1 Introduction

Let \({\mathscr{H}}\) be a real Hilbert space with an inner product 〈⋅,⋅〉 and the induced norm ∥⋅∥. Denote weak and strong convergence of a sequence \(\{x_{n}\} \subset {\mathscr{H}}\) to \(x \in {\mathscr{H}}\) by \( x_{n} \rightharpoonup x\) and \(x_{n} \rightarrow x\), respectively. Let C be a nonempty closed convex subset in \({\mathscr{H}}\), and \(F: {\mathscr{H}}\to {\mathscr{H}}\) be a cost mapping. The variational inequality problem VI(C, F) is to find a point xC such that

$$ \langle F(x^{*}), x-x^{*}\rangle\geq 0,\quad \forall x\in C. $$

The problem VI(C, F) was introduced first by Kinderleher and Stampacchia in [12]. This is an important problem that has a variety of theoretical and practical applications [16, 17]. Recently, there are very efficient algorithms for solving this problem. Some popular methods for solving the problem VI(C, F) are found, for instance, in [13].

Let \(S : {\mathscr{H}} \rightarrow {\mathscr{H}}\) be an operator. A fixed point of S is a point in \({\mathscr{H}}\) which is mapped to itself by S, and the set of all fixed points of S is denoted by

$$ \text{Fix}(S) := \{ x \in \mathcal{H} : x = Sx \}. $$

In this paper, we consider the variational inequality problems with fixed point constraints VIF(F, S), which consist of the following:

$$ \text{Find } x^{*}\in \text{Fix}(S)\text{ such that } \langle F(x^{*}), x-x^{*}\rangle \geq 0,\quad x\in \text{Fix}(S). $$

In the case S is the identity mapping, the problem VIF(F, S) is formulated in the form of the problem VI(C, F). In the case F = 0, it is written in the form of the lexicographic variational inequality problem when Sx := PrC[xλG(x)], where \(\lambda >0, G:{\mathscr{H}}\to {\mathscr{H}}\), PrC is the metric projection on C. Many other problems can be formulated as the form of the problem VIF(F, S) [10, 11]. There are increasing interests in studying solution algorithms for a monotone class of the problem VIF(F, S) such as parallel subgradient methods [2], extragradient methods [4], subgradient extragradient methods [3], Krasnoselski-Mann iteration method [18], hybrid steepest descent methods [24, 25], and other [18, 22, 23].

Let \( f: {\mathscr{H}}\to \mathbb {R} \) be a convex and differentiable function with a \(\mathcal L\)-coercive gradient ∇f, i.e., \(\langle x-y, \nabla f(x)-\nabla f(y)\rangle \geq \mathcal L\|\nabla f(x)-\nabla f(y)\|^{2}\ \forall x,y\in {\mathscr{H}}\), and let \(g:{\mathscr{H}}\to \mathbb {R}\) be a proper lower semicontinuous and convex function. Consider the convex problem

$$ \underset{x\in\mathcal{H}}{\min}\{f(x)+g(x)\}. $$
(1.1)

It can be shown that x is a solution point of the problem (1.1) if and only if it is characterized by the fixed point equation

$$ x^{*} = \text{prox}_{cg}(I - c\nabla f)(x^{*}), $$

where c > 0, the proximal operator of f is defined by \(\text {prox}_{f}(x)=\text {argmin}\{f(y)+\frac 1 2\|y-x\|^{2}: y\in {\mathscr{H}}\}\) and I is the identity operator. For solving the problem (1.1), the fixed point equation leads to the following iteration:

$$ x^{0}\in\mathcal{H}, x^{k+1}=\underbrace{\text{prox}_{\varepsilon_{k}g}}_{\text{backward step}}\underbrace{(I-\varepsilon_{k}\nabla f)(x^{k})}_{\text{forward step}},\quad k\in \mathbb N. $$
(1.2)

Under the condition \(\varepsilon _{k}\in \left (0,\frac 2 {\mathcal L}\right )\), Nakajo et al. [19] show that {xk} converges strongly to a solution of the problem (1.1). The iteration method (1.2) is known as the forward-backward splitting. By using inertial techniques and the forward-backward splitting method, Beck and Teboulle [6] proposed the fast iterative shrinkage-thresholding algorithm for solving the problem (1.1) as follows:

$$ \begin{cases} y^{k}=\text{prox}_{\frac{1}{\mathcal L}g}\left[x^{k}-\frac 1 {\mathcal L}\nabla f(x^{k})\right],\\ x^{k+1} =y^{k}+\theta_{k}(y^{k}-y^{k-1}), \end{cases} $$
(1.3)

