Skip to main content
Log in

Room temperature NO2 sensor with rapid recovery based on ZnO/In2O3 heterojunction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal oxides have been widely used in gas sensors. Metal oxides have the advantages of low cost, easy preparation and stable performance. However, the disadvantage of their high operating temperature limits their wider application. In this paper, a simple method based on hydrothermal reaction was developed to prepare ZnO/In2O3 composites with high response values capable of fast recovery. The chemical composition, microscopic morphology and structure of the ZnO/In2O3 composites were investigated by various characterization methods to determine the formation of ZnO/In2O3 heterojunction. The gas-sensitive properties of pure In2O3 and ZnO/In2O3 composites were tested at room temperature. The results showed that ZnO/In2O3 composites with different Zn/In molar ratios had short recovery time and high response value to NO2 at room temperature. Among them, the ZnO/In2O3 with Zn/In molar ratio of 2:1 showed the best gas-sensitive performance to NO2 at room temperature. The response values to NO2 were measured at concentrations of 5, 10, 20, and 30 ppm, resulting in values of 2.70, 3.26, 4.80, and 5.25, respectively. The response time to NO2 at 30 ppm was 267 s, with a recovery time of 7 s. In addition, ZnO/In2O3 composites have good long-term stability and selectivity to NO2 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Guarnieri, J.R. Balmes, Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014). https://doi.org/10.1016/S0140-6736(14)60617-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. P. Singla, S. Singhal, N. Goel, Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface. Appl. Surf. Sci. 283, 881–887 (2013). https://doi.org/10.1016/j.apsusc.2013.07.038

    Article  CAS  Google Scholar 

  3. T. Pham, G. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778

    Article  CAS  PubMed  Google Scholar 

  4. J. Jaiswal, A. Sanger, P. Tiwari, R. Chandra, MoS2 hybrid heterostructure thin film decorated with CdTe quantum dots for room temperature NO2 gas sensor. Sensor Actuat. B-Chem. 305, 127437 (2020). https://doi.org/10.1016/j.snb.2019.127437

    Article  CAS  Google Scholar 

  5. D.J. Buckley, N.C.G. Black, E.G. Castanon, C. Melios, M. Hardman, O. Kazakova, Frontiers of graphene and 2D material-based gas sensors for environmental monitoring. 2D Mater. 7(3), 032002 (2020). https://doi.org/10.1088/2053-1583/ab7bc5

    Article  CAS  Google Scholar 

  6. M. Chen, Z.H. Wang, D.M. Han, F.B. Gu, G.S. Guo, Porous ZnO polygonal nanoflakes: synthesis, use in high-sensitivity NO2 gas sensor, and proposed mechanism of gas sensing. J. Phys. Chem. C 115(26), 12763–12773 (2011). https://doi.org/10.1021/jp201816d

    Article  CAS  Google Scholar 

  7. Y.S. Kang, S. Pyo, E. Jo, J. Kim, Light-assisted recovery of reacted MoS2 for reversible NO2 sensing at room temperature. Nanotechnology 30, 355504 (2019). https://doi.org/10.1088/1361-6528/ab2277

    Article  CAS  PubMed  Google Scholar 

  8. A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, G. Yang, J. Bao, M. Kumar, M. Kumar, Photoactivated mixed in-plane and edge-enriched p-type MoS2 flake-based NO2 sensor working at room temperature. ACS Sens. 3(5), 998–1004 (2018). https://doi.org/10.1021/acssensors.8b00146

    Article  CAS  PubMed  Google Scholar 

  9. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7, 97–120 (2015). https://doi.org/10.1007/s40820-014-0023-3

    Article  CAS  Google Scholar 

  10. A. Nandan, P. Mondal, S. Kumar, N.A. Siddiqui, S. Sinha, S. Subramani, A.K. Singh, S. Raja, C.M. Hussain, Investigation of indoor air pollutants in different environmental settings and their health impact: a case study of Dehradun, India. Air Qual. Atmos. Heal. 16, 2377–2400 (2023). https://doi.org/10.1007/s11869-023-01411-3

