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Abstract
In this paper, basing on the forward-backward method and inertial techniques, we introduce
a new algorithm for solving a variational inequality problem over the fixed point set of
a nonexpansive mapping. The strong convergence of the algorithm is established under
strongly monotone and Lipschitz continuous assumptions imposed on the cost mapping. As
an application, we also apply and analyze our algorithm to solve a convex minimization
problem of the sum of two convex functions.
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1 Introduction

Let H be a real Hilbert space with an inner product 〈·, ·〉 and the induced norm ‖ · ‖. Denote
weak and strong convergence of a sequence {xn} ⊂ H to x ∈ H by xn ⇀ x and xn → x,
respectively. Let C be a nonempty closed convex subset in H, and F : H → H be a cost
mapping. The variational inequality problem VI(C, F ) is to find a point x∗ ∈ C such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ C.

The problem VI(C, F ) was introduced first by Kinderleher and Stampacchia in [12]. This
is an important problem that has a variety of theoretical and practical applications [16,
17]. Recently, there are very efficient algorithms for solving this problem. Some popular
methods for solving the problem VI(C, F ) are found, for instance, in [13].
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Let S : H → H be an operator. A fixed point of S is a point in H which is mapped to
itself by S, and the set of all fixed points of S is denoted by

Fix(S) := {x ∈ H : x = Sx}.
In this paper, we consider the variational inequality problems with fixed point constraints
VIF(F, S), which consist of the following:

Find x∗ ∈ Fix(S) such that 〈F(x∗), x − x∗〉 ≥ 0, x ∈ Fix(S).

In the case S is the identity mapping, the problem VIF(F, S) is formulated in the form of
the problem VI(C, F ). In the case F = 0, it is written in the form of the lexicographic
variational inequality problem when Sx := PrC[x − λG(x)], where λ > 0,G : H → H,
PrC is the metric projection on C. Many other problems can be formulated as the form of
the problem VIF(F, S) [10, 11]. There are increasing interests in studying solution algo-
rithms for a monotone class of the problem VIF(F, S) such as parallel subgradient methods
[2], extragradient methods [4], subgradient extragradient methods [3], Krasnoselski-Mann
iteration method [18], hybrid steepest descent methods [24, 25], and other [18, 22, 23].

Let f : H → R be a convex and differentiable function with a L-coercive gradient ∇f ,
i.e., 〈x − y,∇f (x) − ∇f (y)〉 ≥ L‖∇f (x) − ∇f (y)‖2 ∀x, y ∈ H, and let g : H → R be
a proper lower semicontinuous and convex function. Consider the convex problem

min
x∈H{f (x) + g(x)}. (1.1)

It can be shown that x∗ is a solution point of the problem (1.1) if and only if it is
characterized by the fixed point equation

x∗ = proxcg(I − c∇f )(x∗),

where c > 0, the proximal operator of f is defined by proxf (x) = argmin{f (y) + 1
2‖y −

x‖2 : y ∈ H} and I is the identity operator. For solving the problem (1.1), the fixed point
equation leads to the following iteration:

x0 ∈ H, xk+1 = proxεkg
︸ ︷︷ ︸

backward step

(I − εk∇f )(xk)
︸ ︷︷ ︸

forward step

, k ∈ N. (1.2)

Under the condition εk ∈
(

0, 2
L

)

, Nakajo et al. [19] show that {xk} converges strongly to a

solution of the problem (1.1). The iteration method (1.2) is known as the forward-backward
splitting. By using inertial techniques and the forward-backward splitting method, Beck and
Teboulle [6] proposed the fast iterative shrinkage-thresholding algorithm for solving the
problem (1.1) as follows:

{

yk = prox 1
L g

[

xk − 1
L∇f (xk)

]

,

xk+1 = yk + θk(y
k − yk−1),

(1.3)

where tk+1 = 1+
√

1+4t2
k

2 , θk = tk−1
tk+1

, x0 ∈ H and t0 = 1. Then, the rate of convergence is
established and also applied to image restoration problems. In recent years, there have been
many authors who modified some forward-backward and inertial methods for solving the
other split type problems such as parallel inertial S-iteration forward-backward algorithm
[8] for regression and classification problems, inertial hybrid projection-proximal point
algorithms [1] for maximal monotone operators, inertial forward-backward algorithms [7]
for the minimization of the sum of two nonconvex functions, inertial proximal method [9]
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for solving Ky Fan minimax inequalities, inertial forward-backward algorithm [15] for
monotone inclusions, and other (see [20, 21] and the references therein).

