Skip to main content

Advertisement

Log in

Osteoporosis and fracture risk are multifactorial in patients with inflammatory rheumatic diseases

  • Review Article
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

Abstract

Patients with inflammatory rheumatic and musculoskeletal diseases (iRMDs) such as rheumatoid arthritis, connective tissue diseases, vasculitides and spondyloarthropathies are at a higher risk of osteoporosis and fractures than are individuals without iRMDs. Research and management recommendations for osteoporosis in iRMDs often focus on glucocorticoids as the most relevant risk factor, but they largely ignore disease-related and general risk factors. However, the aetiopathogenesis of osteoporosis in iRMDs has many facets, including the negative effects on bone health of local and systemic inflammation owing to disease activity, other iRMD-specific risk factors such as disability or malnutrition (for example, malabsorption in systemic sclerosis), and general risk factors such as older age and hormonal loss resulting from menopause. Moreover, factors that can reduce fracture risk, such as physical activity, healthy nutrition, vitamin D supplementation and adequate treatment of inflammation, are variably present in patients with iRMDs. Evidence relating to general and iRMD-specific protective and risk factors for osteoporosis indicate that the established and very often used term ‘glucocorticoid-induced osteoporosis’ oversimplifies the complex inter-relationships encountered in patients with iRMDs. Osteoporosis in these patients should instead be described as ‘multifactorial’. Consequently, a multimodal approach to the management of osteoporosis is required. This approach should include optimal control of disease activity, minimization of glucocorticoids, anti-osteoporotic drug treatment, advice on physical activity and nutrition, and prevention of falls, as well as the management of other risk and protective factors, thereby improving the bone health of these patients.

Key points

  • Patients with inflammatory rheumatic and musculoskeletal diseases (iRMDs) are at a higher risk of osteoporosis and fractures than are those without iRMDs, the aetiopathogenesis of which is multifactorial.

  • General risk factors (including age, female sex, menopause, previous fractures and genetic factors) and iRMD-specific factors (including inflammatory activity, disability and glucocorticoid therapy) might negatively affect bone health.

  • iRMD activity and glucocorticoid therapy have inter-related negative effects on bone, as glucocorticoids reduce inflammatory activity and thereby mitigate the detrimental effects of inflammation on bone.

  • To protect bone, it is recommended that patients with iRMDs achieve optimal disease control without glucocorticoids or with the lowest possible glucocorticoid dosage.

  • Physicians and patients with iRMDs need to be aware of the plethora of positive and negative factors that influence bone health, and act together to optimize them.

  • Most patients with iRMDs should undergo bone-health assessment according to current recommendations at iRMD diagnosis or commencement of glucocorticoid therapy, and at regular intervals, to inform decisions about bone-directed drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: iRMD activity and glucocorticoid therapy have inter-related negative effects on bone.
Fig. 2: Directed acyclic graph showing the interplay between protective and risk factors in patients with iRMDs.

Similar content being viewed by others

References

  1. Qaseem, A. et al. Pharmacologic treatment of primary osteoporosis or low bone mass to prevent fractures in adults: a living clinical guideline from the American College of Physicians. Ann. Intern. Med. 176, 224–238 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. El Miedany, Y. et al. Consensus evidence-based clinical practice guidelines for the diagnosis and treat-to-target management of osteoporosis in Africa: an initiative by the African Society of Bone Health and Metabolic Bone Diseases. Arch. Osteoporos. 16, 176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eastell, R. et al. Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 104, 1595–1622 (2019).

    Article  PubMed  Google Scholar 

  4. Shoback, D. et al. Pharmacological management of osteoporosis in postmenopausal women: an endocrine society guideline update. J. Clin. Endocrinol. Metab. 105, dgaa048 (2020).

    Article  PubMed  Google Scholar 

  5. Kanis, J. A. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 30, 3–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Kanis, J. A. et al. Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos. Int. 31, 1–12 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Messina, O. D. et al. Evidence based Latin American Guidelines of clinical practice on prevention, diagnosis, management and treatment of glucocorticoid induced osteoporosis. A 2022 update: this manuscript has been produced under the auspices of the Committee of National Societies (CNS) and the Committee of Scientific Advisors (CSA) of the International Osteoporosis Foundation (IOF). Aging Clin. Exp. Res. 34, 2591–2602 (2022).

    Article  PubMed  Google Scholar 

  8. Osteoporosis prevention, screening, and diagnosis. ACOG Clinical practice guideline No. 1. Obstet. Gynecol. 138, 494–506 (2021).

    Article  Google Scholar 

  9. ACOG Clinical Practice Guideline No. 2. Management of Postmenopausal Osteoporosis: Correction. Obstet. Gynecol. 140, 138 (2022).

