Skip to main content
Log in

Arbuscular mycorrhizal fungi equalize differences in plant fitness and facilitate plant species coexistence through niche differentiation

  • Article
  • Published:

From Nature Ecology & Evolution

View current issue Submit your manuscript

Abstract

Mycorrhizal fungi are essential to the establishment of the vast majority of plant species but are often conceptualized with contradictory roles in plant community assembly. On the one hand, host-specific mycorrhizal fungi may allow a plant to be competitively dominant by enhancing growth. On the other hand, host-specific mycorrhizal fungi with different functional capabilities may increase nutrient niche partitioning, allowing plant species to coexist. Here, to resolve the balance of these two contradictory forces, we used a controlled greenhouse study to manipulate the presence of two main types of mycorrhizal fungus, ectomycorrhizal fungi and arbuscular mycorrhizal fungi, and used a range of conspecific and heterospecific competitor densities to investigate the role of mycorrhizal fungi in plant competition and coexistence. We find that the presence of arbuscular mycorrhizal fungi equalizes fitness differences between plants and stabilizes competition to create conditions for host species coexistence. Our results show how below-ground mutualisms can shift outcomes of plant competition and that a holistic view of plant communities that incorporates their mycorrhizal partners is important in predicting plant community dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Experimental design for quantifying competitive ability29,87.
Fig. 2: The effects of mycorrhizal fungi on plant growth and nutritional niche in the absence of competition.
Fig. 3: The role of mycorrhizal fungi in the competitive dynamics between plant species.
Fig. 4: The effects of mycorrhizal fungi on plant nutritional niche under different types of competition.
Fig. 5: Symbiotic mutualisms help to structure dynamics of plant coexistence.

Similar content being viewed by others

Data availability

All data are available via the Dryad Digital Repository at https://doi.org/10.5061/dryad.rxwdbrvjb.

Code availability

All code for analysis is available via Github at https://github.com/ClaireWilling/MycorrhizaCoexist.git.

References

  1. Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. N. Phytol. 206, 1196–1206 (2015).

    Article  Google Scholar 

  2. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2010).

  3. Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. van der Heijden, M. G. A., van der, Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Article  Google Scholar 

  5. Kakouridis, A. et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. N. Phytol. 236, 210–221 (2022).

    Article  CAS  Google Scholar 

  6. Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).

    Article  CAS  Google Scholar 

  7. Hodge, A. & Fitter, A. H. Microbial mediation of plant competition and community structure. Funct. Ecol. 27, 865–875 (2013).

    Article  Google Scholar 

  8. Peay, K. G. Timing of mutualist arrival has a greater effect on Pinus muricata seedling growth than interspecific competition. J. Ecol. 106, 514–523 (2018).

    Article  Google Scholar 

  9. Wagg, C., Jansa, J., Stadler, M., Schmid, B. & van der Heijden, M. G. A. Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 92, 1303–1313 (2011).

    Article  PubMed  Google Scholar 

  10. Scheublin, T. R., Van Logtestijn, R. S. P. & Van Der Heijden, M. G. A. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J. Ecol. 95, 631–638 (2007).

    Article  CAS  Google Scholar 

  11. Hoeksema, J. D. et al. Ectomycorrhizal plant–fungal co-invasions as natural experiments for connecting plant and fungal traits to their ecosystem consequences. Front. Glob. Change 3, 84 (2020).

    Article  Google Scholar 

  12. Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).

    Article  PubMed  Google Scholar 

  13. Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).

    Article  PubMed  Google Scholar 

  14. Averill, C. et al. Alternative stable states of the forest mycobiome are maintained through positive feedbacks. Nat. Ecol. Evol. 6, 375–382 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. N. Phytol. 206, 507–521 (2015).

    Article  Google Scholar 

  16. Bever, J. D. et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66, 265–283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hart, S. P. How does facilitation influence the outcome of species interactions? J. Ecol. 111, 2094–2104 (2023).

    Article  Google Scholar 

  19. Peay, K. G. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol. Evol. Syst. 47, 143–164 (2016).

    Article  Google Scholar 

  20. Van Nuland, M. E. & Peay, K. G. Symbiotic niche mapping reveals functional specialization by two ectomycorrhizal fungi that expands the host plant niche. Fungal Ecol. 46, 100960 (2020).