It is worth noting from the above review that the convex minimization problem (1.1)
is related to the fixed point problem. Also, we know that a forward-backward operator
S := proxεg(I − ε∇f ) is nonexpansive in the case 0 < ε < 2

L , i.e., ‖Sx − Sy‖ ≤
‖x − y‖, ∀x, y ∈ H. So the study on fixed point problems for the class of nonexpansive
operators plays an important role in creating optimization methods.

The purpose of this paper is to propose a new iteration algorithm by using the forward-
backward iteration scheme (1.3) and inertial techniques for solving the problem VIF(F, S),
where the cost mapping F is strongly monotone and Lipschitz continuous on H. Further-
more, we prove a strong convergence result of the proposed algorithm under the condition
onto parameters. Subsequently, we apply the proposed algorithm to solving a convex
unconstrained minimization problem of the sum of two convex functions by using the
nonexpansiveness of the forward-backward operator S.

The paper is organized as follows. In Section 2, we present some definitions and lemmas
which will be used in the paper. Section 3 deals with a new inertial forward-backward
algorithm for solving the variational inequalities over the fixed point set of a nonexpansive
mapping VIF(F, S) and the proof of its strong convergence in a real Hilbert space H. As an
application of our proposed algorithm, Section 4 is devoted to solve a convex unconstrained
minimization problem of the sum of two convex functions in H.

2 Preliminaries

Denote weak and strong convergence of a sequence {xn} ⊂ H to x ∈ H by xn ⇀ x and
xn → x, respectively.

We recall that a mapping S : H → H is said to be

– Strongly monotone with constant β > 0 (shortly β-strongly monotone), if

〈S(x) − S(y), x − y〉 ≥ β‖y − x‖2, ∀x, y ∈ H;
– Lipschitz continuous with constant L > 0 (shortly L-Lipschitz continuous), if

‖Sx − Sy‖ ≤ L‖x − y‖, ∀x, y ∈ H;
– Contraction with constant L > 0, if S is L-Lipschitz continuous, where L < 1;

– Nonexpansive, if S is 1-Lipschitz continuous.

For each x ∈ H, there exists a unique point in C, denoted by PrC(x) satisfying

‖x − PrC(x)‖ ≤ ‖x − y‖, ∀y ∈ C.

The mapping PrC is usually called the metric projection of H on C. An important property
of PrC is nonexpansive on H.

Given a function g : H → R, the proximal mapping of g on C is the mapping given by

prox(g,C)(y) = argmin

{

g(x) + 1

2
‖y − x‖2 : x ∈ C

}

.

For any x ∈ H, the following three claims in [5] are equivalent

(a) u = prox(g,C)(x);
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(b) x − u ∈ ∂g(u) := {wu ∈ H : g(x) − g(u) ≥ 〈wu, x − u〉, ∀x ∈ H};
(c) 〈x − u, y − u〉 ≤ g(y) − g(u), ∀y ∈ C.

Moreover, the proximal mapping of g on C is (firmly) nonexpansive and

Fix
(

prox(g,C)

) = {x ∈ C : g(x) ≤ g(y), ∀y ∈ C} .

Note that, if g is the indicator function on C (defined by δC(x) = 0 if x ∈ C; otherwise
δC(x) = +∞), then prox(g,C) = PrC .

Now we recall the following lemmas which are useful tools for proving our convergence
results.

Lemma 2.1 [20, Lemma 2.6] Let {sk} be a sequence of nonnegative real numbers and {pk}
a sequence of real numbers. Let {αk} be a sequence of real numbers in (0, 1) such that
∑∞

k=1αk = ∞. Assume that

sk+1 ≤ (1 − αk)sk + αkpk, k ∈ N.

If lim supi→∞ pki
≤ 0 for every subsequence {ski

} of {sk} satisfying

lim inf
i→∞ (ski+1 − ski

) ≥ 0,

then limk→∞ sk = 0.