    Article  Google Scholar 

  10. Humphrey, M. B. et al. 2022 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol. 75, 2088–2102 (2023).

    Article  PubMed  Google Scholar 

  11. Rizzoli, R. & Biver, E. Glucocorticoid-induced osteoporosis: who to treat with what agent? Nat. Rev. Rheumatol. 11, 98–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Wiebe, E. et al. Optimising both disease control and glucocorticoid dosing is essential for bone protection in patients with rheumatic disease. Ann. Rheum. Dis. 81, 1313–1322 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Buttgereit, F. Views on glucocorticoid therapy in rheumatology: the age of convergence. Nat. Rev. Rheumatol. 16, 239–246 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Raterman, H. G. & Lems, W. F. Pharmacological management of osteoporosis in rheumatoid arthritis patients: a review of the literature and practical guide. Drugs Aging 36, 1061–1072 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wysham, K. D. et al. Low cumulative disease activity is associated with higher bone mineral density in a majority Latinx and Asian US rheumatoid arthritis cohort. Semin. Arthritis Rheum. 53, 151972 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Briot, K., Geusens, P., Em Bultink, I., Lems, W. F. & Roux, C. Inflammatory diseases and bone fragility. Osteoporos. Int. 28, 3301–3314 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Komatsu, N. & Takayanagi, H. Mechanisms of joint destruction in rheumatoid arthritis — immune cell-fibroblast-bone interactions. Nat. Rev. Rheumatol. 18, 415–429 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Schett, G. et al. High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch. Intern. Med. 166, 2495–2501 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Mun, H., Liu, B., Pham, T. H. A. & Wu, Q. C-reactive protein and fracture risk: an updated systematic review and meta-analysis of cohort studies through the use of both frequentist and Bayesian approaches. Osteoporos. Int. 32, 425–435 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Bennett, J. L., Pratt, A. G., Dodds, R., Sayer, A. A. & Isaacs, J. D. Rheumatoid sarcopenia: loss of skeletal muscle strength and mass in rheumatoid arthritis. Nat. Rev. Rheumatol. 19, 239–251 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Cummings, S. R. & Melton, L. J. Epidemiology and outcomes of osteoporotic fractures. Lancet 359, 1761–1767 (2002).

    Article  PubMed  Google Scholar 

  22. McGuigan, F. E. et al. Genetic and environmental determinants of peak bone mass in young men and women. J. Bone Miner. Res. 17, 1273–1279 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Henry, Y. M. & Eastell, R. Ethnic and gender differences in bone mineral density and bone turnover in young adults: effect of bone size. Osteoporos. Int. 11, 512–517 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Chevalley, T. & Rizzoli, R. Acquisition of peak bone mass. Best. Pract. Res. Clin. Endocrinol. Metab. 36, 101616 (2022).

    Article  PubMed  Google Scholar 

  25. Armamento-Villareal, R. et al. Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J. Bone Miner. Res. 27, 1215–1221 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Galea, G. L., Lanyon, L. E. & Price, J. S. Sclerostin’s role in bone’s adaptive response to mechanical loading. Bone 96, 38–44 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, C. et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/β-catenin signaling. J. Bone Miner. Res. 24, 1651–1661 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Spatz, J. M. et al. Sclerostin antibody inhibits skeletal deterioration in mice exposed to partial weight-bearing. Life Sci. Space Res. 12, 32–38 (2017).

    Article  CAS  Google Scholar 

  29. Cashman, K. D. et al. Low vitamin D status adversely affects bone health parameters in adolescents. Am. J. Clin. Nutr. 87, 1039–1044 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bonjour, J. P., Ammann, P., Chevalley, T. & Rizzoli, R. Protein intake and bone growth. Can. J. Appl. Physiol. 26, S153–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Gatti, D. et al. Strong relationship between vitamin D status and bone mineral density in anorexia nervosa. Bone 78, 212–215 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Viapiana, O. et al. Marked increases in bone mineral density and biochemical markers of bone turnover in patients with anorexia nervosa gaining weight. Bone 40, 1073–1077 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Idolazzi, L. et al. Bone metabolism in patients with anorexia nervosa and amenorrhoea. Eat. Weight Disord. 23, 255–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Anagnostis, P. et al. Association between age at menopause and fracture risk: a systematic review and meta-analysis. Endocrine 63, 213–224 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Kanis, J. A. & Adami, S. Bone loss in the elderly. Osteoporos. Int. 4, 59–65 (1994).

    Article  PubMed  Google Scholar 

  36. McDermott, E. M. & Powell, R. J. Incidence of ovarian failure in systemic lupus erythematosus after treatment with pulse cyclophosphamide. Ann. Rheum. Dis. 55, 224–229 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawrenz, B. et al. Impact of systemic lupus erythematosus on ovarian reserve in premenopausal women: evaluation by using anti-Muellerian hormone. Lupus 20, 1193–1197 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Yao, P. et al. Vitamin D and calcium for the prevention of fracture: a systematic review and meta-analysis. JAMA Netw. Open 2, e1917789 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kanis, J. A. et al. Smoking and fracture risk: a meta-analysis. Osteoporos. Int. 16, 155–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Kanis, J. A. et al. Alcohol intake as a risk factor for fracture. Osteoporos. Int. 16, 737–742 (2005).

