Skip to main content
Log in

Review: recent progress in aluminum matrix composites reinforced by in situ oxide ceramics

  • Lightweight Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The remarkable progress in the fields of aerospace, transportation, electronic packaging, and other industries has sparked a growing need for Al matrix composites (AMCs) with extraordinary mechanical properties. As ideal reinforcements for fabricating lightweight AMCs, oxide ceramics have garnered extensive attention due to their impressive attributes such as exceptional strength, high melting point, commendable chemical stability and resistance to oxidation. Especially, the AMCs reinforced with in situ oxide ceramics have shown more promising prospects for enhancing the compatibility of reinforcement-matrix interface and manipulating reinforcement dispersion compared to the counterparts with ex situ reinforcements, as they usually involve the formation of reinforcements through in situ chemical reactions between elements or compounds. This review focuses on recent advancements in preparation strategies, exploring the in situ reaction mechanisms and microstructural characteristics, as well as unraveling the remarkable mechanical properties of in situ oxide ceramic-reinforced AMCs. The crucial role of in situ reactions in governing reinforcement characteristics such as distribution, size, dimension, and the reinforcement-matrix interfacial structure is particularly underscored. The review is expected to facilitate a comprehensive understanding of the interplay between the various facets of the subject, which hold significant implications for guiding the development of high-performance AMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rong X, Li Y, Chen X, Zhang X, Zhao D, He C, Shi C, Zhao N (2023) Achieving high mechanical properties and corrosion resistance of Al–Zn–Mg matrix composites via regulating intragranular reinforcements. J Mater Sci Technol 153:1–7. https://doi.org/10.1016/j.jmst.2022.12.066

    Article  CAS  Google Scholar 

  2. Sun Y, Zhou C, Zhao Z, Yu Z, Wang Z, Liu H, Zhang N, Yang W, Wu G (2020) Microstructure and mechanical properties of Ti2AlC particle and in-situ TiAl3 reinforced pure Al composites. Mater Sci Eng A 785:139310. https://doi.org/10.1016/j.msea.2020.139310

    Article  CAS  Google Scholar 

  3. Xia C, Zhao Y, Chen F, Kai X, Tao R, Fang Z, Sun Y (2020) Microstructures and properties of in-situ (ZrB2 + Al2O3)np/AA6111 composites synthesized under magnetic and ultrasonic fields. Mater Res Express 7:066501. https://doi.org/10.1088/2053-1591/ab9663

    Article  CAS  Google Scholar 

  4. Jagadeesh GV, Gangi Setti S (2020) A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites. J Mater Sci 55:9848–9882. https://doi.org/10.1007/s10853-020-04715-2

    Article  CAS  Google Scholar 

  5. Ma L, Zhang X, Duan Y, Guo S, Zhao D, He C, Zhao N (2023) Constructing the coherent transition interface structure for enhancing strength and ductility of hexagonal boron nitride nanosheets/Al composites. J Mater Sci Technol 145:235–248. https://doi.org/10.1016/j.jmst.2022.10.058

    Article  CAS  Google Scholar 

  6. Zhang X, Zhao D, Shi R, Zhu S, Ma L, He C, Zhao N (2022) Investigations on the interface-dominated deformation mechanisms of two-dimensional MAX-phase Ti3Al(Cu)C2 nanoflakes reinforced copper matrix composites. Acta Mater 240:118363. https://doi.org/10.1016/j.actamat.2022.118363

    Article  CAS  Google Scholar 

  7. Guo Y, Yi D, Liu H, Wang B, Jiang B, Wang H (2019) Mechanical properties and conductivity of graphene/Al-8030 composites with directional distribution of graphene. J Mater Sci 55:3314–3328. https://doi.org/10.1007/s10853-019-04017-2

    Article  CAS  Google Scholar 

  8. Dar SM, Zhao Y, Kai X, Xu Z (2023) Effects of squeezing pressure and hot rolling on (Al3Zr/Al2O3 + ZrB2)/6016Al nanocomposites synthesized under electromagnetic field. JOM 75:1319–1332. https://doi.org/10.1007/s11837-022-05689-z

    Article  CAS  Google Scholar 

  9. Yang L, Pu B, Zhang X, Sha J, He C, Zhao N (2022) Manipulating mechanical properties of graphene/Al composites by an in-situ synthesized hybrid reinforcement strategy. J Mater Sci Technol 123:13–25. https://doi.org/10.1016/j.jmst.2021.12.072

    Article  CAS  Google Scholar 

  10. Chen X, Qian F, Bai X, Zhao D, Zhang X, Li J, He C, Shi C, Tao J, Zhao N (2022) Formation of the orientation relationship-dependent interfacial carbide in Al matrix composite affected by architectured carbon nanotube. Acta Mater 228:117758. https://doi.org/10.1016/j.actamat.2022.117758

    Article  CAS  Google Scholar 

  11. Ma K, Liu ZY, Liu BS, Xiao BL, Ma ZY (2021) Improving ductility of bimodal carbon nanotube/2009Al composites by optimizing coarse grain microstructure via hot extrusion. Compos Part A Appl Sci Manuf 140:106198. https://doi.org/10.1016/j.compositesa.2020.106198

    Article  CAS  Google Scholar 

  12. Nie J, Lu F, Huang Z, Ma X, Zhou H, Chen C, Chen X, Yang H, Cao Y, Liu X, Zhao Y, Zhu Y (2020) Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network. Materialia 9:100523. https://doi.org/10.1016/j.mtla.2019.100523