Lemma 2.2 [14, Demiclosedness principle] Assume that S is a nonexpansive self-mapping
of a nonempty closed convex subset C of a real Hilbert space H. If Fix(S) �= ∅, then I − S

is demiclosed; that is, whenever {xk} is a sequence in C converging weakly to some x̄ ∈ C

and the sequence {(I −S)(xk)} converges strongly to some ȳ, it follows that (I −S)(x̄) = ȳ.
Here I is the identity operator of H.

3 Algorithm and Its Convergence

For solving the variational inequalities over the fixed point set VIF(F, S), we assume the
mappings F and S, parameters satisfy the following conditions.

(A1) F is β-strongly monotone, L-Lipschitz continuous such that β > 0 and L > 0;
(A2) S is nonexpansive;
(A3) The solution set of the problem VIF(F, S) is nonempty;
(A4) For every k ≥ 0, the positive parameters βk, γk, τk, λk and {μk} satisfy the following

restrictions:

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

0 < c1 ≤ βk ≤ c2 < 1, μk ≤ η,

0 < γk < 1, lim
k→∞γk = 0,

∞
∑

k=1
γk = ∞,

lim
k→∞

τk

γk
= 0, λk ∈

(

β

L2 ,
2β

L2

)

, a ∈ (0, 1),

√

1 − 2λkβ + λ2
kL

2 < 1 − a.

(3.1)
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Algorithm 3.1 (Hybrid inertial contraction algorithm)

Initialization: Take x0, x1 ∈ H arbitrarily.

Iterative steps: k = 1, 2, . . .

Step 1. Compute an inertial parameter

θk =
⎧

⎨

⎩

min

{

μk,
τk

‖xk − xk−1‖
}

if ‖xk − xk−1‖ �= 0,

μk otherwise.

Step 2. Compute

⎧

⎨

⎩

wk = xk + θk(x
k − xk−1),

zk = (1 − γk)Swk + γk

[

wk − λkF (wk)
]

,

xk+1 = (1 − βk)Swk + βkSzk .
(3.2)

Step 3. Set k := k + 1 and return to Step 1.

A strong convergence result is established in the following theorem.

Theorem 3.2 Assume that the assumptions (A1)–(A4) are satiSfied. Then, the sequence
{xk} generated by Algorithm 3.1 converges strongly to a unique solution x∗ of the problem
VIF(F, S).

Proof Since F is β-strongly monotone and L-Lipschitz continuous on H, for each λk > 0,
we have

‖wk − λkF (wk) − [x∗ − λkF (x∗)]‖2

= ‖wk − x∗‖2 − 2λk〈F(wk) − F(x∗), wk − x∗〉 + λ2
k‖F(wk) − F(x∗)‖2

≤ ‖wk − x∗‖2 − 2λkβ‖wk − x∗‖2 + λ2
kL

2‖wk − x∗‖2

= (1 − 2λkβ + λ2
kL

2)‖wk − x∗‖2. (3.3)

It is well-known to see that F is strongly monotone, so the problem VIF(F, S) has a
unique solution, and a point x∗ ∈ Fix(S) is a solution of the problem if and only if
x∗ = PrFix(S)[x∗ − λkF (x∗)]. From the schemes (3.2) and (3.3), we get

‖zk − x∗‖ =
∥

∥

∥(1 − γk)Swk + γk

[

wk − λkF (wk)
]

− x∗
∥

∥

∥

≤ γk

∥

∥

∥wk − λkF (wk) − x∗
∥

∥

∥ + (1 − γk)‖Swk − x∗‖
≤ γk‖wk − λkF (wk) − [x∗ − λkF (x∗)]‖ + γkλk‖F(x∗)‖ + (1 − γk)‖Swk − Sx∗‖
≤ γk

√

1 − 2λkβ + λ2
kL

2‖wk − x∗‖ + γkλk‖F(x∗)‖ + (1 − γk)‖wk − x∗‖
= [1 − γk(1 − δk)]‖wk − x∗‖ + γkλk‖F(x∗)‖, (3.4)
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where δk :=
√