    Article  PubMed  Google Scholar 

  41. Mohebbi, R. et al. Exercise training and bone mineral density in postmenopausal women: an updated systematic review and meta-analysis of intervention studies with emphasis on potential moderators. Osteoporos. Int. 34, 1145–1178 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bliuc, D. et al. The association between multimorbidity and osteoporosis investigation and treatment in high-risk fracture patients in Australia: a prospective cohort study. PLoS Med. 20, e1004142 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rossini, M. et al. Vitamin D deficiency in rheumatoid arthritis: prevalence, determinants and associations with disease activity and disability. Arthritis Res. Ther. 12, R216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ruiz-Irastorza, G., Egurbide, M. V., Olivares, N., Martinez-Berriotxoa, A. & Aguirre, C. Vitamin D deficiency in systemic lupus erythematosus: prevalence, predictors and clinical consequences. Rheumatology 47, 920–923 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Dahl, B. et al. Serum Gc-globulin in the early course of multiple trauma. Crit. Care Med. 26, 285–289 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Reid, D. et al. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am. J. Clin. Nutr. 93, 1006–1011 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Silva, M. C. & Furlanetto, T. W. Does serum 25-hydroxyvitamin D decrease during acute-phase response? A systematic review. Nutr. Res. 35, 91–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Ruffer, N. et al. Clinical features of methotrexate osteopathy in rheumatic musculoskeletal disease: a systematic review. Semin. Arthritis Rheum. 52, 151952 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen, Y. et al. Passive smoking in childhood and adulthood and risk of rheumatoid arthritis in women: results from the French E3N cohort study. RMD Open 8, e001980 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Takvorian, S. U., Merola, J. F. & Costenbader, K. H. Cigarette smoking, alcohol consumption and risk of systemic lupus erythematosus. Lupus 23, 537–544 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Adami, G. et al. Risk of fracture in women with glucocorticoid requiring diseases is independent from glucocorticoid use: an analysis on a nation-wide database. Bone 179, 116958 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Caplan-Shaw, C. E. et al. Osteoporosis in diffuse parenchymal lung disease. Chest 129, 140–146 (2006).

    Article  PubMed  Google Scholar 

  53. Siris, E. S. et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch. Intern. Med. 164, 1108–1112 (2004).

    Article  PubMed  Google Scholar 

  54. Harvey, N. C. et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78, 216–224 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ye, C. et al. Adjusting FRAX estimates of fracture probability based on a positive vertebral fracture assessment. JAMA Netw. Open 6, e2329253 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Diacinti, D. et al. Diagnostic performance of vertebral fracture assessment by the lunar iDXA scanner compared to conventional radiography. Calcif. Tissue Int. 91, 335–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Kanis, J. A. et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos. Int. 18, 1033–1046 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Adami, G. et al. Association between exposure to fine particulate matter and osteoporosis: a population-based cohort study. Osteoporos. Int. 33, 169–176 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Prada, D. et al. Association of air particulate pollution with bone loss over time and bone fracture risk: analysis of data from two independent studies. Lancet Planet. Health 1, e337–e347 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Adami, G. et al. Association between environmental air pollution and rheumatoid arthritis flares. Rheumatology 60, 4591–4597 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Bellinato, F. et al. Association between short-term exposure to environmental air pollution and psoriasis flare. JAMA Dermatol. 158, 375–381 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Adami, G. et al. Association between long-term exposure to air pollution and immune-mediated diseases: a population-based cohort study. RMD Open 8, e002055 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Adami, G. & Saag, K. G. Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporos. Int. 30, 1145–1156 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Van Staa, T. P. et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum. 48, 3224–3229 (2003).

    Article  PubMed  Google Scholar 

  65. Wu, F. et al. Fractures between the ages of 20 and 50 years increase women’s risk of subsequent fractures. Arch. Intern. Med. 162, 33–36 (2002).

    Article  PubMed  Google Scholar 

  66. Kanis, J. A. et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone 35, 375–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Balasubramanian, A. et al. Risk of subsequent fracture after prior fracture among older women. Osteoporos. Int. 30, 79–92 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. van Geel, T. A., van Helden, S., Geusens, P. P., Winkens, B. & Dinant, G. J. Clinical subsequent fractures cluster in time after first fractures. Ann. Rheum. Dis. 68, 99–102 (2009).