where \(t_{k+1}=\frac {1+\sqrt {1+4{t_{k}^{2}}}} 2, \theta _{k}=\frac {t_{k}-1}{t_{k+1}}, x^{0}\in {\mathscr{H}}\) and t0 = 1. Then, the rate of convergence is established and also applied to image restoration problems. In recent years, there have been many authors who modified some forward-backward and inertial methods for solving the other split type problems such as parallel inertial S-iteration forward-backward algorithm [8] for regression and classification problems, inertial hybrid projection-proximal point algorithms [1] for maximal monotone operators, inertial forward-backward algorithms [7] for the minimization of the sum of two nonconvex functions, inertial proximal method [9] for solving Ky Fan minimax inequalities, inertial forward-backward algorithm [15] for monotone inclusions, and other (see [20, 21] and the references therein).

It is worth noting from the above review that the convex minimization problem (1.1) is related to the fixed point problem. Also, we know that a forward-backward operator S := proxεg(Iεf) is nonexpansive in the case \(0<\varepsilon < \frac 2{\mathcal L}\), i.e., \(\|Sx-Sy\|\leq \|x-y\|,~ \forall x,y\in {\mathscr{H}}\). So the study on fixed point problems for the class of nonexpansive operators plays an important role in creating optimization methods.

The purpose of this paper is to propose a new iteration algorithm by using the forward-backward iteration scheme (1.3) and inertial techniques for solving the problem VIF(F, S), where the cost mapping F is strongly monotone and Lipschitz continuous on \({\mathscr{H}}\). Furthermore, we prove a strong convergence result of the proposed algorithm under the condition onto parameters. Subsequently, we apply the proposed algorithm to solving a convex unconstrained minimization problem of the sum of two convex functions by using the nonexpansiveness of the forward-backward operator S.

The paper is organized as follows. In Section 2, we present some definitions and lemmas which will be used in the paper. Section 3 deals with a new inertial forward-backward algorithm for solving the variational inequalities over the fixed point set of a nonexpansive mapping VIF(F, S) and the proof of its strong convergence in a real Hilbert space \({\mathscr{H}}\). As an application of our proposed algorithm, Section 4 is devoted to solve a convex unconstrained minimization problem of the sum of two convex functions in \({\mathscr{H}}\).

2 Preliminaries

Denote weak and strong convergence of a sequence \(\{x^{n}\} \subset {\mathscr{H}}\) to \(x \in {\mathscr{H}}\) by \( x^{n} \rightharpoonup x\) and \(x^{n} \rightarrow x\), respectively.

We recall that a mapping \(S: {\mathscr{H}}\to {\mathscr{H}}\) is said to be

  • Strongly monotone with constant β > 0 (shortly β-strongly monotone), if

    $$ \langle S(x)-S(y), x-y\rangle \geq \beta\|y-x\|^{2},\quad \forall x,y\in\mathcal{H}; $$
  • Lipschitz continuous with constant L > 0 (shortly L-Lipschitz continuous), if

    $$\|Sx - Sy\| \leq L \|x - y\|, \quad\forall x, y \in \mathcal{H};$$
  • Contraction with constant L > 0, if S is L-Lipschitz continuous, where L < 1;

  • Nonexpansive, if S is 1-Lipschitz continuous.

For each \(x\in {\mathscr{H}}\), there exists a unique point in C, denoted by PrC(x) satisfying

$$ \|x-Pr_{C}(x)\|\leq \|x-y\|,\quad \forall y\in C. $$

The mapping PrC is usually called the metric projection of \({\mathscr{H}}\) on C. An important property of PrC is nonexpansive on \({\mathscr{H}}\).

Given a function \(g: {\mathscr{H}}\to \mathcal R\), the proximal mapping of g on C is the mapping given by

$$ \text{prox}_{(g,C)}(y)=\text{argmin}\left\{g(x)+\frac 1 2\|y-x\|^{2} : x\in C\right\}. $$

For any \(x \in {\mathscr{H}}\), the following three claims in [5] are equivalent

  1. (a)

    u = prox(g, C)(x);

  2. (b)

    \(x-u \in \partial g(u):=\{w_{u}\in {\mathscr{H}}: g(x)-g(u)\geq \langle w_{u},x-u\rangle ,~ \forall x\in {\mathscr{H}}\}\);

  3. (c)

    xu, yu〉≤ g(y) − g(u), ∀yC.