1 − 2λkβ + λ2
kL

2 ∈ (0, 1 − a). Combining this and (3.1), we obtain

‖xk+1 − x∗‖
= ‖(1 − βk)Swk + βkSzk − x∗‖
≤ (1 − βk)‖Swk − Sx∗‖ + βk‖Szk − Sx∗‖
≤ (1 − βk)‖wk − x∗‖ + βk‖zk − x∗‖
≤ [1 − βkγk(1 − δk)]‖wk − x∗‖ + βkγkλk‖F(x∗)‖
≤ [1 − βkγk(1 − δk)]

(

‖xk − x∗‖ + θk‖xk − xk−1‖
)

+ βkγk

2β‖F(x∗)‖
L2

≤ [1 − βkγk(1 − δk)]‖xk − x∗‖ + βkγk

(

θk

βkγk

‖xk − xk−1‖ + 2β‖F(x∗)‖
L2

)

≤ [1 − βkγk(1 − δk)]‖xk − x∗‖ + βkγk(1 − δk)

(

θk

aβkγk

‖xk − xk−1‖ + 2β‖F(x∗)‖
aL2

)

.

By using Step 1 and the conditions (3.1), we deduce

0 ≤ θk

βkγk

‖xk − xk−1‖ ≤ τk

c1γk

→ 0 as k → ∞.

This implies M = supk

{

θk

aβkγk
‖xk − xk−1‖ + 2β‖F(x∗)‖

aL2

}

< +∞. Then,

‖xk+1 − x∗‖ ≤ [1 − βkγk(1 − δk)]‖xk − x∗‖ + βkγk(1 − δk)M

≤ max
{

‖xk − x∗‖,M
}

.

By mathematical induction, we deduce that

‖xk − x∗‖ ≤ max
{

‖x1 − x∗‖,M
}

, ∀k ≥ 1.

So, {xk} is bounded. From (3.2), it follows ‖wk − xk‖ = θk‖xk − xk−1‖ < +∞. By using
(3.4), we also have that both {zk} and {wk} are bounded. By (3.3) and the relation

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H,

we get

‖zk − x∗‖2

=
∥

∥

∥(1 − γk)(Swk − x∗) + γk[wk − λkF (wk) − (x∗ − λkF (x∗))] − γkλkF (x∗)
∥

∥

∥

2

≤ ‖(1 − γk)(Swk − x∗) + γk[wk − λkF (wk) − (x∗ − λkF (x∗))]‖2

−2γkλk〈F(x∗), zk − x∗〉
≤ (1 − γk)‖Swk − x∗‖2 + γk‖wk − λkF (wk) − (x∗ − λkF (x∗))‖2

−2γkλk〈F(x∗), zk − x∗〉
≤ (1 − γk)‖wk − x∗‖2 + γkδ

2
k‖wk − x∗‖2 − 2γkλk〈F(x∗), zk − x∗〉

≤
[

1 − γk(1 − δ2
k )

]

‖wk − x∗‖2 − 2γkλk〈F(x∗), zk − x∗〉. (3.5)

From wk = xk + θk(x
k − xk−1), it implies

‖wk − x∗‖2 = ‖xk − x∗‖2 + θ2
k ‖xk − xk−1‖2 + 2θk〈xk − x∗, xk − xk−1〉

≤ ‖xk − x∗‖2 + θ2
k ‖xk − xk−1‖2 + 2θk‖xk − x∗‖‖xk − xk−1‖. (3.6)
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Combining (3.5) and (3.6), we have

‖xk+1 − x∗‖2

= ‖(1 − βk)(Swk − x∗) + βk(Szk − x∗)‖2

= (1 − βk)‖Swk − Sx∗‖2 + βk‖Szk − Sx∗‖2 − βk(1 − βk)‖Swk − Szk‖2

≤ (1 − βk)‖wk − x∗‖2 + βk‖zk − x∗‖2 − βk(1 − βk)‖Swk − Szk‖2

≤ (1 − βk)‖wk − x∗‖2 + βk(1 − γk)‖wk − x∗‖2 + βkγkδ
2
k‖wk − x∗‖2

−2βkγkλk〈F(x∗), zk − x∗〉 − βk(1 − βk)‖Swk − Szk‖2

= [1 − βkγk(1 − δ2
k )]‖wk − x∗‖2 − 2βkγkλk〈F(x∗), zk − x∗〉

−βk(1 − βk)‖Swk − Szk‖2

≤ [1 − βkγk(1 − δ2
k )]‖xk − x∗‖2 + θ2

k ‖xk − xk−1‖2 + 2θk‖xk − x∗‖‖xk − xk−1‖
−2βkγkλk〈F(x∗), zk − x∗〉 − βk(1 − βk)‖Swk − Szk‖2

