Skip to main content

Advertisement

Log in

An analytical workflow for dynamic characterization and quantification of metal-bearing nanomaterials in biological matrices

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

To assess the safety of engineered nanomaterials (ENMs) and to evaluate and improve ENMs’ targeting ability for medical application, it is necessary to analyze the fate of these materials in biological media. This protocol presents a workflow that allows researchers to determine, characterize and quantify metal-bearing ENMs (M-ENMs) in biological tissues and cells and quantify their dynamic behavior at trace-level concentrations. Sample preparation methods to enable analysis of M-ENMs in a single cell, a cell layer, tissue, organ and physiological media (e.g., blood, gut content, hemolymph) of different (micro)organisms, e.g., bacteria, animals and plants are presented. The samples are then evaluated using fit-for-purpose analytical techniques e.g., single-cell inductively coupled plasma mass spectrometry, single-particle inductively coupled plasma mass spectrometry and synchrotron X-ray absorption fine structure, providing a protocol that allows comprehensive characterization and quantification of M-ENMs in biological matrices. Unlike previous methods, the protocol uses no fluorescent dyes or radiolabels to trace M-ENMs in biota and enables analysis of most M-ENMs at cellular, tissue and organism levels. The protocols can be applied by a wide variety of users depending on the intended purpose of the application, e.g., to correlate toxicity with a specific particle form, or to understand the absorption, distribution and excretion of M-ENMs. The results facilitate an understanding of the biological fate of M-ENMs and their dynamic behavior in biota. Performing the protocol may take 7–30 d, depending on which combination of methods is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Metal-bearing engineered nanomaterials (M-ENMs) of different shapes and sizes are taken up by organisms following exposure via the surrounding medium or via food intake.
Fig. 2: Overview of the protocol.
Fig. 3: A hypothetical example of scICP-MS results.
Fig. 4: Performance check and particle measurement.
Fig. 5: Biotransformation and distribution of ENMs analyzed using synchrotron techniques.

Similar content being viewed by others

Data availability

All the data that support the plots within this paper are reported in the protocol.

References

  1. Fadeel, B. et al. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 13, 537–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Drobne, D., Novak, S., Talaber, I., Lynch, I. & Kokalj, A. The biological fate of silver nanoparticles from a methodological perspective. Materials 11, 957 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  3. Abdolahpur Monikh, F. et al. Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. Nat. Commun. 12, 899 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chetwynd, A. J., Zhang, W., Thorn, J. A., Lynch, I. & Ramautar, R. The nanomaterial metabolite corona determined using a quantitative metabolomics approach: a pilot study. Small 16, 2000295 (2020).

    Article  CAS  Google Scholar 

  5. Abdolahpur Monikh, F. et al. Method for extraction and quantification of metal-based nanoparticles in biological media: number-based biodistribution and bioconcentration. Environ. Sci. Technol. 53, 946–953.

  6. Abdolahpur Monikh, F. et al. The stochastic association of nanoparticles with algae at the cellular level: effects of NOM, particle size and particle shape. Ecotoxicol. Environ. Saf. 218, 112280 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Arenas-Lago, D., Abdolahpur Monikh, F., Vijver, M. G. & Peijnenburg, W. J. G. M. Dissolution and aggregation kinetics of zero valent copper nanoparticles in (simulated) natural surface waters: simultaneous effects of pH, NOM and ionic strength. Chemosphere 226, 841–850 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Werlin, R. et al. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat. Nanotechnol. 6, 65–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Abdolahpur Monikh, F. et al. Development of methods for extraction and analytical characterization of carbon-based nanomaterials (nanoplastics and carbon nanotubes) in biological and environmental matrices by asymmetrical flow field-flow fractionation. Environ. Pollut. 255, 113304 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Abdolahpur Monikh, F., Chupani, L., Vijver, M. G., Vancová, M. & Peijnenburg, W. J. G. M. Analytical approaches for characterizing and quantifying engineered nanoparticles in biological matrices from an (eco)toxicological perspective: old challenges, new methods and techniques. Sci. Total Environ. 660, 1283–1293 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Milosevic, A., Romeo, D. & Wick, P. Understanding nanomaterial biotransformation: an unmet challenge to achieving predictive nanotoxicology. Small 16, 1907650 (2020).