Moreover, the proximal mapping of g on C is (firmly) nonexpansive and

$$ \text{Fix}\left( \text{prox}_{(g,C)}\right)=\left\{x\in C: g(x)\leq g(y),~\forall y\in C\right\}. $$

Note that, if g is the indicator function on C (defined by δC(x) = 0 if xC; otherwise \(\delta _{C}(x)=+\infty \)), then prox(g, C) = PrC.

Now we recall the following lemmas which are useful tools for proving our convergence results.

Lemma 2.1

[20, Lemma 2.6] Let {sk} be a sequence of nonnegative real numbers and {pk} a sequence of real numbers. Let {αk} be a sequence of real numbers in (0,1) such that \( {\sum }_{k=1}^{\infty }\alpha _{k}=\infty \). Assume that

$$ s_{k+1}\leq (1-\alpha_{k})s_{k}+\alpha_{k} p_{k}, \quad k \in \mathbb{N}. $$

If \( \limsup _{i\to \infty }p_{k_{i}}\leq 0 \) for every subsequence \( \{s_{k_{i}}\} \) of {sk} satisfying

$$\underset{i\to\infty}{\liminf}(s_{k_{i}+1}-s_{k_{i}})\geq 0,$$

then \( \lim _{k\to \infty }s_{k}=0. \)

Lemma 2.2

[14, Demiclosedness principle] Assume that S is a nonexpansive self-mapping of a nonempty closed convex subset C of a real Hilbert space \({\mathscr{H}}\). If Fix(S)≠, then IS is demiclosed; that is, whenever {xk} is a sequence in C converging weakly to some \(\bar x\in C\) and the sequence {(IS)(xk)} converges strongly to some \(\bar y\), it follows that \((I-S)(\bar x)=\bar y\). Here I is the identity operator of \({\mathscr{H}}\).

3 Algorithm and Its Convergence

For solving the variational inequalities over the fixed point set VIF(F, S), we assume the mappings F and S, parameters satisfy the following conditions.

  • (A1) F is β-strongly monotone, L-Lipschitz continuous such that β > 0 and L > 0;

  • (A2) S is nonexpansive;

  • (A3) The solution set of the problem VIF(F, S) is nonempty;

  • (A4) For every k ≥ 0, the positive parameters βk, γk, τk, λk and {μk} satisfy the following restrictions:

$$ \begin{cases} 0 < c_{1} \leq \beta_{k} \leq c_{2} < 1, \mu_{k}\leq \eta,\\ 0< \gamma_{k} < 1, \underset{k\to \infty}{\lim} \gamma_{k}=0, \sum\limits_{k=1}^{\infty}\gamma_{k} =\infty,\\ \underset{k\to \infty}{\lim}\frac{\tau_{k}}{\gamma_{k}}=0, \lambda_{k}\in \left( \frac{\beta}{L^{2}}, \frac{2\beta}{L^{2}}\right), a\in (0,1), \sqrt{1-2\lambda_{k}\beta+{\lambda_{k}^{2}} L^{2}}<1-a. \end{cases} $$
(3.1)

Algorithm 3.1 (Hybrid inertial contraction algorithm)

Initialization: Take \( x^{0}, x^{1} \in {\mathscr{H}}\) arbitrarily. Iterative steps: k = 1,2,…

Step 1. Compute an inertial parameter

$$ \theta_{k}= \left\{ \begin{array}{ll} \min\left\{\mu_{k}, \frac{\tau_{k}}{\|x^{k}-x^{k-1}\|} \right\}& \text{if}~ \|x^{k}-x^{k-1}\|\neq 0,\\ \mu_{k} & \text{otherwise.} \end{array} \right. $$

Step 2. Compute

$$ \left\{\begin{array}{l l} w^{k}= x^{k}+\theta_{k}(x^{k}-x^{k-1}), \\ z^{k}=(1-\gamma_{k})Sw^{k}+\gamma_{k} \left[w^{k}-\lambda_{k}F(w^{k})\right],\\ x^{k+1} =(1-\beta_{k})Sw^{k}+\beta_{k}Sz^{k}. \end{array}\right. $$
(3.2)

Step 3. Set k := k + 1 and return to Step 1.

A strong convergence result is established in the following theorem.

Theorem 3.2

Assume that the assumptions (A1)–(A4) are satiSfied. Then, the sequence {xk} generated by Algorithm 3.1 converges strongly to a unique solution x of the problem VIF(F, S).