    Article  PubMed  Google Scholar 

  69. Jin, S. et al. Bone mineral density and microarchitecture among Chinese patients with rheumatoid arthritis: a cross-sectional study with HRpQCT. Arthritis Res. Ther. 23, 127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raterman, H. G., Bultink, I. E. & Lems, W. F. Osteoporosis in patients with rheumatoid arthritis: an update in epidemiology, pathogenesis, and fracture prevention. Expert Opin. Pharmacother. 21, 1725–1737 (2020).

    Article  PubMed  Google Scholar 

  71. Xue, A.-L. et al. Bone fracture risk in patients with rheumatoid arthritis: a meta-analysis. Medicine 96, e6983 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jin, S. et al. Incidence of fractures among patients with rheumatoid arthritis: a systematic review and meta-analysis. Osteoporos. Int. 29, 1263–1275 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Black, D. M. et al. Treatment-related changes in bone mineral density as a surrogate biomarker for fracture risk reduction: meta-regression analyses of individual patient data from multiple randomised controlled trials. Lancet Diabetes Endocrinol. 8, 672–682 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Bouxsein, M. L. et al. Change in bone density and reduction in fracture risk: a meta-regression of published trials. J. Bone Miner. Res. 34, 632–642 (2019).

    Article  PubMed  Google Scholar 

  75. Yoshii, I., Chijiwa, T. & Sawada, N. Rheumatoid arthritis in tight disease control is no longer risk of bone mineral density loss. Osteoporos. Sarcopenia 6, 75–81 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Stemmler, F. et al. Biomechanical properties of bone are impaired in patients with ACPA-positive rheumatoid arthritis and associated with the occurrence of fractures. Ann. Rheum. Dis. 77, 973–980 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Ajeganova, S. et al. Long-term fracture risk in rheumatoid arthritis: impact of early sustained DAS28-remission and restored function, progressive erosive disease, body mass index, autoantibody positivity and glucocorticoids. A cohort study over 10 years. BMC Rheumatol. 7, 23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Andersen, K. M. et al. A bridge too far? Real-world practice patterns of early glucocorticoid use in the Canadian early arthritis cohort. ACR Open Rheumatol. 4, 57–64 (2022).

    Article  PubMed  Google Scholar 

  79. Roubille, C. et al. Seven-year tolerability profile of glucocorticoids use in early rheumatoid arthritis: data from the ESPOIR cohort. Ann. Rheum. Dis. 76, 1797–1802 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Albrecht, K. et al. [Clinical remission in rheumatoid arthritis. Data from the early arthritis cohort study CAPEA]. Z. Rheumatol. 75, 90–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Black, R. J. et al. Factors associated with oral glucocorticoid use in patients with rheumatoid arthritis: a drug use study from a prospective national biologics registry. Arthritis Res. Ther. 19, 253 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Xie, W. et al. Dynamical trajectory of glucocorticoids tapering and discontinuation in patients with rheumatoid arthritis commencing glucocorticoids with csDMARDs: a real-world data from 2009 to 2020. Ann. Rheum. Dis. 80, 997–1003 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. George, M. D. et al. Variability in glucocorticoid prescribing for rheumatoid arthritis and the influence of provider preference on long-term use of glucocorticoids. Arthritis Care Res. 73, 1597–1605 (2021).

    Article  CAS  Google Scholar 

  84. Wallace, B. I. et al. Patterns of glucocorticoid prescribing and provider-level variation in a commercially insured incident rheumatoid arthritis population: a retrospective cohort study. Semin. Arthritis Rheum. 50, 228–236 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Bijlsma, J. W. J. Annals of the Rheumatic Diseases collection on glucocorticoids (2020–2023): novel insights and advances in therapy. Ann. Rheum. Dis. 83, 4–8 (2024).

    Article  PubMed  Google Scholar 

  86. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 82, 3–18 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Fraenkel, L. et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. 73, 924–939 (2021).

    Article  Google Scholar 

  88. Abtahi, S. et al. Low-dose oral glucocorticoid therapy and risk of osteoporotic fractures in patients with rheumatoid arthritis: a cohort study using the Clinical Practice Research Datalink. Rheumatology 61, 1448–1458 (2021).

    Article  PubMed Central  Google Scholar 

  89. Buttgereit, F. et al. Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: current questions and tentative answers in rheumatology. Ann. Rheum. Dis. 61, 718–722 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abtahi, S. et al. Concomitant use of oral glucocorticoids and proton pump inhibitors and risk of osteoporotic fractures among patients with rheumatoid arthritis: a population-based cohort study. Ann. Rheum. Dis. 80, 423–431 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Adami, G. et al. Bone loss in inflammatory rheumatic musculoskeletal disease patients treated with low-dose glucocorticoids and prevention by anti-osteoporosis medications. Arthritis Rheumatol. 75, 1762–1769 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Palmowski, A. et al. Proton pump inhibitor use and bone health in patients with rheumatic diseases: a cross-sectional study. Mayo Clinic Proc. https://doi.org/10.1016/j.mayocp.2023.12.008 (2024).