≤ [1 − βkγk(1 − δ2
k )]‖xk − x∗‖2 − βk(1 − βk)‖Swk − Szk‖2 + βkγk(1 − δ2

k )σk,

where

σk := 1

1 − δ2
k

{

θ2
k

βkγk

‖xk − xk−1‖2 + 2θk

βkγk

‖xk − x∗‖‖xk − xk−1‖

− 2λk〈F(x∗), zk − x∗〉
}

≤ 1

a(2 − a)

{

− 2λk〈F(x∗), zk − x∗〉 +
(

θk

c1γk

‖xk − xk−1‖
)

θk‖xk − xk−1‖

+2‖xk − x∗‖
(

θk

c1γk

‖xk − xk−1‖
)}

.

It follows that

‖xk+1 − x∗‖2 (3.7)

≤ [1 − βkγk(1 − δ2
k )]‖xk − x∗‖2 − βk(1 − βk)‖Swk − Szk‖2 + βkγk(1 − δ2

k )σ,

where σ := supk σk ∈ (0, ∞). Now we apply Lemma 2.1 for sk := ‖xk − x∗‖2, αk :=
βkγk(1 − δ2

k ) ∈ (0, 1) and pk := σk . Since (3.7), we have

sk+1 ≤ (1 − αk)sk + αkpk .

Assume that
{

ski

}

is a subsequence of {sk} such that

lim inf
i→∞

(

ski+1 − ski

) ≥ 0.

Combining this, (3.7), and (3.1), we obtain
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0 ≤ c1(1 − c2)lim sup
i→∞

∥

∥

∥Swki − Szki

∥

∥

∥

2

≤ lim sup
i→∞

βki

(

1 − βki

)
∥

∥

∥Swki − Szki

∥

∥

∥

2

≤ lim sup
i→∞

[

ski
− ski+1 + βki

γki
(1 − δ2

ki
)σ

]

≤ lim sup
i→∞

(

ski
− ski+1

)

= −lim inf
i→∞

(

ski+1 − ski

)

≤ 0.

Consequently,

lim
i→∞

∥

∥

∥Swki − Szki

∥

∥

∥ = 0. (3.8)

From the scheme (3.2), it follows

‖zk − Swk‖ = γk‖wk − λkF (wk) − Swk‖,
and hence ∥

∥

∥zki − Swki

∥

∥

∥ = γki

∥

∥

∥wki − λki
F (wki ) − Swki

∥

∥

∥ .

Then, using limk→∞ γk = 0 and the boundedness of {wk}, we get

lim
i→∞

∥

∥

∥zki − Swki

∥

∥

∥ = 0. (3.9)

Since (3.8) and (3.9), we obtain
∥

∥

∥zki − Szki

∥

∥

∥ ≤
∥

∥

∥zki − Swki

∥

∥

∥ +
∥

∥

∥Swki − Szki

∥

∥

∥ → 0, as i → ∞. (3.10)

We next show that lim supi→∞ pki
≤ 0. Since the condition (3.1), we have

pk = σk

≤ 1

a(2 − a)

{

− 2λk〈F(x∗), zk − x∗〉 +
(

θk

c1γk

‖xk − xk−1‖
)

θk‖xk − xk−1‖

+2‖xk − x∗‖
(

θk

c1γk

‖xk − xk−1‖
)}

≤ 1

a(2 − a)

{

− 2λk〈F(x∗), zk − x∗〉 + τk

γk

(

μk‖xk − xk−1‖
c1

+ 2‖xk − x∗‖
c1

)}

.

Since λk ∈
(

β

L2 ,
2β

L2

)

, the boundedness of {xk} and {μk}, it suffices to show that

lim sup
i→∞

〈F(x∗), x∗ − zki 〉 ≤ 0.