Proof

Since F is β-strongly monotone and L-Lipschitz continuous on \({\mathscr{H}}\), for each λk > 0, we have

$$ \begin{array}{@{}rcl@{}} &&\|w^{k}-\lambda_{k}F(w^{k})-[x^{*}-\lambda_{k} F(x^{*})]\|^{2}\\ &=&\|w^{k}-x^{*}\|^{2}-2\lambda_{k}\langle F(w^{k})-F(x^{*}),w^{k}-x^{*}\rangle +{\lambda_{k}^{2}}\|F(w^{k})-F(x^{*})\|^{2}\\ &\leq &\|w^{k}-x^{*}\|^{2}-2\lambda_{k}\beta\|w^{k}-x^{*}\|^{2}+{\lambda_{k}^{2}}L^{2}\|w^{k}-x^{*}\|^{2}\\ &= &(1-2\lambda_{k}\beta+{\lambda_{k}^{2}} L^{2})\|w^{k}-x^{*}\|^{2}. \end{array} $$
(3.3)

It is well-known to see that F is strongly monotone, so the problem VIF(F, S) has a unique solution, and a point x∈Fix(S) is a solution of the problem if and only if x = PrFix(S)[xλkF(x)]. From the schemes (3.2) and (3.3), we get

$$ \begin{array}{@{}rcl@{}} \|z^{k}-x^{*}\|&=&\left\|(1-\gamma_{k})Sw^{k}+\gamma_{k} \left[w^{k}-\lambda_{k}F(w^{k})\right]-x^{*}\right\|\\ &\leq& \gamma_{k}\left\|w^{k}-\lambda_{k}F(w^{k})-x^{*}\right\|+(1-\gamma_{k})\|Sw^{k}-x^{*}\|\\ &\leq& \gamma_{k}\|w^{k}-\lambda_{k}F(w^{k})-[x^{*}-\lambda_{k}F(x^{*})]\| + \gamma_{k}\lambda_{k}\|F(x^{*})\| +(1-\gamma_{k})\|Sw^{k}-Sx^{*}\|\\ &\leq& \gamma_{k}\sqrt{1-2\lambda_{k}\beta+{\lambda_{k}^{2}} L^{2}}\|w^{k}-x^{*}\| + \gamma_{k}\lambda_{k}\|F(x^{*})\| +(1-\gamma_{k})\|w^{k}-x^{*}\|\\ &=& [1-\gamma_{k}(1-\delta_{k})]\|w^{k}-x^{*}\| + \gamma_{k}\lambda_{k}\|F(x^{*})\|, \end{array} $$
(3.4)

where \(\delta _{k}:=\sqrt {1-2\lambda _{k}\beta +{\lambda _{k}^{2}} L^{2}}\in (0,1-a)\). Combining this and (3.1), we obtain

$$ \begin{array}{@{}rcl@{}} &&\|x^{k+1}-x^{*}\|\\&=&\|(1-\beta_{k})Sw^{k}+\beta_{k}Sz^{k}-x^{*}\|\\ &\leq& (1-\beta_{k})\|Sw^{k}-Sx^{*}\| +\beta_{k}\|Sz^{k}-Sx^{*}\|\\ &\leq& (1-\beta_{k})\|w^{k}-x^{*}\| +\beta_{k} \|z^{k} -x^{*}\|\\ &\leq& [1-\beta_{k} \gamma_{k} (1-\delta_{k})]\|w^{k}-x^{*}\|+ \beta_{k} \gamma_{k}\lambda_{k}\|F(x^{*})\|\\ &\leq& [1-\beta_{k} \gamma_{k} (1-\delta_{k})]\left( \|x^{k} - x^{*}\| + \theta_{k} \|x^{k} - x^{k-1} \|\right) + \beta_{k} \gamma_{k}\frac{2\beta\|F(x^{*})\|}{L^{2}}\\ &\leq&[1-\beta_{k} \gamma_{k} (1-\delta_{k})]\|x^{k} -x^{*}\|+ \beta_{k} \gamma_{k} \left( \frac{\theta_{k} }{\beta_{k} \gamma_{k} }\|x^{k} -x^{k-1}\|+\frac{2\beta\|F(x^{*})\|}{L^{2}}\right)\\ &\leq&[1-\beta_{k} \gamma_{k} (1-\delta_{k})]\|x^{k} -x^{*}\|+ \beta_{k}\gamma_{k}(1-\delta_{k}) \left( \frac{\theta_{k} }{a\beta_{k} \gamma_{k} }\|x^{k} -x^{k-1}\|+\frac{2\beta\|F(x^{*})\|}{aL^{2}}\right). \end{array} $$