    Article  Google Scholar 

  93. Kim, J.-W., Jung, J.-Y., Kim, H.-A. & Suh, C.-H. Anti-inflammatory effects of low-dose glucocorticoids compensate for their detrimental effects on bone mineral density in patients with rheumatoid arthritis. J. Clin. Med. 10, 2944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rosen, H. & Saag, K. Prevention and treatment of glucocorticoid-induced osteoporosis. UpToDate https://www.uptodate.com/contents/prevention-and-treatment-of-glucocorticoid-induced-osteoporosis (2022).

  95. Blavnsfeldt, A.-B. G. et al. The effect of glucocorticoids on bone mineral density in patients with rheumatoid arthritis: a systematic review and meta-analysis of randomized, controlled trials. Bone 114, 172–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Boers, M. et al. Low dose, add-on prednisolone in patients with rheumatoid arthritis patients aged 65+: the pragmatic randomised, double-blind placebo-controlled GLORIA trial. Ann. Rheum. Dis. 81, 925–936 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Cummings, S. R., Bates, D. & Black, D. M. Clinical use of bone densitometry: scientific review. J. Am. Med. Assoc. 288, 1889–1897 (2002).

    Article  Google Scholar 

  98. McWilliams, D. F. et al. The efficacy of systemic glucocorticosteroids for pain in rheumatoid arthritis: a systematic literature review and meta-analysis. Rheumatology 61, 76–89 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Palmowski, A. et al. Safety and efficacy associated with long-term low dose glucocorticoids in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology 62, 2652–2660 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Yun, H. W. et al. The assessment of muscle mass and function in patients with long-standing rheumatoid arthritis. J. Clin. Med. 10, 3458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Güler-Yüksel, M., Hoes, J. N., Bultink, I. E. M. & Lems, W. F. Glucocorticoids, inflammation and bone. Calcif. Tissue Int. 102, 592–606 (2018).

    Article  PubMed  Google Scholar 

  102. Soos, B. et al. Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases. Nat. Rev. Rheumatol. 18, 249–257 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Montala, N. et al. Prevalence of vertebral fractures by semiautomated morphometry in patients with ankylosing spondylitis. J. Rheumatol. 38, 893–897 (2011).

    Article  PubMed  Google Scholar 

  104. Weiss, R. J., Wick, M. C., Ackermann, P. W. & Montgomery, S. M. Increased fracture risk in patients with rheumatic disorders and other inflammatory diseases — a case-control study with 53,108 patients with fracture. J. Rheumatol. 37, 2247–2250 (2010).

    Article  PubMed  Google Scholar 

  105. Stovall, R. et al. Incidence rate and factors associated with fractures among Medicare beneficiaries with ankylosing spondylitis in the United States. Arthritis Care Res. 76, 265–273 (2024).

    Article  Google Scholar 

  106. Briot, K. & Roux, C. Inflammation, bone loss and fracture risk in spondyloarthritis. RMD Open 1, e000052 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kim, H. R., Lee, S. H. & Kim, H. Y. Elevated serum levels of soluble receptor activator of nuclear factors-κB ligand (sRANKL) and reduced bone mineral density in patients with ankylosing spondylitis (AS). Rheumatology 45, 1197–1200 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Ni, F., Zhang, Y., Peng, Y., Peng, X. & Li, J. Serum RANKL levels in Chinese patients with ankylosing spondylitis: a meta-analysis. J. Orthop. Surg. Res. 16, 615 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yu, X. et al. A pooled analysis of the association between sarcopenia and osteoporosis. Medicine 101, e31692 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Merle, B., Cottard, M., Sornay-Rendu, E., Szulc, P. & Chapurlat, R. Spondyloarthritis and sarcopenia: prevalence of probable sarcopenia and its impact on disease burden: the Saspar Study. Calcif. Tissue Int. 112, 647–655 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Klingberg, E. et al. Osteoporosis in ankylosing spondylitis — prevalence, risk factors and methods of assessment. Arthritis Res. Ther. 14, R108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Deminger, A. et al. Factors associated with changes in volumetric bone mineral density and cortical area in men with ankylosing spondylitis: a 5-year prospective study using HRpQCT. Osteoporos. Int. 33, 205–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Korkosz, M. et al. Baseline new bone formation does not predict bone loss in ankylosing spondylitis as assessed by quantitative computed tomography (QCT): 10-year follow-up. BMC Musculoskelet. Disord. 12, 121 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kang, K. Y., Kim, I. J., Park, S.-H. & Hong, Y. S. Associations between trabecular bone score and vertebral fractures in patients with axial spondyloarthritis. Rheumatology 57, 1033–1040 (2018).