Since {zk} is bounded, we can assume that there exists a subsequence {z̄ki } of {zki } such that
z̄ki ⇀ x̄ and

lim sup
i→∞

〈F(x∗), x∗ − zki 〉 = lim
i→∞〈F(x∗), x∗ − z̄ki 〉.

Applying Lemma 2.2 for the nonexpansive mapping S with (3.10), we deduce that x̄ ∈
Fix(S). Thus

lim sup
i→∞

〈F(x∗), x∗ − zki 〉 = 〈F(x∗), x∗ − x̄〉 ≤ 0.

By Lemma 2.1, we can conclude that xk → x∗ as k → ∞. The proof is complete.
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4 Application to Convex Problems

In this section, we consider the minimization problem (1.1) in the form of the sum of two
convex functions in H. Let g : H → R ∪ {+∞} be proper lower semi-continuous and
convex. The proximal operator of g on C, in short proxg , is formulated as follows:

proxg(y) = argmin

{

g(x) + 1

2
‖y − x‖2 : x ∈ C

}

, y ∈ H.

It is well-known to see that proxg has the nonexpansiveness on H [5], i.e., ‖proxg(y1) −
proxg(y2)‖ ≤ ‖y1 − y2‖ for all y1, y2 ∈ H.

In this situation, we put the following assumptions:

(B1) f : H → R is convex and differentiable, its gradient ∇f is L-coercive, i.e.,
〈∇f (x) − ∇f (y), x − y〉 ≥ L‖∇f (x) − ∇f (y)‖2 for all x, y ∈ H;

(B2) g : H → R ∪ {+∞} is proper lower semicontinuous and convex;
(B3) The solution set Ω of (1.1) is nonempty;
(B4) F : H → H is β-strongly monotone and L-Lipschitz continuous.

By utilizing Algorithm 3.1, we obtain the following algorithm for solving the problem
(1.1).

Algorithm 4.1

Initialization: Take ε ∈
(

0, 2
L

)

and two points x0, x1 ∈ H arbitrarily.

Iterative steps: k = 1, 2, . . .

Step 1. Compute an inertial parameter

θk =
⎧

⎨

⎩

min

{

μk,
τk

‖xk − xk−1‖
}

if ‖xk − xk−1‖ �= 0,

μk otherwise.

Step 2. Compute

⎧

⎪
⎪
⎨

⎪
⎪
⎩

wk = xk + θk(x
k − xk−1),

vk = proxεg

[

wk − ε∇f (wk)
]

zk = (1 − γk)v
k + γk

[

wk − λkF (wk)
]

,

xk+1 = (1 − βk)v
k + βkproxεg

[

zk − ε∇f (zk)
]

.

Step 3. Set k := k + 1 and return to Step 1.

A strong convergence result is established in the following theorem.

Theorem 4.2 Assume that the assumptions (B1)–(B4) are satisfied. Under the conditions

(3.1) and ε ∈
(

0, 2
L

)

, the sequence {xk} generated by Algorithm 4.1 converges strongly to

a solution x∗ of the convex problem (1.1) Moreover, x∗ = PrΩ [x∗ − εF (x∗)].
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Proof For each x ∈ H, set S(x) = proxεg[x − ε∇f (x)]. For each x, y ∈ H, since proxεg

is nonexpansive and the assumption (B1), we have

‖S(x) − S(y)‖2 = ∥

∥proxεg[x − ε∇f (x)] − proxεg[y − ε∇f (y)]∥∥2

≤ ‖x − ε∇f (x) − [y − ε∇f (y)]‖2

= ‖x − y‖2 − 2ε〈x − y, ∇f (x) − ∇f (y)〉 + ε2‖∇f (x) − ∇f (y)‖2

≤ ‖x − y‖2 − ε(2ε − L)‖∇f (x) − ∇f (y)‖2

≤ ‖x − y‖2,

where the last inequality is deduced from ε ∈
(

0, 2
L

)

. Then, S is nonexpansive on H. So,

the convergence results are deduced from Theorem 3.2 for the nonexpansive mapping S and
the cost mapping F .
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