    Article  Google Scholar 

  21. Chomicki, G., Weber, M., Antonelli, A., Bascompte, J. & Kiers, E. T. The impact of mutualisms on species richness. Trends Ecol. Evol. 34, 698–711 (2019).

    Article  PubMed  Google Scholar 

  22. Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  24. Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).

    Article  PubMed  Google Scholar 

  25. Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).

    Article  Google Scholar 

  27. Song, C., Barabás, G. & Saavedra, S. On the consequences of the interdependence of stabilizing and equalizing mechanisms. Am. Nat. 194, 627–639 (2019).

    Article  PubMed  Google Scholar 

  28. Kandlikar, G. S., Johnson, C. A., Yan, X., Kraft, N. J. B. & Levine, J. M. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol. Lett. 22, 1178–1191 (2019).

    Article  PubMed  Google Scholar 

  29. Ke, P.-J. & Wan, J. Effects of soil microbes on plant competition: a perspective from modern coexistence theory. Ecol. Monogr. 90, e01391 (2020).

    Article  Google Scholar 

  30. Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Bever, J. D. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc. Biol. Sci. 269, 2595–2601 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  32. van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article  Google Scholar 

  33. Bever, J. D. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. N. Phytol. 157, 465–473 (2003).

    Article  Google Scholar 

  34. Afkhami, M. E., McIntyre, P. J. & Strauss, S. Y. Mutualist-mediated effects on species’ range limits across large geographic scales. Ecol. Lett. 17, 1265–1273 (2014).

    Article  PubMed  Google Scholar 

  35. Yan, X., Levine, J. M. & Kandlikar, G. S. A quantitative synthesis of soil microbial effects on plant species coexistence. Proc. Natl Acad. Sci. USA 119, e2122088119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crawford, K. M. et al. When and where plant–soil feedback may promote plant coexistence: a meta‐analysis. Ecol. Lett. 22, 1274–1284 (2019).

    Article  PubMed  Google Scholar 

  37. Xi, N. et al. Relationships between plant–soil feedbacks and functional traits. J. Ecol. 109, 3411–3423 (2021).

    Article  Google Scholar 

  38. Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A. & Kretzer, A. M. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. N. Phytol. 185, 543–553 (2010).

    Article  CAS  Google Scholar 

  39. Hart, M. M., Reader, R. J. & Klironomos, J. N. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol. Evol. 18, 418–423 (2003).

    Article  Google Scholar 

  40. Endlweber, K. & Scheu, S. Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biol. Fertil. Soils 43, 741–749 (2007).

    Article  Google Scholar 

  41. Guo, Y. et al. The interspecific competition presents greater nutrient facilitation compared with intraspecific competition through AM fungi interacting with litter for two host plants in karst soil. J. Plant Ecol. 15, 399–412 (2022).

    Article  Google Scholar 

  42. Hartnett, D. C., Hetrick, B. A. D., Wilson, G. W. T. & Gibson, D. J. Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occurring prairie grasses. J. Ecol. 81, 787–795 (1993).

    Article  Google Scholar 

  43. Marler, M. J., Zabinski, C. A. & Callaway, R. M. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80, 1180–1186 (1999).

    Article  Google Scholar 

  44. Moora, M. & Zobel, M. Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia 108, 79–84 (1996).

    Article  PubMed  Google Scholar 

  45. Schroeder-Moreno, M. S. & Janos, D. P. Intra- and inter-specific density affects plant growth responses to arbuscular mycorrhizas. Botany 86, 1180–1193 (2008).

    Article  Google Scholar 

  46. Kandlikar (गौरव कांडिलकर), G. S., Yan (严心怡), X., Levine, J. M. & Kraft, N. J. B. Soil microbes generate stronger fitness differences than stabilization among california annual plants. Am. Nat. 197, E30–E39 (2021).

    Article  PubMed  Google Scholar 

  47. Forrestel, A. B., Moritz, M. A. & Stephens, S. L. Landscape-scale vegetation change following fire in Point Reyes, California, USA. Fire Ecol. 7, 114–128 (2011).

    Article  Google Scholar 

  48. Dickie, I. A. & Reich, P. B. Ectomycorrhizal fungal communities at forest edges. J. Ecol. 93, 244–255 (2005).

    Article  Google Scholar 

  49. Peay, K. G. & Bruns, T. D. Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant–fungal interactions. N. Phytol. 204, 180–191 (2014).