    Article  PubMed  Google Scholar 

  115. Kang, K. Y. et al. Severity of sacroiliitis and erythrocyte sedimentation rate are associated with a low trabecular bone score in young male patients with ankylosing spondylitis. J. Rheumatol. 45, 349–356 (2018).

    Article  PubMed  Google Scholar 

  116. Jung, J.-Y. et al. Inflammation on spinal magnetic resonance imaging is associated with poor bone quality in patients with ankylosing spondylitis. Mod. Rheumatol. 29, 829–835 (2019).

    Article  PubMed  Google Scholar 

  117. Boussoualim, K. et al. Evaluation of bone quality with trabecular bone score in active spondyloarthritis. Joint Bone Spine 85, 727–731 (2018).

    Article  PubMed  Google Scholar 

  118. Haroon, N. N., Sriganthan, J., Al Ghanim, N., Inman, R. D. & Cheung, A. M. Effect of TNF-alpha inhibitor treatment on bone mineral density in patients with ankylosing spondylitis: a systematic review and meta-analysis. Semin. Arthritis Rheum. 44, 155–161 (2014).

    Article  PubMed  Google Scholar 

  119. Beek, K. J. et al. Long-term treatment with TNF-alpha inhibitors improves bone mineral density but not vertebral fracture progression in ankylosing spondylitis. J. Bone Miner. Res. 34, 1041–1048 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Merjanah, S. et al. Trends in fracture rates over two decades among veterans with ankylosing spondylitis. Arthritis Care Res. 75, 2481–2488 (2023).

    Article  Google Scholar 

  121. Lai, C. C. et al. Increased risk of osteoporotic fractures in patients with systemic sclerosis: a nationwide population-based study. Ann. Rheum. Dis. 74, 1347–1352 (2015).

    Article  PubMed  Google Scholar 

  122. Rogers, B. et al. Clinical features associated with rate of fractures in patients with systemic sclerosis: a US Cohort Study. Arthritis Care Res. https://doi.org/10.1002/acr.25137 (2023).

    Article  Google Scholar 

  123. Lai, E. L. et al. Degraded microarchitecture by low trabecular bone score is associated with prevalent vertebral fractures in patients with systemic lupus erythematosus. Arch. Osteoporos. 15, 54 (2020).

    Article  PubMed  Google Scholar 

  124. Chen, J., Lei, L., Pan, J. & Zhao, C. A meta-analysis of fracture risk and bone mineral density in patients with systemic sclerosis. Clin. Rheumatol. 39, 1181–1189 (2020).

    Article  PubMed  Google Scholar 

  125. Paolino, S. et al. Nutritional status and bone microarchitecture in a cohort of systemic sclerosis patients. Nutrients 12, 1632 (2020).

    Article  CAS  Google Scholar 

  126. Nassar, M. et al. Gastrointestinal involvement in systemic sclerosis: an updated review. Medicine 101, e31780 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sangaroon, A. et al. Prevalence and clinical association of sarcopenia among Thai patients with systemic sclerosis. Sci. Rep. 12, 18198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rizzoli, R., Abraham, C. & Brandi, M. L. Nutrition and bone health: turning knowledge and beliefs into healthy behaviour. Curr. Med. Res. Opin. 30, 131–141 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Wojteczek, A., Dardzinska, J. A., Malgorzewicz, S., Gruszecka, A. & Zdrojewski, Z. Prevalence of malnutrition in systemic sclerosis patients assessed by different diagnostic tools. Clin. Rheumatol. 39, 227–232 (2020).

    Article  PubMed  Google Scholar 

  130. An, L., Sun, M. H., Chen, F. & Li, J. R. Vitamin D levels in systemic sclerosis patients: a meta-analysis. Drug. Des. Dev. Ther. 11, 3119–3125 (2017).

    Article  CAS  Google Scholar 

  131. Diaconu, A. D. et al. Role of vitamin D in systemic sclerosis: a systematic literature review. J. Immunol. Res. 2021, 9782994 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Trombetta, A. C. et al. Vitamin D deficiency and clinical correlations in systemic sclerosis patients: a retrospective analysis for possible future developments. PLoS One 12, e0179062 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Bimal, G., Sahhar, J., Savanur, M. & Ngian, G. S. Screening rates and prevalence of osteoporosis in a real-world, Australian systemic sclerosis cohort. Int. J. Rheum. Dis. 25, 175–181 (2022).

    Article  PubMed  Google Scholar 

  134. Lee, K. A., Kim, H. J. & Kim, H. S. Comparison of predictive value of FRAX, trabecular bone score, and bone mineral density for vertebral fractures in systemic sclerosis: a cross-sectional study. Medicine 102, e32580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fauny, M. et al. Relationship between ectopic calcifications and bone fragility depicted on computed tomography scan in 70 patients with systemic sclerosis. J. Scleroderma Relat. Disord. 7, 224–233 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kim, C. S. et al. Incidence and risk factors for osteoporotic fractures in patients with systemic lupus erythematosus versus matched controls. Korean J. Intern. Med. 36, 154–163 (2021).

