Skip to main content

Metal-Based Nanomaterials in Biological Matrices

  • Reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Nanomaterials are defined as the materials with any external dimension in the nanoscale or having internal structure or surface structure in the nanoscale, with nanoscale defined as the “dimensions ranging approximately from 1 nm to 100 nm.” Their characteristic feature is a high ratio of surface area to volume, which determines their unique physicochemical properties. The chapter presented is concerned with the investigation of nanomaterials containing metal atoms or compounds, known as metal-based nanomaterials (MNMs) found in biological matrices such as plant tissues or physiological substances. The presence of MNM in plant tissues is a consequence of intensive emission of MNM to the natural environment as a result of various technological processes. Investigation of MNM in physiological materials is related to the possibility of their use in diagnosis and treatment of cancer, which require characterization of MNM behavior in preclinical conditions.

The chapter presents the possibilities and limitations of techniques most often used for imaging and characterization of the forms and transformations of MNMs in biological matrices along with a review of selected experimental reports concerning this subject. MNM imaging is performed employing the microscopic, spectrometric, and spectroscopic techniques, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray fluorescence spectroscopy (XRF). The forms and transformations of MNM in biological matrices are investigated mainly by X-ray absorption near-edge spectroscopy (XANES) but also by other spectrometric techniques as well as by a combination of mass spectrometry and separation techniques such as capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC). Although MNM in biological matrices can be studied by many diverse methods, the hitherto research work in this area is of basic and incomplete character, often semiquantitative, which is a consequence of complexity of analytical procedures following from the diversity of physicochemical properties of nanomaterials and biological matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Journal of the European Union Law 2011/696/UE

    Google Scholar 

  2. Capaldi Arruda, S. C., Diniz Silva, A. L., Moretto, G. R., et al. (2015). Nanoparticles applied to plant science: A review. Talanta, 131, 693–705.

    Article  CAS  Google Scholar 

  3. Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano, 6, 41–59.

    CAS  Google Scholar 

  4. Pan, B., & Xing, B. S. (2012). Applications and implications of manufactured nanoparticles in soils: A review. European Journal of Soil Science, 63, 437–456.

    Article  CAS  Google Scholar 

  5. Kah, M., Kookana, R. S., Gogos, A., & Bucheli, T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 13, 677–684.

    Article  CAS  PubMed  Google Scholar 

  6. Ma, X. M., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408, 3053–3061.

    CAS  PubMed  Google Scholar 

  7. Montes, A., Bisson, M. A., Gardella, J. A., Jr., & Aga, D. S. (2017). Uptake and transformations of engineered nanomaterials: Critical responses observed in terrestrial plants and the model plant Arabidopsis thaliana. Science of the Total Environment, 607–608, 1497–1516.

    PubMed  Google Scholar 

  8. Dimkpa, C. O., Latta, D. E., McLean, J. E., et al. (2013). Fate of CuO and ZnO nano and micro particles in the plant environment. Environmental Science & Technology, 47, 4734–4742.

    Article  CAS  Google Scholar 

  9. Wojcieszek, J., Jiménez-Lamana, J., Bierła, K., et al. (2019). Elucidation of the fate of zinc in model plants using single particle ICP-MS and ESI tandem MS. Journal of Analytical Atomic Spectrometry, 34, 683–693.

    Article  CAS  Google Scholar 

  10. Nabil, G., Bhise, K., Sau, S., et al. (2019). Nano-engineered delivery systems for cancer imaging and therapy: Recent advances, future direction and patent evaluation. Drug Discovery Today, 24, 462–491.

    Article  CAS  PubMed  Google Scholar 

  11. Silva, C. O., Pinho, J. O., Lopes, J. M., et al. (2019). Current trends in cancer nanotheranostics: metallic, polymeric, and lipid-based systems. Pharmaceutics, 11, 22–62.

    Article  CAS  PubMed Central  Google Scholar 

  12. Zhou, Q., Li, Z., & Wu, H. (2017). Nanomaterials for cancer therapies. Nanotechnology Reviews, 6, 473–496.

    Article  CAS  Google Scholar 

  13. Sharma, H., Mishra, P. K., Talegaonkar, S., & Vaidya, B. (2015). Metal nanoparticles: a theranostic nanotool against cancer. Drug Discovery Today, 20, 1143–1151.

