Skip to main content

Advertisement

Log in

Enhancing the photocatalytic activity of Bi2MoO6 by constructing tailored composites through a turnable amount of MoS2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ciprofloxacin (CIP, C17H18FN3O3), one of the main pollution sources detected in water, has raised intense issues. In order to resolve this issue, it is essential to achieve efficient degradation of CIP under visible light. Herein, a set of two-dimensional composites MoS2/Bi2MoO6 were constructed, and proved via XRD, FT-IR, SEM, TEM, and XPS, respectively. In addition, the results recorded that when the optimized composites 0.5%-MoS2/Bi2MoO6 were applied, the degradation rate of CIP was up to 91% at 120 min under the irradiation of visible light (> 395 nm) which was superior to that of the pure MoS2 or Bi2MoO6. UV–Vis DRS, photocurrent, and electrical impedance analyses indicate that the outperformance of 0.5%-MoS2/Bi2MoO6 is due to the optimized band gap and specific surface area. More importantly, a photocatalytic mechanism was proposed based on the analysis of GC–MS (according to the references (Dang et al. in Chem Eng J 422(15):130103, 2021; Zhu et al. in Environ Sci Pollut Res Int 30(11):28874–28888, 2022)) and active species. The result was manifest: CIP was degraded progressively under the attack of photocatalytically generated h+,.O2. This work opens up a category for the construction of efficient Bi2MoO6-based composites and proposes a hypothetical mechanism and pathway for CIP degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. O. Baaloudj, I. Assadi, N. Nasrallah, A.E. Jery, L. Khezami, A.A. Assadi, J. Water Process. 42, 102089 (2021)

    Article  Google Scholar 

  2. A. Terada, Clean Technol. Environ. Policy 21, 1699–1700 (2019)

    Article  Google Scholar 

  3. X. Zhou, Z. Zhang, P. Chen, S.J. Yang, Y. Yang, Chin. J. Inorg. Chem. 38(9), 1716–1728 (2022)

    CAS  Google Scholar 

  4. S. Singh, N. Sharma, P. Sehrawat, S.K. Kansal, Environ. Toxicol. Pharmacol. 99, 104110 (2023)

    Article  CAS  PubMed  Google Scholar 

  5. R. Kaur, A. Kaur, R. Kaur, S. Singh, M.S. Bhatti, A. Umar, S. Baskoutas, S.K. Kansal, Adv. Powder Technol. 32(5), 1350–1361 (2021)

    Article  CAS  Google Scholar 

  6. Y. Dai, M. Liu, J. Li, S. Yang, Y. Sun, Q. Sun, W. Wang, L. Lu, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Z. Liu, Sep. Sci. Technol. 5, 1005–1021 (2019)

    Google Scholar 

  7. X.X. Zhang, Human in check: new threat from superbugs equipped with NDM-1. Protein Cell 1(12), 1051–1052 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  8. S.T. Nipa, R. Akter, A. Raihan, S.B. Rasul, U. Som, S. Ahmed, J. Alam, M.R. Khan, S. Enzo, W. Rahman, Environ. Sci. Pollut. Res. Int. 29(8), 10871–10893 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. H. Cui, X. Huang, Z. Yu, P. Chen, X. Cao, RSC Adv. 10(34), 20231–20244 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. X.C. Guo, X.Y. Li, G.Q. Gan, L. Wang, S.Y. Fan, P. Wang, M.O. Tade, S.M. Liu, ACS Appl. Mater. Interfaces 13(47), 56510–56518 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. Z. Zhang, C.T. Zou, S.J. Yang, Z.Y. Yang, Y. Yang, Chem. Eng. J. 410, 128430 (2021)

    Article  CAS  Google Scholar 

  12. S. Modi, V.K. Yadav, A. Gacem, I.H. Ali, D. Dave, S.H. Khan, K.K. Yadav, S. Rather, Y. Ahn, C.T. Son, B.H. Jeon, Water 14(11), 1749 (2022)

    Article  CAS  Google Scholar 

  13. Y.J. Shan, X.J. Tang, D.S. Shen, Z.R. Zhou, M.Z. Wang, Ecotox Environ Safe. 259, 114988 (2023)

    Article  CAS  Google Scholar 

  14. S. Sharma, R. Kumar, P. Raizada, T. Ahamad, S.M. Alshehri, V.H. Nguyen, S. Thakur, C.C. Nguyen, S.Y. Kim, Q.V. Le, P. Singh, Environ. Res. 3, 113995 (2022)

    Article  Google Scholar 

  15. H.Q. Zheng, X.R. Meng, Y.Z. Yang, J. Chen, S.S. Huo, J. Environ. Chem. Eng. 11, 110064 (2023)

    Article  CAS  Google Scholar 

  16. H.W. Huang, J.W. Zhao, B. Weng, F.L. Lai, M.L. Zhang, J. Hofkens, M.B.J. Roeffaers, J.A. Steele, J.L. Long, Angew. Chem. 61(28), e202204563 (2022)