    Article  PubMed  Google Scholar 

  137. Garcia-Carrasco, M. et al. Osteoporosis in patients with systemic lupus erythematosus. Isr. Med. Assoc. J. 11, 486–491 (2009).

    PubMed  Google Scholar 

  138. Sun, Y. N. et al. Prevalence and possible risk factors of low bone mineral density in untreated female patients with systemic lupus erythematosus. Biomed. Res. Int. 2015, 510514 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Mendoza-Pinto, C. et al. Risks factors for low bone mineral density in pre-menopausal Mexican women with systemic lupus erythematosus. Clin. Rheumatol. 28, 65–70 (2009).

    Article  PubMed  Google Scholar 

  140. Tedeschi, S. K., Kim, S. C., Guan, H., Grossman, J. M. & Costenbader, K. H. Comparative fracture risks among United States Medicaid enrollees with and those without systemic lupus erythematosus. Arthritis Rheumatol. 71, 1141–1146 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Salman-Monte, T. C. et al. Bone mineral density and vitamin D status in systemic lupus erythematosus (SLE): a systematic review. Autoimmun. Rev. 16, 1155–1159 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Zhu, T. Y. et al. Bone mineral density change in systemic lupus erythematosus: a 5-year followup study. J. Rheumatol. 41, 1990–1997 (2014).

    Article  PubMed  Google Scholar 

  143. Teichmann, J., Lange, U., Stracke, H., Federlin, K. & Bretzel, R. G. Bone metabolism and bone mineral density of systemic lupus erythematosus at the time of diagnosis. Rheumatol. Int. 18, 137–140 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Garelick, D. et al. Fracture risk in systemic lupus erythematosus patients over 28 years. Rheumatology 60, 2765–2772 (2020).

    Article  Google Scholar 

  145. Walsh, L. J., Wong, C. A., Pringle, M. & Tattersfield, A. E. Use of oral corticosteroids in the community and the prevention of secondary osteoporosis: a cross sectional study. Br. Med. J. 313, 344–346 (1996).

    Article  CAS  Google Scholar 

  146. Mudano, A., Allison, J., Hill, J., Rothermel, T. & Saag, K. Variations in glucocorticoid induced osteoporosis prevention in a managed care cohort. J. Rheumatol. 28, 1298–1305 (2001).

    CAS  PubMed  Google Scholar 

  147. Mehat, P., Atiquzzaman, M., Esdaile, J. M., AviNa-Zubieta, A. & De Vera, M. A. Medication nonadherence in systemic lupus erythematosus: a systematic review. Arthritis Care Res. 69, 1706–1713 (2017).

    Article  Google Scholar 

  148. Fardet, L., Petersen, I. & Nazareth, I. Monitoring of patients on long-term glucocorticoid therapy: a population-based cohort study. Medicine 94, e647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Paskins, Z. et al. Risk of fracture among patients with polymyalgia rheumatica and giant cell arteritis: a population-based study. BMC Med. 16, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nam, B. et al. Fracture risk and its prevention patterns in Korean patients with polymyalgia rheumatica: a retrospective cohort study. J. Korean Med. Sci. 36, e263 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Palmowski, A. et al. Glucocorticoids are not associated with bone mineral density in patients with polymyalgia rheumatica, giant cell arteritis and other vasculitides-cross-sectional baseline analysis of the prospective Rh-GIOP cohort. Cells 11, 536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Miyano, S. et al. Comparison of fracture risk between proton pump inhibitors and histamine-2 receptor antagonists in ANCA-associated vasculitis patients: a nested case–control study. Rheumatology 60, 1717–1723 (2020).

    Article  Google Scholar 

  153. Dejaco, C. et al. Treat-to-target recommendations in giant cell arteritis and polymyalgia rheumatica. Ann. Rheum. Dis. 83, 48–57 (2023).

    Article  Google Scholar 

  154. Hellmich, B. et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann. Rheum. Dis. 79, 19–30 (2020).

    Article  PubMed  Google Scholar 

  155. Hellmich, B. et al. EULAR recommendations for the management of ANCA-associated vasculitis: 2022 update. Ann. Rheum. Dis. 83, 30–47 (2023).

    Article  Google Scholar 

  156. Smolen, J. S. et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann. Rheum. Dis. 75, 3–15 (2016).

    Article  PubMed  Google Scholar 

  157. Nagy, G. et al. EULAR definition of difficult-to-treat rheumatoid arthritis. Ann. Rheum. Dis. 80, 31–35 (2021).

    Article  PubMed  Google Scholar 

  158. Palmowski, A. et al. The effect of low-dose glucocorticoids over two years on weight and blood pressure in rheumatoid arthritis: individual patient data from five randomized trials. Ann. Intern. Med. 176, 1181–1189 (2023).