    Article  Google Scholar 

  50. Smith, G. R., Steidinger, B. S., Bruns, T. D. & Peay, K. G. Competition–colonization tradeoffs structure fungal diversity. ISME J. 12, 1758–1767 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harvey, B. J. & Holzman, B. A. Divergent successional pathways of stand development following fire in a California closed-cone pine forest. J. Veget. Sci. 25, 88–99 (2014).

    Article  Google Scholar 

  52. Teste, F. P. et al. Plant–soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355, 173–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Simha, A., Pardo-De la Hoz, C. J. & Carley, L. N. Moving beyond the ‘diversity paradox’: the limitations of competition-based frameworks in understanding species diversity. Am. Nat. 200, 89–100 (2022).

    Article  PubMed  Google Scholar 

  54. Horton, T. R., Cázares, E. & Bruns, T. D. Ectomycorrhizal, vesicular–arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8, 11–18 (1998).

    Article  Google Scholar 

  55. Wagg, C., Antunes, P. M. & Peterson, R. L. Arbuscular mycorrhizal fungal phylogeny-related interactions with a non-host. Symbiosis 53, 41–46 (2011).

    Article  Google Scholar 

  56. Hobbie, E. A., Macko, S. A. & Shugart, H. H. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118, 353 (1999).

    Article  PubMed  Google Scholar 

  57. Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Peh, K. S.-H., Lewis, S. L. & Lloyd, J. Mechanisms of monodominance in diverse tropical tree-dominated systems. J. Ecol. 99, 891–898 (2011).

    Article  Google Scholar 

  59. Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Bennett, J. A. et al. Plant–soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M. & Glassman, S. I. Mega-fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Mol. Ecol. 31, 2475–2493 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Klein, T., Siegwolf, R. T. & Körner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Karst, J., Jones, M. D. & Hoeksema, J. D. Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-01986-1 (2023).

  64. Kretzer, A. M., Dunham, S., Molina, R. & Spatafora, J. W. Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. N. Phytol. 161, 313–320 (2004).

    Article  CAS  Google Scholar 

  65. Bergemann, S. E. & Miller, S. L. Size, distribution, and persistence of genets in local populations of the late-stage ectomycorrhizal basidiomycete, Russula brevipes. N. Phytol. 156, 313–320 (2002).

    Article  CAS  Google Scholar 

  66. Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).

    Article  Google Scholar 

  68. Collier, F. A. & Bidartondo, M. I. Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J. Ecol. 97, 950–963 (2009).

    Article  Google Scholar 

  69. Thirkell, T. J., Cameron, D. D. & Hodge, A. Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant Cell Environ. 39, 1683–1690 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).

    Article  CAS  Google Scholar 

  71. Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).

    Article  CAS  Google Scholar 

  73. Herman, D. J., Firestone, M. K., Nuccio, E. E. & Hodge, A. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol. Ecol. 80, 236–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Abbott, K. C., Eppinga, M. B., Umbanhowar, J., Baudena, M. & Bever, J. D. Microbiome influence on host community dynamics: conceptual integration of microbiome feedback with classical host–microbe theory. Ecol. Lett. 24, 2796–2811 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jiang, J. et al. Pathogens and mutualists as joint drivers of host species coexistence and turnover: implications for plant competition and succession. Am. Nat. 195, 591–602 (2020).

    Article  PubMed  Google Scholar 

  76. Collins, C. D., Bever, J. D. & Hersh, M. H. Community context for mechanisms of disease dilution: insights from linking epidemiology and plant–soil feedback theory. Ann. N. Y. Acad. Sci. 1469, 65–85 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Letten, A. D. & Stouffer, D. B. The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol. Lett. 22, 423–436 (2019).

    Article  PubMed  Google Scholar 

  78. Fernández, N., Knoblochová, T., Kohout, P., Janoušková, M. & Rydlová, J. Asymmetric interaction between two mycorrhizal fungal guilds and consequences for the establishment of their host plants. Front. Plant Sci. 13, 873204. (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).

    Article  Google Scholar 

  80. Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. Toward a ‘modern coexistence theory’ for the discrete and spatial. Ecol. Monogr. 92, e1548 (2022).

    Article  CAS  Google Scholar 

  81. Van Der Heijden, M. G. A. & Horton, T. R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97, 1139–1150 (2009).

    Article  Google Scholar 

  82. Delavaux, C. S. et al. Mycorrhizal feedbacks influence global forest structure and diversity. Commun. Biol. 6, 1–11 (2023).