    Article  CAS  Google Scholar 

  11. D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J.J. Luo, A.M. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7(6), 4879–4891 (2013). https://doi.org/10.1021/nn400026u

    Article  CAS  PubMed  Google Scholar 

  12. K. Luo, R.K. Li, W.J. Li, Z.S. Wang, X.M. Ma, R.M. Zhang, X. Fang, Z.L. Wu, Y. Cao, Q. Xu, Acute effects of nitrogen dioxide on cardiovascular mortality in Beijing: an exploration of spatial heterogeneity and the districtspecifc predictors. Sci. Rep. 6(1), 38328 (2016). https://doi.org/10.1038/srep38328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Shen, H. Bi, T. Li, X. Zhong, X. Chen, A. Fan, D. Wei, Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure. Appl. Surf. Sci. 434, 922–931 (2018). https://doi.org/10.1016/j.apsusc.2017.11.046

    Article  CAS  Google Scholar 

  14. K. Malook, H. Khan, M. Ali, I.U. Haque, Investigation of room temperature humidity sensing performance of mesoporous CuO particles. Mat. Sci. Semicon. Proc. 113, 105021 (2020). https://doi.org/10.1016/j.mssp.2020.105021

    Article  CAS  Google Scholar 

  15. Z. Li, Y. Zhang, H. Zhang, Y. Jiang, J. Yi, Superior NO2 sensing of MOF-derived indium-doped ZnO porous hollow cages. ACS Appl. Mater. Interfaces 12, 37489–37498 (2020). https://doi.org/10.1021/acsami.0c10420

    Article  CAS  PubMed  Google Scholar 

  16. S.P. Patil, V.L. Patil, S.S. Shendage, N.S. Harale, S.A. Vanalakar, J.H. Kim, P.S. Patil, Spray pyrolyzed indium oxide thick films as NO2 gas sensor. Ceram. Int. 42, 16160–16168 (2016). https://doi.org/10.1021/acsami.0c10420

    Article  CAS  Google Scholar 

  17. Y. Zhong, W. Li, X. Zhao, X. Jiang, S. Lin, Z. Zhen, W. Chen, D. Xie, H. Zhu, High-response room-temperature NO2 sensor and ultrafast humidity sensor based on SnO2 with rich oxygen vacancy. ACS Appl. Mater. Interfaces 11(14), 13441–13449 (2019). https://doi.org/10.1021/acsami.9b01737

    Article  CAS  PubMed  Google Scholar 

  18. M. Arain, A. Nafady, S. Sirajuddin, Z. Ibupoto, S. Sherazi, T. Shaikh, H. Khan, A. Alsalme, A. Niaz, M. Willander, Simpler and highly sensitive enzyme-free sensing of urea via NiO nanostructures modified electrode. RCS Adv. 6, 39001–39006 (2016). https://doi.org/10.1039/C6RA00521G

    Article  CAS  Google Scholar 

  19. H. Khan, K. Malook, M. Shah, Highly selective and sensitive ammonia sensor using polypyrrole/V2O5 composites. J. Mater. Sci. Mater. Electron. 28, 13873–13879 (2017). https://doi.org/10.1007/s10854-017-7235-5

    Article  CAS  Google Scholar 

  20. S. Malik, A. Khan, G. Rahman, N. Ali, H. Khan, S. Khan, M.D.P.T. Sotomayor, Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. Environ. Res. 212, 113209 (2022). https://doi.org/10.1016/j.envres.2022.113209

    Article  CAS  PubMed  Google Scholar 

  21. H. Khan, K. Malook, M. Shah, Synthesis, characterization, and electrical properties of polypyrrole–bimetallic oxide composites. J. Appl. Polym. 137(2), 47680 (2019). https://doi.org/10.1002/app.47680