    Article  CAS  Google Scholar 

  17. H. Li, Z.H. Chen, L. Zhao, Rare Met. 38, 420–427 (2019)

    Article  CAS  Google Scholar 

  18. K.P. Gopinath, N.V. Madhav, A. Krishnan, R. Malolan, G. Rangarajan, J. Environ. Manag. 270(15), 110906 (2020)

    Article  CAS  Google Scholar 

  19. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Water Res. 79, 128–146 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. G.T. Tasso, J. Wenk, D. Mattia, Adv. Sustain. 5(5), 2000208 (2021)

    Article  Google Scholar 

  21. V. Subhiksha, S. Kokilavani, S. Sudheer Khan, Chemosphere 290, 133228 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. S. Tayebeh, C. Dora, K. Marin, P. Marin, K.R. Marijana, K. Hrvoje, J. Dražan, A. Gabriela, K. Damir, K. Jasminka, Z. Bostjan, L.S. Urska, D.D. Dionysios, L.B. Ana, J. Environ. Chem. Eng. 9(5), 106025 (2021)

    Article  Google Scholar 

  23. Y. Cui, M. Li, N. Zhu, Y. Cheng, S.S. Lam, J. Chen, Y. Gao, J. Zhao, Nano Today 43, 101423 (2022)

    Article  Google Scholar 

  24. L. Zhang, T. Xu, T. Zhao, Y. Zhu, Appl. Catal. B 98, 138–146 (2010)

    Article  CAS  Google Scholar 

  25. G. Yin, Y. Jia, Y. Lin, C. Zhang, Z. Zhu, Y. Ma, New J. Chem. 3, 906–918 (2022)

    Article  Google Scholar 

  26. C. Liu, X. He, Y.H. Fan, J. Li, X.X. He, M. Chen, J. Environ. Chem. Eng. 10(5), 108302 (2022)

    Article  CAS  Google Scholar 

  27. F. Stelo, N. Kublik, S. Ullah, H. Wender, J. Alloys Compd. 829(15), 154591 (2020)

    Article  CAS  Google Scholar 

  28. Y.S. Xu, Z.J. Zhang, W.D. Zhang, Mater. Res. Bull. 48(4), 1420–1427 (2013)

    Article  CAS  Google Scholar 

  29. J. Guo, L. Shi, J. Zhao, Y. Wang, K. Tang, W. Zhang, X. Yuan, Appl. Catal. B 224, 692–704 (2018)

    Article  CAS  Google Scholar 

  30. W.H. Feng, Y.H. Lei, X.H. Wu, J. Yuan, J.H. Chen, D.F. Xu, X.C. Zhang, S.Y. Zhang, P. Liu, L.L. Zhang, B. Weng, J. Mater. Chem. A. 9, 1759–1769 (2021)

    Article  CAS  Google Scholar 

  31. H.W. Huang, D. Verhaeghe, B. Weng, B. Ghosh, H.W. Zhang, J. Hofkens, J.A. Steele, M.B.J. Roeffaers, Angew. Chem. 61(24), e202203261 (2022)

    Article  CAS  Google Scholar 

  32. N. Oad, P. Chandra, A. Mohammad, B. Triphathi, T. Yoon, J. Environ. Chem. Eng. 11(3), 109604 (2023)

    Article  CAS  Google Scholar 

  33. V. Hasija, P. Raizada, V.K. Thakur, A.A. Parwaz, A.M. Asiri, P. Singh, J. Environ. 5, 10430 (2020)

    Google Scholar 

  34. Q. Wang, X.X. Cao, T. Liu, K.J. Wu, J. Deng, J.S. Chen, Y.J. Cai, M.Q. Shen, C. Yu, W.K. Wang, Rare Met. 42, 484–494 (2023)

    Article  CAS  Google Scholar 

  35. N. Gao, H. Yang, D. Dong, D. Dou, Y. Liu, W. Zhou, F. Gao, C. Nan, Z. Liang, D. Yang, J. Colloid Interface Sci. 611, 294–305 (2022)

    Article  CAS  PubMed  Google Scholar 

  36. N. Baghban, E. Yilmaz, M. Soylak, Microchim. Acta 10, 3969–3976 (2017)

    Article  Google Scholar 

  37. N.A.O. Yu, A. Buslaev, M.M. Ershova, M.A. Glushkova, Bull. Acad. Sci. USSR Div. Chem. Sci. 21(4), 905–907 (1972)

    Article  Google Scholar 

  38. B. Liu, X. Liu, M. Ni, C. Feng, X. Lei, C. Li, Y. Gong, L. Niu, J. Li, L. Pan, Appl. Surf. Sci. 435(30), 280–287 (2018)