    Article  CAS  PubMed  Google Scholar 

  14. Hu, Y., Mignani, S., Majoral, J.-P., et al. (2018). Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chemical Society Reviews, 47, 1874–1900.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, J., Rahme, K., He, Y., et al. (2017). Gold nanoparticles enlighten the future of cancer theranostics. International Journal of Nanomedicine, 12, 6131–6152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Matteis, V., Cascione, M., Toma, C. C., & Leporatti, S. (2018). Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials, 8, 319.

    Article  PubMed Central  CAS  Google Scholar 

  17. Kulkarni, N. S., Guererro, Y., Gupta, N., et al. (2019). Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. Journal of Luminescence, 209, 61–68.

    CAS  Google Scholar 

  18. Ivask, A., Mitchell, A. J., Malysheva, A., et al. (2018). Methodologies and approaches for the analysis of cell–nanoparticle interactions. WIREs Nanomedicine and Nanobiotechnology, 10, e1486.

    Article  PubMed  Google Scholar 

  19. Matczuk, M., Ruzik, L., Aleksenko, S. S., et al. (2019). Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Analytica Chimica Acta, 1052, 1–9.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, D., Monteiro-Riviere, N. A., & Zhang, L. W. (2017). Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. WIREs Nanomedicine and Nanobiotechnology, 9, e1419.

    Article  Google Scholar 

  21. Zahra, Z., Arshad, M., Rafique, R., et al. (2015). Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. Journal of Agricultural and Food Chemistry, 63(31), 6876–6882.

    Article  CAS  PubMed  Google Scholar 

  22. Pozebon, D., Scheffler, G. L., & Dressler, V. L. (2017). Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: A follow-up review. Journal of Analytical Atomic Spectrometry, 32, 890–919.

    Article  CAS  Google Scholar 

  23. Sekine, R., Moore, K. L., Matzke, M., et al. (2017). Complementary imaging of silver nanoparticle interactions with green algae: Dark-field microscopy, electron microscopy, and nanoscale secondary ion mass spectrometry. ACS Nano, 11, 10894–10902.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, B., Feng, W., Chai, Z., & Zhao, Y. (2015). Probing the interaction at nano-bio interface using synchrotron radiation-based analytical techniques. Science China Chemistry, 58, 768–779.

    Article  CAS  Google Scholar 

  25. Vittori, A. L., Carbone, S., Gatti, A., et al. (2015). Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environmental Science and Pollution Research International, 22, 1841–1853.

    Article  CAS  Google Scholar 

  26. Lv, J., Zhang, S., Luo, L., et al. (2015). Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environmental Science: Nano, 2, 68–77.

    CAS  Google Scholar 

  27. Sun, C., Cao, Z., Wu, M., & Lu, C. (2014). Intracellular tracking of single native molecules with electroporation-delivered quantum dots. Analytical Chemistry, 86, 11403–11409.

    Article  CAS  PubMed  Google Scholar 

  28. Boyoglu, C., He, Q., Willing, G., et al. (2013). Microscopic studies of various sizes of gold nanoparticles and their cellular localizations. ISRN Nanotechnology, 123838.

    Google Scholar 

  29. Du, W., Sun, Y., Ji, R., et al. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13, 822–828.

    Article  CAS  PubMed  Google Scholar 

  30. Ng, C. T., Tang, F. M., Li, J. J., et al. (2015). Clathrin-mediated endocytosis of gold nanoparticles in vitro. The Anatomical Record(Hoboken), 298, 418–427.

    Article  CAS  Google Scholar 

  31. Li, J., Hu, J., Ma, C., et al. (2016). Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere, 159, 326–334.

    Article  CAS  PubMed  Google Scholar 

  32. Tlotleng, N., Vetten, M. A., Keter, F. K., et al. (2016). Intracellular localization and exocytosis of citrate capped and PEG functionalized gold nanoparticles in human hepatocyte and kidney cells. Cell Biology and Toxicology, 32, 305e321.

    Article  CAS  Google Scholar 

  33. Judy, J. D., Unrine, J. M., Rao, W., Wirick, S., & Bertsch, P. M. (2012). Bioavailability of gold nanomaterials to plants: Importance of particle size and surface coating. Environmental Science & Technology, 46, 8467–8474.