    Article  CAS  Google Scholar 

  22. K. Malook, H. Khan, M. Shan, I.U. Haque, Highly selective and sensitive response of Polypyrrole–MnO2 based composites towards ammonia gas. Polym. 4(40), 1676–1683 (2019). https://doi.org/10.1002/pc.24917

    Article  CAS  Google Scholar 

  23. J. Zhang, H. Lu, C. Liu, C. Chen, X. Xin, Porous NiO–WO3 heterojunction nanofibers fabricated by electrospinning with enhanced gas sensing properties. RSC Adv. 7, 40499–40509 (2017). https://doi.org/10.1039/C7RA07663K

    Article  CAS  Google Scholar 

  24. H. Xu, J. Zhang, A.U. Rehman, L. Gong, K. Kan, L. Li, K. Shi, Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO2 at room temperature. Appl. Surf. Sci. 412, 230–237 (2017). https://doi.org/10.1016/j.apsusc.2017.03.213

    Article  CAS  Google Scholar 

  25. S. Bai, H. Fu, Y. Zhao, K. Tian, R. Luo, D. Li, A. Chen, On the construction of hollow nanofibers of ZnO-SnO2 heterojunctions to enhance the NO2 sensing properties. Sensor Actuat. B-Chem. 266, 692–702 (2018). https://doi.org/10.1016/j.snb.2018.03.055

    Article  CAS  Google Scholar 

  26. E. Espid, F. Taghipour, Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sensor Actuat. B-Chem. 241, 828–839 (2017). https://doi.org/10.1016/j.snb.2016.10.129

    Article  CAS  Google Scholar 

  27. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918). https://doi.org/10.1007/978-3-662-33915-2_7

    Article  Google Scholar 

  28. K. Malook, H. Khan, M. Shah, I.U. Haque, Synthesis, characterization and electrical properties of polypyrrole/V2O5 composites. Korean J. Chem. Eng. 35, 12–19 (2018). https://doi.org/10.1007/s11814-017-0263-2

    Article  CAS  Google Scholar 

  29. H. Khan, K. Malook, M. Shah, Polypyrrole/MnO2 composites: synthesis, structural and electrical properties. J. Mater. Sci. Mater. Electron. 29, 9090–9098 (2018). https://doi.org/10.1007/s10854-018-8936-0

    Article  CAS  Google Scholar 

  30. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  31. C. Li, Z. Du, H. Yu, T. Wang, Low-temperature sensing and high sensitivity of ZnO nanoneedles due to small size effect. Thin Solid Films 517(20), 5931–5934 (2009). https://doi.org/10.1016/j.tsf.2009.04.025

    Article  CAS  Google Scholar 

  32. L. Shi, J. Cui, F. Zhao, D. Wang, T. Xie, Y. Lin, High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO. Phys. Chem. Chem. Phys. 17, 31316–31323 (2015). https://doi.org/10.1039/C5CP05935F

    Article  CAS  PubMed  Google Scholar 

  33. K. Jiang, Y. Weng, S. Guo, Y. Yu, F. Xiao, Self-assembly of metal/semiconductor heterostructures via ligand engineering: unravelling the synergistic dual roles of metal nanocrystals toward plasmonic photoredox catalysis. Nanoscale 9, 16922–16936 (2017). https://doi.org/10.1039/C7NR04802E

    Article  CAS  PubMed  Google Scholar 

  34. K. Zhang, S. Qin, P. Tang, Y. Feng, D. Li, Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J. Hazard. Mater. 391, 122191 (2020). https://doi.org/10.1016/j.jhazmat.2020.122191

    Article  CAS  PubMed  Google Scholar 

  35. X. Zhang, B. Dong, W. Liu, X. Zhou, M. Liu, X. Sun, J. Lv, L. Zhang, W. Xu, X. Bai, L. Xu, S. Mintova, H. Song, Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sensor Actuat. B-Chem. 230, 128405 (2020). https://doi.org/10.1016/j.snb.2020.128405