By using Step 1 and the conditions (3.1), we deduce

$$ 0\leq \frac{\theta_{k} }{\beta_{k} \gamma_{k} }\|x^{k} -x^{k-1}\|\leq \frac{\tau_{k} }{c_{1} \gamma_{k} } \rightarrow 0\quad \text{as } k\to\infty. $$

This implies \(M= \sup _{k} \left \{\frac {\theta _{k} }{a\beta _{k} \gamma _{k} }\|x^{k} -x^{k-1}\|+\frac {2\beta \|F(x^{*})\|}{aL^{2}}\right \}<+\infty \). Then,

$$ \begin{array}{@{}rcl@{}} \|x^{k+1}-x^{*}\|&\leq& [1-\beta_{k} \gamma_{k} (1-\delta_{k})]\|x^{k} -x^{*}\|+ \beta_{k}\gamma_{k}(1-\delta_{k})M\\ &\leq& \max \left\{\|x^{k} -x^{*}\|, M\right\}. \end{array} $$

By mathematical induction, we deduce that

$$ \begin{array}{@{}rcl@{}} \|x^{k} -x^{*}\|\leq \max \left\{\|x^{1}-x^{*}\|, M\right\}, \quad \forall k\geq 1. \end{array} $$

So, {xk} is bounded. From (3.2), it follows \(\|w^{k}-x^{k}\|=\theta _{k}\|x^{k}-x^{k-1}\|<+\infty \). By using (3.4), we also have that both {zk} and {wk} are bounded. By (3.3) and the relation

$$ \|x+y\|^{2}\leq \|x\|^{2}+2\langle y, x+y\rangle,\quad \forall x,y\in\mathcal{H}, $$

we get

$$ \begin{array}{@{}rcl@{}} &&\|z^{k} -x^{*}\|^{2}\\ &=&\left\|(1-\gamma_{k} )(Sw^{k} - x^{*})+\gamma_{k} [w^{k}-\lambda_{k} F(w^{k}) - (x^{*}-\lambda_{k}F(x^{*}))] - \gamma_{k}\lambda_{k} F(x^{*}) \right\|^{2}\\ &\leq& \|(1-\gamma_{k} )(Sw^{k} - x^{*})+\gamma_{k} [w^{k}-\lambda_{k} F(w^{k}) - (x^{*}-\lambda_{k}F(x^{*}))]\|^{2}\\ && - 2\gamma_{k}\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle\\ &\leq& (1-\gamma_{k} )\|Sw^{k} - x^{*}\|^{2}+\gamma_{k} \|w^{k}-\lambda_{k} F(w^{k}) - (x^{*}-\lambda_{k}F(x^{*}))\|^{2}\\ && - 2\gamma_{k}\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle\\ &\leq &(1-\gamma_{k} )\|w^{k}-x^{*}\|^{2}+\gamma_{k} {\delta_{k}^{2}}\|w^{k}-x^{*}\|^{2}-2\gamma_{k}\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle \\ &\leq &\left[1-\gamma_{k} (1-{\delta_{k}^{2}})\right]\|w^{k} - x^{*}\|^{2}-2\gamma_{k}\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle. \end{array} $$
(3.5)

From wk = xk + θk(xkxk− 1), it implies

$$ \begin{array}{@{}rcl@{}} \|w^{k}-x^{*}\|^{2} &=&\|x^{k} -x^{*}\|^{2}+{\theta_{k}^{2}}\|x^{k} -x^{k-1}\|^{2} +2\theta_{k} \langle x^{k} -x^{*}, x^{k} -x^{k-1}\rangle\\ &\leq&\|x^{k} -x^{*}\|^{2}+{\theta_{k}^{2}}\|x^{k} -x^{k-1}\|^{2} +2\theta_{k} \| x^{k} -x^{*}\|\| x^{k} -x^{k-1}\|. \end{array} $$
(3.6)