    Article  CAS  Google Scholar 

  34. Buchner, T., Drescher, D., Traub, H., et al. (2014). Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping. Analytical and Bioanalytical Chemistry, 406, 7003–7014.

    Article  PubMed  CAS  Google Scholar 

  35. Tian, F., Chen, G., Yi, P., et al. (2014). Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials, 35, 6412–6421.

    Article  CAS  PubMed  Google Scholar 

  36. Nabers, A., Ollesch, J., Schartner, J., et al. (2016). An infrared sensor analysing label-free the secondary structure of the Abeta peptide in presence of complex fluids. Journal of Biophotonics, 9, 224–234.

    Article  CAS  PubMed  Google Scholar 

  37. Dan, Y. B., Zhang, W. L., Xue, R. M., et al. (2015). Characterization of gold nanoparticle uptake by tomato using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environmental Science & Technology, 49, 3007–3014.

    Article  CAS  Google Scholar 

  38. Jiménez-Lamana, J., Wojcieszek, J., Jakubiak, M., et al. (2016). Single particle ICP-MS characterization of platinum nanoparticles uptake and bioaccumulation by Lepidium sativum and Sinapis alba plants. Journal of Analytical Atomic Spectrometry, 31, 2321–2329.

    Article  CAS  Google Scholar 

  39. Zhang, S., Jiang, Y., Chen, C.-S., et al. (2012). Aggregation, dissolution, and stability of quantum dots in marine environments: Importance of extracellular polymeric substances. Environmental Science & Technology, 46, 8764–8772.

    Article  CAS  Google Scholar 

  40. Brar, S. K., & Verma, M. (2011). Measurement of nanoparticles by light-scattering techniques. TrAC, Trends in Analytical Chemistry, 30, 4–17.

    Article  CAS  Google Scholar 

  41. Wang, K., Lu, Y., & Ishihara, K. (2018). The ortho-substituent on 2,4-bis(trifluoromethyl)phenylboronic acid catalyzed dehydrative condensation between carboxylic acids and amines. Chemical Communications, 54, 5410–5413.

    Article  CAS  PubMed  Google Scholar 

  42. Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.

    Article  Google Scholar 

  43. Meermann, B. (2015). Field-flow fractionation coupled to ICP–MS: Separation at the nanoscale, previous and recent application trends. Analytical and Bioanalytical Chemistry, 407, 2665–2674.

    Article  CAS  PubMed  Google Scholar 

  44. Bone, A. J., Colman, B. P., Gondikas, A. P., et al. (2012). Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: Part 2-toxicity and Ag speciation. Environmental Science & Technology, 46, 6925–6933.

    Article  CAS  Google Scholar 

  45. Kruszewska, J., Kura, A., Kulpińska, D., et al. (2019). An improved protocol for ICP-MS-based assessment of the cellular uptake of metal-based nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 174, 300–304.

    Article  PubMed  CAS  Google Scholar 

  46. Wang, Q., Ma, X., Zhang, W., et al. (2012). The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics, 4, 1105–1112.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J., Koo, Y., Alexander, A., et al. (2013). Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environmental Science & Technology, 47, 5442–5449.

    Article  CAS  Google Scholar 

  48. Matczuk, M., Anecka, K., Scaletti, F., et al. (2015). Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS: A case study of gold nanoparticles. Metallomics, 7, 1364–1370.

    Article  CAS  PubMed  Google Scholar 

  49. Lopez-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J., et al. (2010). Evidence of the Differential Biotransformation and Genotoxicity of ZnO and CeO2 Nanoparticles on Soybean (Glycine max) Plants. Environmental Science & Technology, 44, 7315–7320.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the National Science Centre in Poland within the projects 2015/18/M/ST4/00257, 2015/17/B/ST4/03707, and 2018/29/B/ST4/00178 and Warsaw University of Technology

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Jarosz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kruszewska, J., Wojcieszek, J., Matczuk, M., Ruzik, L., Jarosz, M. (2022). Metal-Based Nanomaterials in Biological Matrices. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-95660-8_26

Download citation

Publish with us

Policies and ethics