  • Stucki, J.W. (2013) Properties and behaviour of iron in clay minerals. Pp. 559–612 in: Handbook of Clay Science (F. Bergaya and G. Lagaly, editors). 2nd edition, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Suquet, H. and Pezerat, H. (1988) Comments on the classification of trioctahedral 2:1 phyllosilicates. Clays and Clay Minerals, 36, 184–186.

    Article  Google Scholar 

  • Suquet, H., Iiyama, J.T., Kodama, H., and Pezerat, H. (1977) Synthesis and swelling properties of saponites with increasing layer charge. Clays and Clay Minerals, 25, 231–242.

    Article  Google Scholar 

  • Suquet, H., Malard, C., and Pezerat, H. (1987) Structure et propriétés d’hydratation des nontronites. Clay Minerals, 22, 157–167.

    Article  Google Scholar 

  • Yan, L. and Stucki, J.W. (1999) Effects of structural Fe oxidation state on the coupling of interlayer water and structural Si-O stretching vibrations in montmorillonite. Langmuir, 15, 4648–4657.

    Article  Google Scholar 

  • Yan, L. and Stucki, J.W. (2000) Structural perturbations in the solid-water interface of redox transformed nontronite. Journal of Colloid and Interface Science, 225, 429–439.

    Article  Google Scholar 

  • Yang, J., Kukkadapu, R.K., Dong, H., Shelobolina, E.S., Zhang, J., and Kim, J. (2012) Effects of redox cycling of iron in nontronite on reduction of technetium. Chemical Geology, 291, 206–216.

    Article  Google Scholar 

  • Zen, J.M., Jeng, S.H., and Chen, H.J. (1996) Catalysis of the electroreduction of hydrogen peroxide by nontronite clay coatings on glassy carbon electrodes. Journal of Electroanalytical Chemistry, 408, 157–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Baron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baron, F., Petit, S., Tertre, E. et al. Influence of Aqueous Si and Fe Speciation on Tetrahedral Fe(III) Substitutions in Nontronites: A Clay Synthesis Approach. Clays Clay Miner. 64, 230–244 (2016). https://doi.org/10.1346/CCMN.2016.0640309

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2016.0640309

Key Words

Navigation