    Article  CAS  Google Scholar 

  36. B. Nam, T.K. Ko, S.K. Hyun, C. Lee, NO2 sensing properties of WO3-decorated In2O3 nanorods and In2O3-decorated WO3 nanorods. Nano Converg. 6, 40 (2019). https://doi.org/10.1186/s40580-019-0205-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Bai, M. Chen, X. Li, Q. Wang, One-step CVD growth of ZnO nanorod/SnO2 film heterojunction for NO2 gas sensor. Sensor Actuat. B-Chem. 373, 132738 (2022). https://doi.org/10.1016/j.snb.2022.132738

    Article  CAS  Google Scholar 

  38. S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11, 2305–2313 (2015). https://doi.org/10.1002/smll.201402923

    Article  CAS  PubMed  Google Scholar 

  39. Z. Li, C. Lou, G. Lei, G. Lu, H. Pan, X. Liu, J. Zhang, Regulation of electronic properties of ZnO/In2O3 heterospheres via atomic layer deposition for high performance NO2 detection. CrystEngComm 29, 5060–5069 (2021). https://doi.org/10.1039/D1CE00643F

    Article  Google Scholar 

  40. F. Gu, R. Nie, D. Han, Z. Wang, In2O3-graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sensor Actuat. B-Chem. 219, 94–99 (2015). https://doi.org/10.1016/j.snb.2015.04.119

    Article  CAS  Google Scholar 

  41. D. Sun, Y. Luo, M. Debliquy, C. Zhang, Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J. Nanotechnol. 9, 2832–2844 (2018). https://doi.org/10.3762/bjnano.9.264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Wang, Y. Shen, X. Li, Y. Xia, C. Yang, Synergistic effects of UV activation and surface oxygen vacancies on the room-temperature NO2 gas sensing performance of ZnO nanowires. Sensor Actuat. B-Chem. 298, 126858 (2019). https://doi.org/10.1016/j.snb.2019.126858

    Article  CAS  Google Scholar 

  43. S. Bai, T. Guo, Y. Zhao, J. Sun, D. Li, A. Chen, C. Liu, Sensing performance and mechanism of Fe-doped ZnO microflowers. Sensor Actuat. B-Chem. 195, 657–666 (2014). https://doi.org/10.1016/j.snb.2014.01.083

    Article  CAS  Google Scholar 

  44. X. Liang, J. Zhang, L. Du, M. Zhang, Effect of resonant tunneling modulation on ZnO/In2O3 heterojunction nanocomposite in efficient detection of NO2 gas at room temperature. Sensor Actuat. B-Chem. 329, 129230 (2021). https://doi.org/10.1016/j.snb.2020.129230

    Article  CAS  Google Scholar 

  45. L. Ma, H. Fan, H. Tian, J. Fang, X. Qian, The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing. Sensor Actuat. B-Chem. 222, 508–516 (2016). https://doi.org/10.1016/j.snb.2015.08.085

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Independent Innovation Fund of the Second Research Institute of China Aerospace Science and Industry Corporation (110000856); the Fundamental Research Funds for the Central Universities (2023ZKPYTD01).

Author information

Authors and Affiliations

Authors

Contributions

XH contributed to the experiments and data analysis supervision, funding acquisition, reviewing and editing of the manuscript. YL contributed to the conceptualization of the study, experiments, data analysis, and manuscript editing. BP, YL and JP contributed to the experimental resources. GW, SM and ML contributed to the experiments.

Corresponding author

Correspondence to Xiao Huang.

Ethics declarations

Competing interests

The authors declare that they have no any competing financial interest or personal relationship that affects this work.

Ethical approval

This work did not require any ethical approval.

Consent for publication

All authors declare their consent for publication of the manuscript.

Research involving human and animal participants

No human and/or animal studies have been executed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, Y., Liu, Y. et al. Room temperature NO2 sensor with rapid recovery based on ZnO/In2O3 heterojunction. J Mater Sci: Mater Electron 35, 869 (2024). https://doi.org/10.1007/s10854-024-12649-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12649-7

Navigation