    Article  Google Scholar 

  83. Chang, C.-Y., Bajić, D., Vila, J. C. C., Estrela, S. & Sanchez, A. Emergent coexistence in multispecies microbial communities. Science 381, 343–348 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Peay, K. G., Schubert, M. G., Nguyen, N. H. & Bruns, T. D. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol. Ecol. 21, 4122–4136 (2012).

    Article  PubMed  Google Scholar 

  85. Peay, K. G., Bruns, T. D., Kennedy, P. G., Bergemann, S. E. & Garbelotto, M. A strong species–area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol. Lett. 10, 470–480 (2007).

    Article  PubMed  Google Scholar 

  86. Dawson, T. E. Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117, 476–485 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).

    Article  Google Scholar 

  88. Ke, P.-J. & Wan, J. A general approach for quantifying microbial effects on plant competition. Plant Soil 485, 1–14 (2022).

    Google Scholar 

  89. Bruns, T. D., Hale, M. L. & Nguyen, N. H. Rhizopogon olivaceotinctus increases its inoculum potential in heated soil independent of competitive release from other ectomycorrhizal fungi. Mycologia 111, 936–941 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).

    Article  CAS  PubMed  Google Scholar 

  91. Duhamel, M. et al. Plant selection initiates alternative successional trajectories in the soil microbial community after disturbance. Ecol. Monogr. 89, e01367 (2019).

    Article  Google Scholar 

  92. Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158-IN18 (1970).

    Article  Google Scholar 

  93. Giovannetti, M. & Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. N. Phytol. 84, 489–500 (1980).

    Article  Google Scholar 

  94. Smith, W. K., Schoettle, A. W. & Cui, M. Importance of the method of leaf area measurement to the interpretation of gas exchange of complex shoots. Tree Physiol. 8, 121–127 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Anderson, C. J. R. & Rosas-Anderson, P. J. Leafscan (Version 1.3.21). https://itunes.apple.com/app/id1254892230 (2017).

  96. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 1–26 (2017).

    Article  Google Scholar 

  97. R: a language and environment for statistical computing (R Foundation for Statistical Computing, R Core Team, 2022).

  98. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  99. Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Rousselet, G. A., Pernet, C. R. & Wilcox, R. R. The percentile bootstrap: a primer with step-by-step instructions in R. Adv. Meth. Pract. Psychol. Sci. 4, 2021.

  101. Terry, J. C. D. & Armitage, D. W. Widespread analytical pitfalls in empirical coexistence studies and a checklist for improving their statistical robustness. Methods Ecol. Evol. 15, 594–611 (2024).

    Article  Google Scholar 

  102. Johnson, C. A., Dutt, P. & Levine, J. M. Competition for pollinators destabilizes plant coexistence. Nature 607, 721–725 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. N. Chin and J. M. M. Ferré for their help in planting seedlings for this experiment. Additionally, we thank K. N. Chin for her help in creating art for this manuscript. We thank L. D. L Anderegg for his input on the study design and feedback on early versions of this manuscript. K.G.P. is a Canadian Institute for Advanced Research (CIFAR) Fellow in the programme Fungal Kingdom: Threats and Opportunities and is supported by a United States Department of Energy (DOE) Award DE-SC0023661. C.E.W., J.J.Y., A.M.C. and K.G.P were all supported by the United States National Science Foundation (NSF) Faculty Early Career (CAREER) Award 1845544 for this work, which was awarded to K.G.P.

Author information

Authors and Affiliations

Authors

Contributions

C.E.W. and K.G.P. planned and designed the research. C.E.W. and K.G.P. conducted field work. C.E.W., J.J.Y. and A.M.C. conducted the laboratory work. C.E.W. analysed and interpreted the data with critical contributions from J.W., J.J.Y., A.M.C. and K.G.P. The manuscript was written by C.E.W. and all co-authors provided important contributions and critical revisions. All authors approve of the final version of this manuscript.

Corresponding authors

Correspondence to Claire E. Willing or Kabir G. Peay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willing, C.E., Wan, J., Yeam, J.J. et al. Arbuscular mycorrhizal fungi equalize differences in plant fitness and facilitate plant species coexistence through niche differentiation. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02526-1

  • Springer Nature Limited

Navigation