Combining (3.5) and (3.6), we have

$$ \begin{array}{@{}rcl@{}} &&\|x^{k+1}-x^{*}\|^{2}\\&=&\|(1-\beta_{k})(Sw^{k}-x^{*})+\beta_{k}(Sz^{k}-x^{*})\|^{2}\\ &= &(1-\beta_{k} )\|Sw^{k}-Sx^{*}\|^{2} + \beta_{k} \|Sz^{k} -Sx^{*}\|^{2}-\beta_{k} (1-\beta_{k} )\|Sw^{k}-Sz^{k} \|^{2}\\ &\leq &(1-\beta_{k} )\|w^{k}-x^{*}\|^{2} + \beta_{k} \|z^{k} -x^{*}\|^{2}-\beta_{k} (1-\beta_{k} )\|Sw^{k}-Sz^{k} \|^{2}\\ &\leq &(1-\beta_{k} )\|w^{k}-x^{*}\|^{2} + \beta_{k}(1-\gamma_{k} )\|w^{k}-x^{*}\|^{2}+\beta_{k}\gamma_{k} {\delta_{k}^{2}}\|w^{k}-x^{*}\|^{2}\\ &&-2\beta_{k}\gamma_{k}\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle -\beta_{k} (1-\beta_{k} )\|Sw^{k}-Sz^{k} \|^{2}\\ &=&[1-\beta_{k}\gamma_{k}(1-{\delta_{k}^{2}})]\|w^{k}-x^{*}\|^{2} -2\beta_{k}\gamma_{k}\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle\\ &&-\beta_{k} (1-\beta_{k} )\|Sw^{k}-Sz^{k} \|^{2}\\ &\leq &[1-\beta_{k}\gamma_{k}(1-{\delta_{k}^{2}})]\|x^{k}-x^{*}\|^{2} +{\theta_{k}^{2}}\|x^{k} -x^{k-1}\|^{2} +2\theta_{k} \| x^{k} -x^{*}\|\| x^{k} -x^{k-1}\|\\ &&-2\beta_{k}\gamma_{k}\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle-\beta_{k} (1-\beta_{k} )\|Sw^{k}-Sz^{k} \|^{2}\\ &\leq&[1-\beta_{k}\gamma_{k}(1-{\delta_{k}^{2}})]\|x^{k}-x^{*}\|^{2} -\beta_{k} (1-\beta_{k} )\|Sw^{k}-Sz^{k} \|^{2}+\beta_{k}\gamma_{k}(1-{\delta_{k}^{2}})\sigma_{k}, \end{array} $$

where

$$ \begin{array}{@{}rcl@{}} \sigma_{k}&:= &\frac{1}{1-{\delta_{k}^{2}}} \left\{\frac{{\theta_{k}^{2}}}{\beta_{k}\gamma_{k}}\|x^{k} -x^{k-1}\|^{2} +\frac{2\theta_{k}}{\beta_{k}\gamma_{k}} \| x^{k} -x^{*}\|\| x^{k} -x^{k-1}\|\right.\\&&-\left.2\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\vphantom{\frac{{\theta_{k}^{2}}}{\beta_{k}\gamma_{k}}}\rangle\right\}\\ &\leq &\frac{1}{a(2-a)} \bigg\{ -2\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle+\left( \frac{\theta_{k} }{c_{1} \gamma_{k} }\|x^{k} -x^{k-1}\|\right)\theta_{k} \| x^{k} -x^{k-1}\| \\ & &+2\| x^{k} -x^{*}\|\left( \frac{\theta_{k} }{c_{1} \gamma_{k} }\|x^{k} -x^{k-1}\|\right) \bigg\}. \end{array} $$

It follows that

$$ \begin{array}{@{}rcl@{}} &&\|x^{k+1}-x^{*}\|^{2}\\ &\leq& [1-\beta_{k}\gamma_{k}(1-{\delta_{k}^{2}})]\|x^{k} -x^{*}\|^{2} -\beta_{k} (1-\beta_{k} )\|Sw^{k}-Sz^{k} \|^{2} + \beta_{k} \gamma_{k} (1-{\delta_{k}^{2}})\sigma, \end{array} $$
(3.7)

where \(\sigma := \sup _{k} \sigma _{k}\in (0,\infty )\). Now we apply Lemma 2.1 for \(s_{k}:=\|x^{k} -x^{*}\|^{2}, \alpha _{k}:=\beta _{k}\gamma _{k}(1-{\delta _{k}^{2}})\in (0,1)\) and pk := σk. Since (3.7), we have

$$ s_{k+1}\leq (1-\alpha_{k})s_{k}+\alpha_{k} p_{k}. $$

Assume that \( \left \{s_{k_{i}}\right \}\) is a subsequence of {sk} such that

$$ \underset{i\to\infty}{\liminf}\left( s_{k_{i}+1}-s_{k_{i}}\right)\geq 0. $$

Combining this, (3.7), and (3.1), we obtain

$$ \begin{array}{@{}rcl@{}} 0&\leq& c_{1}(1-c_{2})\underset{i\to\infty}{\limsup} \left\|Sw^{k_{i}}-Sz^{k_{i}}\right\|^{2}\\ &\leq& \underset{i\to\infty}{\limsup}\beta_{k_{i}}\left( 1-\beta_{k_{i}}\right) \left\|Sw^{k_{i}}-Sz^{k_{i}}\right\|^{2}\\ &\leq& \underset{i\to\infty}{\limsup}\left[s_{k_{i}} -s_{k_{i}+1} + \beta_{k_{i}}\gamma_{k_{i}}(1-\delta_{k_{i}}^{2})\sigma \right] \\ &\leq& \underset{i\to\infty}{\limsup}\left( s_{k_{i}}-s_{k_{i}+1}\right)\\ &=&-\underset{i\to\infty}{\liminf}\left( s_{k_{i}+1}-s_{k_{i}}\right) \\ &\leq& 0. \end{array} $$