    Article  PubMed  Google Scholar 

  159. Strehl, C. et al. Defining conditions where long-term glucocorticoid treatment has an acceptably low level of harm to facilitate implementation of existing recommendations: viewpoints from an EULAR task force. Ann. Rheum. Dis. 75, 952–957 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Tabacco, G. & Bilezikian, J. P. Osteoanabolic and dual action drugs. Br. J. Clin. Pharmacol. 85, 1084–1094 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Saag, K. G. et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N. Engl. J. Med. 357, 2028–2039 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Hu, Q., Zhong, X., Tian, H. & Liao, P. The efficacy of denosumab in patients with rheumatoid arthritis: a systematic review and pooled analysis of randomized or matched data. Front. Immunol. 12, 799575 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Saag, K. G. et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377, 1417–1427 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Asadipooya, K. & Weinstock, A. Cardiovascular outcomes of romosozumab and protective role of alendronate. Arterioscler. Thromb. Vasc. Biol. 39, 1343–1350 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Stokar, J. & Szalat, A. Cardiovascular safety of romosozumab vs PTH analogues for osteoporosis treatment: a propensity-score-matched cohort study. J. Clin. Endocrinol. Metab. 14, dgae173 (2024).

    Article  Google Scholar 

  166. Kanis, J. A., Johnell, O., Oden, A., Johansson, H. & McCloskey, E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A. & Nguyen, T. V. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos. Int. 18, 1109–1117 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Bolland, M. J. et al. Evaluation of the FRAX and Garvan fracture risk calculators in older women. J. Bone Miner. Res. 26, 420–427 (2011).

    Article  PubMed  Google Scholar 

  169. Hippisley-Cox, J. & Coupland, C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. Br. Med. J. 339, b4229 (2009).

    Article  Google Scholar 

  170. Adami, S. et al. Validation and further development of the WHO 10-year fracture risk assessment tool in Italian postmenopausal women: project rationale and description. Clin. Exp. Rheumatol. 28, 561–570 (2010).

    CAS  PubMed  Google Scholar 

  171. Ettinger, B. et al. Validation of FRC, a fracture risk assessment tool, in a cohort of older men: the Osteoporotic Fractures in Men (MrOS) Study. J. Clin. Densitom. 15, 334–342 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Albertsson, D. M., Mellstrom, D., Petersson, C. & Eggertsen, R. Validation of a 4-item score predicting hip fracture and mortality risk among elderly women. Ann. Fam. Med. 5, 48–56 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gado, M., Baschant, U., Hofbauer, L. C. & Henneicke, H. Bad to the bone: the effects of therapeutic glucocorticoids on osteoblasts and osteocytes. Front. Endocrinol. 13, 835720 (2022).

    Article  Google Scholar 

  174. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Kendler, D. L. et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391, 230–240 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Frank Buttgereit.

Ethics declarations

Competing interests

F.B. declares that he has received consultancy fees, honoraria, travel expenses and grant support from AbbVie, Amgen, Horizon Therapeutics and Pfizer (all unrelated to this manuscript). The work of F.B. in the ongoing Rh-GIOP study (Glucocorticoid-induced osteoporosis in patients with chronic inflammatory rheumatic diseases or psoriasis; NCT02719314) is or was supported by joint funding from AbbVie, Amgen, Almirall, Biogen, BMS, Chugai, Galapagos, Generic Assays, GSK, Hexal, Horizon Therapeutics, Lilly, Medac, Mundipharma, Novartis, Pfizer, Roche and Sanofi. A.P. has received consulting fees from Novartis (unrelated to this manuscript). G.A. declares that he has received consulting/speaker’s fees from Eli Lilly, Pfizer, Theramex, Galapagos, BMS, Fresenius Kabi, Amgen and UCB (all unrelated to this manuscript). M.B. declares that he has received consulting/speaker’s fees from AbbVie (unrelated to this manuscript). C.D. has received consulting/speaker’s fees from AbbVie, Eli Lilly, Janssen, Novartis, Pfizer, Roche, Galapagos, Sparrow and Sanofi, and grant support from AbbVie and Novartis (all unrelated to this manuscript).

Peer review

Peer review information

Nature Reviews Rheumatology thanks Natasha Appelman-Dijkstra, Piet Geusens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buttgereit, F., Palmowski, A., Bond, M. et al. Osteoporosis and fracture risk are multifactorial in patients with inflammatory rheumatic diseases. Nat Rev Rheumatol 20, 417–431 (2024). https://doi.org/10.1038/s41584-024-01120-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01120-w

  • Springer Nature Limited

Navigation