    Article  Google Scholar 

  39. X.Y. Zhang, P. Chen, Y.X. Zhao, X.J. Li, S.J. Yang, Y. Yang, Chin. J. Inorg. Chem. 39(5), 805–814 (2023)

    Google Scholar 

  40. S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, H. Chen, Adv. Mater. 17, 2775–2782 (2015)

    Article  Google Scholar 

  41. J. Bi, W. Fang, L. Li, X. Li, M. Liu, S. Liang, Z. Zhang, Y. He, H. Lin, L. Wu, S. Liu, P.K. Wong, J. Alloys Compd. 649(15), 28–34 (2015)

    Article  CAS  Google Scholar 

  42. D. Yue, D. Chen, Z. Wang, H. Ding, R. Zong, Y. Zhu, Phys. Chem. Chem. Phys. 47, 26314–26321 (2014)

    Article  Google Scholar 

  43. Y.J. Yuan, P. Wang, Z. Li, Y. Wu, W. Bai, Y. Su, J. Guan, S. Wu, J. Zhong, Z.T. Yu, Z. Zou, Appl. Catal. B 242, 1–8 (2019)

    Article  CAS  Google Scholar 

  44. C.T. Zou, Z.Y. Yang, M.J. Liang, Y.P. He, Y. Yang, S.J. Yang, NANO 13(11), 1850127 (2018)

    Article  CAS  Google Scholar 

  45. J. Guo, C.H. Shen, J. Sun, X.J. Xu, X.Y. Li, Z.H. Fei, Z.T. Liu, X.J. Wen, Sep. Purif. 259(15), 118109 (2021)

    Article  CAS  Google Scholar 

  46. S. Sinha, S. Kumar, S.K. Arora, S.N. Jha, Y. Kumar, V. Gupta, M. Tomar, J. Appl. Phys. 129, 115303 (2021)

    Article  Google Scholar 

  47. X.C. Meng, Z.Z. Li, H.M. Zeng, J. Chen, Z.S. Zhang, Appl. Catal. B 210(5), 160–172 (2017)

    Article  CAS  Google Scholar 

  48. R.A. Senthil, S. Osman, J.Q. Pan, Y.Z. Sun, T.R. Kumar, A. Manikandan, Ceram. Int. 45(15), 18683–18690 (2019)

    Article  CAS  Google Scholar 

  49. G. Gupta, S. Kansal, A. Umar, S. Akbar, Chemosphere 314, 137611 (2023)

    Article  CAS  PubMed  Google Scholar 

  50. M. Kaura, S.K. Mehtab, P. Devic, S. Kansal, J. Alloys Compd. 928, 166909 (2022)

    Article  Google Scholar 

  51. G. Gupta, M. Kaur, S.K. Kansal, A. Umar, A.A. Ibrahim, Ceram. Int. 48, 29580–29588 (2022)

    Article  CAS  Google Scholar 

  52. M. Kaur, S.K. Mehta, P. Devi, S.K. Kansal, Adv. Powder Technol. 32, 4788–4804 (2021)

    Article  CAS  Google Scholar 

  53. M. Kaur, S. Singh, S.K. Mehta, S.K. Kansal, A. Umar, A.A. Ibrahim, S. Baskoutas, J. Alloys Compd. 960, 170637 (2023)

    Article  CAS  Google Scholar 

  54. G. Gupta, A. Umar, A. Kaur, S. Sood, A. Dhir, S.K. Kansal, Mater. Res. Bull. 99, 359–366 (2018)

    Article  CAS  Google Scholar 

  55. M. Kaur, S.K. Mehta, S.K. Kansal, Environ. Sci. Pollut. Res. 30, 8464–8484 (2023)

    Article  CAS  Google Scholar 

  56. V.D. Dang, J. Adorna, T. Annadurai, T.A.N. Bui, H.L. Tran, L.Y. Lin, R.A. Dong, Chem. Eng. J. 422(15), 130103 (2021)

    Article  CAS  Google Scholar 

  57. T.T. Zhu, Y.P. Hou, G.F. Huang, T. Fu, J.H. Yang, Y.T. Wang, H.B. Zhang, Environ. Sci. Pollut. Res. Int. 30(11), 28874–28888 (2022)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22072038), the Key Research Project of Hubei Provincial Education Department (No. D20213102), and the Innovative Research Project for Graduate Students of Hubei Normal University in 2023 (No. 2023Z052), 2023 National Innovative Training Program for College Students (202310513004) and the China Scholarship Council (Grant No. 202006920038).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors analyzed and discussed the results and contributed to the writing of the paper.

Corresponding author

Correspondence to Shuijin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, W., Chen, Y. et al. Enhancing the photocatalytic activity of Bi2MoO6 by constructing tailored composites through a turnable amount of MoS2. J Mater Sci: Mater Electron 35, 732 (2024). https://doi.org/10.1007/s10854-024-12500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12500-z

Navigation