Consequently,

$$ \underset{i\to \infty}{\lim}\left\|Sw^{k_{i}}-Sz^{k_{i}}\right\|=0. $$
(3.8)

From the scheme (3.2), it follows

$$ \|z^{k}-Sw^{k}\|=\gamma_{k}\|w^{k}-\lambda_{k} F(w^{k})-Sw^{k}\|, $$

and hence

$$ \left\|z^{k_{i}}-Sw^{k_{i}}\right\|=\gamma_{k_{i}}\left\|w^{k_{i}}-\lambda_{k_{i}} F(w^{k_{i}})-Sw^{k_{i}}\right\|. $$

Then, using \(\lim _{k\to \infty }\gamma _{k}=0\) and the boundedness of {wk}, we get

$$ \underset{i\to \infty}{\lim\limits}\left\|z^{k_{i}}-Sw^{k_{i}}\right\|=0. $$
(3.9)

Since (3.8) and (3.9), we obtain

$$ \left\|z^{k_{i}}-Sz^{k_{i}}\right\|\leq \left\|z^{k_{i}}-S w^{k_{i}}\right\| +\left\|S w^{k_{i}}-S z^{k_{i}}\right\|\to 0,\quad \text{as } i\to\infty. $$
(3.10)

We next show that \( \limsup _{i\to \infty }p_{k_{i}}\leq 0\). Since the condition (3.1), we have

$$ \begin{array}{@{}rcl@{}} p_{k}&=&\sigma_{k}\\ &\leq &\frac{1}{a(2-a)} \bigg\{ -2\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle+\left( \frac{\theta_{k} }{c_{1} \gamma_{k} }\|x^{k} -x^{k-1}\|\right)\theta_{k} \| x^{k} -x^{k-1}\| \\ && +2\| x^{k} -x^{*}\|\left( \frac{\theta_{k} }{c_{1} \gamma_{k} }\|x^{k} -x^{k-1}\|\right) \bigg\}\\ &\leq &\frac{1}{a(2-a)} \bigg\{ -2\lambda_{k} \langle F(x^{*}), z^{k} -x^{*}\rangle+\frac{\tau_{k} }{\gamma_{k} }\left( \frac{\mu_{k} \| x^{k} -x^{k-1}\|}{c_{1}}+\frac{2\| x^{k} -x^{*}\|}{c_{1}}\right) \bigg\}. \end{array} $$

Since \(\lambda _{k}\in \left (\frac {\beta }{L^{2}}, \frac {2\beta }{L^{2}}\right )\), the boundedness of {xk} and {μk}, it suffices to show that

$$ \underset{i\to\infty}{\limsup} \langle F(x^{*}),x^{*}-z^{k_{i}}\rangle \leq 0. $$

Since {zk} is bounded, we can assume that there exists a subsequence \(\{\bar z^{k_{i}}\}\) of \(\{z^{k_{i}}\}\) such that \(\bar z^{k_{i}}\rightharpoonup \bar x\) and

$$ \underset{i\to\infty}{\limsup} \langle F(x^{*}),x^{*}-z^{k_{i}}\rangle =\underset{i\to\infty}{\lim} \langle F(x^{*}),x^{*}-\bar z^{k_{i}}\rangle. $$

Applying Lemma 2.2 for the nonexpansive mapping S with (3.10), we deduce that \( \bar x\in \text {Fix}(S)\). Thus

$$ \underset{i\to\infty}{\limsup} \langle F(x^{*}),x^{*}-z^{k_{i}}\rangle =\langle F(x^{*}),x^{*}-\bar x\rangle\leq 0. $$

By Lemma 2.1, we can conclude that \(x^{k} \rightarrow x^{*}\) as \(k \rightarrow \infty \). The proof is complete. □

4 Application to Convex Problems

In this section, we consider the minimization problem (1.1) in the form of the sum of two convex functions in \({\mathscr{H}}\). Let \(g:{\mathscr{H}}\to \mathbb {R}\cup \{+\infty \} \) be proper lower semi-continuous and convex. The proximal operator of g on C, in short proxg, is formulated as follows:

$$ \text{prox}_{g}(y)=\text{argmin}\left\{ g(x)+\frac 1 2\|y-x\|^{2} : x\in C\right\},\quad y\in\mathcal{H}. $$

It is well-known to see that proxg has the nonexpansiveness on \({\mathscr{H}}\) [5], i.e., ∥proxg(y1) −proxg(y2)∥≤∥y1y2∥ for all \(y_{1},y_{2}\in {\mathscr{H}}\).