    Article  CAS  Google Scholar 

  12. Abdolahpur Monikh, F. et al. Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. Environ. Sci. Nano 7, 2325–2336 (2020).

    Article  CAS  Google Scholar 

  13. Guo, Z. et al. Biotransformation modulates the penetration of metallic nanomaterials across an artificial blood–brain barrier model. Proc. Natl Acad. Sci. USA 118, 1–10 (2021).

    Google Scholar 

  14. Ma, Y. et al. Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology 9, 262–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Rees, P., Wills, J. W., Brown, M. R., Barnes, C. M. & Summers, H. D. The origin of heterogeneous nanoparticle uptake by cells. Nat. Commun. 10, 2341 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Santra, S. et al. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem. Commun. 2810 (2004). https://doi.org/10.1039/b411916a

  17. Salvati, A. et al. Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomed. Nanotechnol. Biol. Med. 7, 818–826 (2011).

    Article  CAS  Google Scholar 

  18. Zhang, P., Misra, S., Guo, Z., Rehkämper, M. & Valsami-Jones, E. Stable isotope labeling of metal/metal oxide nanomaterials for environmental and biological tracing. Nat. Protoc. 14, 2878–2899 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Clark, N. J., Clough, R., Boyle, D. & Handy, R. D. Development of a suitable detection method for silver nanoparticles in fish tissue using single particle ICP-MS. Environ. Sci. Nano 6, 3388–3400 (2019).

    Article  CAS  Google Scholar 

  20. Sung, H. K. et al. Analysis of gold and silver nanoparticles internalized by zebrafish (Danio rerio) using single particle-inductively coupled plasma-mass spectrometry. Chemosphere 209, 815–822 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Jiménez-Lamana, J., Wojcieszek, J., Jakubiak, M., Asztemborska, M. & Szpunar, J. Single particle ICP-MS characterization of platinum nanoparticles uptake and bioaccumulation by: Lepidium sativum and Sinapis alba plants. J. Anal. Spectrom. 31, 2321–2329 (2016).

    Article  CAS  Google Scholar 

  22. Xu, X., Chen, J., Li, B., Tang, L. & Jiang, J. Single particle ICP-MS-based absolute and relative quantification of E. coli O157 16S rRNA using sandwich hybridization capture. Analyst 144, 1725–1730 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Loeschner, K. et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal. Bioanal. Chem. 405, 8185–8195 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Corte Rodríguez, M., Álvarez-Fernández García, R., Blanco, E., Bettmer, J. & Montes-Bayón, M. Quantitative evaluation of cisplatin uptake in sensitive and resistant individual cells by single-cell ICP-MS (SC-ICP-MS). Anal. Chem. 89, 11491–11497 (2017).

    Article  PubMed  CAS  Google Scholar 

  25. Abdolahpur Monikh, F. et al. A dose metrics perspective on the association of gold nanomaterials with algal cells. Environ. Sci. Technol. Lett. 6, 732–738 (2019).

    Article  CAS  Google Scholar 

  26. Li, S., Liu, Y. & Ma, Q. Nanoparticle-based electrochemiluminescence cytosensors for single cell level detection. TrAC Trends Anal. Chem. 110, 277–292 (2019).