In this situation, we put the following assumptions:

  • (B1) \(f: {\mathscr{H}}\to \mathbb {R} \) is convex and differentiable, its gradient ∇f is \(\mathcal L\)-coercive, i.e., \(\langle \nabla f(x)-\nabla f(y),x-y\rangle \geq \mathcal L\|\nabla f(x)-\nabla f(y)\|^{2}\) for all \(x,y\in {\mathscr{H}}\);

  • (B2) \(g:{\mathscr{H}}\to \mathbb {R}\cup \{+\infty \} \) is proper lower semicontinuous and convex;

  • (B3) The solution set Ω of (1.1) is nonempty;

  • (B4) \( F : {\mathscr{H}} \to {\mathscr{H}}\) is β-strongly monotone and L-Lipschitz continuous.

By utilizing Algorithm 3.1, we obtain the following algorithm for solving the problem (1.1).

Algorithm 4.1

Initialization: Take \(\varepsilon \in \left (0,\frac 2L\right )\) and two points \( x^{0}, x^{1} \in {\mathscr{H}}\) arbitrarily.

Iterative steps: k = 1, 2, …

Step 1. Compute an inertial parameter

$$ \theta_{k}= \left\{ \begin{array}{l l} \min\left\{\mu_{k}, \frac{\tau_{k}}{\|x^{k}-x^{k-1}\|} \right\}& \text{if}~ \|x^{k}-x^{k-1}\|\neq 0,\\ \mu_{k} & \text{otherwise.} \end{array} \right. $$

Step 2. Compute

$$ \left\{\begin{array}{ll} w^{k}= x^{k}+\theta_{k}(x^{k}-x^{k-1}),\\ v^{k}=\text{prox}_{\varepsilon g}\left[w^{k}-\varepsilon \nabla f(w^{k})\right] \\ z^{k}=(1-\gamma_{k})v^{k}+\gamma_{k} \left[w^{k}-\lambda_{k}F(w^{k})\right],\\ x^{k+1} =(1-\beta_{k})v^{k}+\beta_{k}\text{prox}_{\varepsilon g}\left[z^{k}-\varepsilon \nabla f(z^{k})\right]. \end{array}\right. $$

Step 3. Set k := k + 1 and return to Step 1.

A strong convergence result is established in the following theorem.

Theorem 4.2

Assume that the assumptions (B1)–(B4) are satisfied. Under the conditions (3.1) and \(\varepsilon \in \left (0, \frac {2}{\mathcal L}\right )\), the sequence {xk} generated by Algorithm 4.1 converges strongly to a solution x of the convex problem (1.1) Moreover, x = PrΩ[xεF(x)].

Proof

For each \(x\in {\mathscr{H}}\), set S(x) = proxεg[xεf(x)]. For each \(x,y\in {\mathscr{H}}\), since proxεg is nonexpansive and the assumption (B1), we have

$$ \begin{array}{@{}rcl@{}} \|S(x)-S(y)\|^{2}&=&\left\|\text{prox}_{\varepsilon g}[x-\varepsilon\nabla f(x)]-\text{prox}_{\varepsilon g}[y-\varepsilon\nabla f(y)]\right\|^{2}\\ &\leq &\|x-\varepsilon\nabla f(x)-[y-\varepsilon\nabla f(y)]\|^{2}\\ &=&\|x-y\|^{2}-2\varepsilon \langle x-y,\nabla f(x)-\nabla f(y)\rangle+\varepsilon^{2}\|\nabla f(x)-\nabla f(y)\|^{2}\\ &\leq &\|x-y\|^{2}-\varepsilon (2\varepsilon-\mathcal L)\|\nabla f(x)-\nabla f(y)\|^{2}\\ &\leq &\|x-y\|^{2}, \end{array} $$

where the last inequality is deduced from \(\varepsilon \in \left (0, \frac {2}{\mathcal L}\right )\). Then, S is nonexpansive on \({\mathscr{H}}\). So, the convergence results are deduced from Theorem 3.2 for the nonexpansive mapping S and the cost mapping F. □