    Article  CAS  Google Scholar 

  27. Lee, S. et al. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol. 48, 10291–10300 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Talbot, M. J. & White, R. G. Methanol fixation of plant tissue for scanning electron microscopy improves preservation of tissue morphology and dimensions. Plant Methods 9, 36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Filipe, V., Hawe, A. & Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. https://doi.org/10.1007/s11095-010-0073-2 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Montaño, M. D., Olesik, J. W., Barber, A. G., Challis, K. & Ranville, J. F. Single particle ICP-MS: advances toward routine analysis of nanomaterials. Anal. Bioanal. Chem. 408, 5053–5074 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. Johnson, M. E. et al. Combining secondary ion mass spectrometry image depth profiling and single particle inductively coupled plasma mass spectrometry to investigate the uptake and biodistribution of gold nanoparticles in Caenorhabditis elegans. Anal. Chim. Acta 1175, 338671 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Wagener, S. et al. Determination of nanoparticle uptake, distribution, and characterization in plant root tissue after realistic long-term exposure to sewage sludge using information from mass spectrometry. Environ. Sci. Technol. 53, 5416–5426 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Singh, C. et al. Zinc oxide NM-110, NM-111, NM-112, NM-113 characterisation and test item preparation, NM-series of representative manufactured nanomaterials. EUR - Scientific and Technical Research Reports (2011).

  34. Rasmussen, K. et al. Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico- Chemical Properties. JRC (2014).

  35. Naito, H. et al. Isolation of tissue-resident vascular endothelial stem cells from mouse liver. Nat. Protoc. 15, 1066–1081 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi, T. Routine management of microalgae using autofluorescence from chlorophyll. Molecules 24, 4441 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  37. Johnson, M. E. et al. Separation, sizing, and quantitation of engineered nanoparticles in an organism model using inductively coupled plasma mass spectrometry and image analysis. ACS Nano 11, 526–540 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Peters, R. J. B. et al. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal. Bioanal. Chem. 406, 3875–3885 (2014).

    CAS  PubMed  Google Scholar 

  39. Dan, Y. et al. Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma–mass spectrometry analysis. Environ. Sci. Technol. 49, 3007–3014 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Velimirovic, M. et al. Accurate quantification of TiO2 nanoparticles in commercial sunscreens using standard materials and orthogonal particle sizing methods for verification. Talanta 215, 120921 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Hendriks, L., Gundlach-Graham, A. & Günther, D. Analysis of inorganic nanoparticles by single-particle inductively coupled plasma time-of-flight mass spectrometry. CHIMIA Int. J. Chem. 72, 221–226 (2018).

    Article  CAS  Google Scholar 

  42. Praetorius, A. et al. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci. Nano 4, 307–314 (2017).

    Article  CAS  Google Scholar 

  43. Zhang, P. et al. Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6, 9943–9950 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, P. et al. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ. Sci. Technol. 46, 1834–1841 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Schavkan, A. et al. Number concentration of gold nanoparticles in suspension: SAXS and spICPMS as traceable methods compared to laboratory methods. Nanomaterials 9, 502 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  46. Petersen, E. J. et al. Determining what really counts: modeling and measuring nanoparticle number concentrations. Environ. Sci. Nano 6, 2876–2896 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has received financial support from the UEF Water research program, which is jointly funded by the Saastamoinen Foundation, the Wihuri Foundation and the Olvi Foundation.

Author information

Authors and Affiliations

Authors

Contributions

F.A.M. conceptualized, wrote and reviewed the paper and designed the figures. P.Z. and Z.G. contributed to writing, editing and reviewing the paper. E.V.-J., I.L. and W.P. contributed to structuring, editing and reviewing the paper. M.V. contributed to editing the paper.

Corresponding author

Correspondence to Fazel Abdolahpur Monikh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Nathaniel Clark and Elijah Joel Petersen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Abdolahpur Monikh, F. et al. Nat. Commun. 12, 899 (2021): https://doi.org/10.1038/s41467-021-21164-w

Abdolahpur Monikh, F. et al. Environ. Sci. Technol. 53, 946–953 (2019): https://doi.org/10.1021/acs.est.8b03715

Guo, Z. et al. Proc. Natl Acad. Sci. USA 118, e2105245118 (2021): https://doi.org/10.1073/pnas.2105245118

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolahpur Monikh, F., Guo, Z., Zhang, P. et al. An analytical workflow for dynamic characterization and quantification of metal-bearing nanomaterials in biological matrices. Nat Protoc 17, 1926–1952 (2022). https://doi.org/10.1038/s41596-022-00701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00701-x

  • Springer Nature Limited

Navigation