    Article  CAS  Google Scholar 

  13. Zhou Y, Zan Y, Zheng S, Shao X, Jin Q, Zhang B, Wang Q, Xiao B, Ma X, Ma Z (2019) Thermally stable microstructures and mechanical properties of B4C-Al composite with in-situ formed Mg(Al)B2. J Mater Sci Technol 35:1825–1830. https://doi.org/10.1016/j.jmst.2019.04.019

    Article  CAS  Google Scholar 

  14. Yang L, Han T, Zhang X, He C, Zhao N (2022) Cu Atoms-assisted rapid fabrication of graphene/Al composites with tailored strain-delocalization effect by spark plasma sintering. Mater Res Lett 10:567–574. https://doi.org/10.1080/21663831.2022.2066484

    Article  CAS  Google Scholar 

  15. Fan X, Li S, Xu W, Hu J, Hu S, Yu W, Zhou Y (2021) Core@shell structured Ti3C2Tx@Ni-reinforced Al composites with enhanced mechanical properties and electromagnetic interference shielding performance. J Mater Sci 56:13620–13632. https://doi.org/10.1007/s10853-021-06162-z

    Article  CAS  Google Scholar 

  16. Li Y-L, Shen P, Yang L-K, Sun X, Jiang Q-C (2019) A novel approach to the fabrication of lamellar Al2O3/6061Al composites with high-volume fractions of hard phases. Mater Sci Eng A 754:75–84. https://doi.org/10.1016/j.msea.2019.03.065

    Article  CAS  Google Scholar 

  17. Zhang T, Chen G, Zhang Z, Zhao Y, Xu J, Zhang C, Ding D (2021) Study on the Al2O3p/Al composites prepared by Al-calcined kaolin system. Mater Sci Technol 37:632–642. https://doi.org/10.1080/02670836.2021.1939483

    Article  CAS  Google Scholar 

  18. Vogel T, Ma S, Liu Y, Guo Q, Zhang D (2020) Impact of alumina content and morphology on the mechanical properties of bulk nanolaminated Al2O3-Al composites. Compos Commun 22:100462. https://doi.org/10.1016/j.coco.2020.100462

    Article  Google Scholar 

  19. Sun F, Li B, Cai C, Cai Q (2019) Effects of TiN nanoparticles on hot deformation behavior of ultra-fine grained Al2024-TiN nanocomposites prepared by spark plasma sintering. Mech Mater 138:103152. https://doi.org/10.1016/j.mechmat.2019.103152

    Article  Google Scholar 

  20. Tosun G, Kurt M (2019) The porosity, microstructure, and hardness of Al-Mg composites reinforced with micro particle SiC/Al2O3 produced using powder metallurgy. Compos B Eng 174:106965. https://doi.org/10.1016/j.compositesb.2019.106965

    Article  CAS  Google Scholar 

  21. Li Q, Qiu F, Dong BX, Geng R, Mm Lv, Zhao QL, Jiang Q-C (2018) Fabrication, microstructure refinement and strengthening mechanisms of nanosized SiCP/Al composites assisted ultrasonic vibration. Mater Sci Eng A 735:310–317. https://doi.org/10.1016/j.msea.2018.08.060

    Article  CAS  Google Scholar 

  22. Alizadeh A, Geraei M, Mahoodi MR (2019) In situ fabrication of Al–Al2O3–TiB2 hybrid nanocomposite; evaluating the effect of TiO2 and B2O3 mechanical milling time on properties of composite created through vortex casting. Mater Res Express 6:045037. https://doi.org/10.1088/2053-1591/aafa61

    Article  CAS  Google Scholar 

  23. Ju B, Yang W, Shao P, Hussain M, Zhang Q, Xiu Z, Hou X, Qiao J, Wu G (2020) Effect of interfacial microstructure on the mechanical properties of GNPs/Al composites. Carbon 162:346–355. https://doi.org/10.1016/j.carbon.2020.02.069

    Article  CAS  Google Scholar 

  24. Xiong W, Zhang X, Chen H, Tan M, Liu C (2022) Multiscale modeling of the shock-induced chemical reaction in Al/Ni composites. J Mater Sci 57:20224–20241. https://doi.org/10.1007/s10853-022-07913-2

    Article  CAS  Google Scholar 

  25. Haghi SMA, Sajjadi SA, Babakhani A (2018) In-situ fabrication of Al(Zn)–Al2O3 graded composite using the aluminothermic reaction during hot pressing. Int J Miner Metall Mater 25:832–839. https://doi.org/10.1007/s12613-018-1632-5

    Article  CAS  Google Scholar 

  26. Zhang M, Kai X, Du C, Zhao P, Chen W, Zhao Y (2023) Microstructure and mechanical properties of laser beam welding joint of in-situ (ZrB2+Al2O3)/AA7N01 nanocomposites. Mater Sci Eng A 871:144902. https://doi.org/10.1016/j.msea.2023.144902

    Article  CAS  Google Scholar 

  27. Xu J, Chen G, Zhang Z, Zhao Y, Zhou X, Zhang Z, Meng M, Liu X, Yan Q (2018) Microstructure and mechanical properties of in-situ α-Al2O3p/Al–12Si composites fabricated by direct melt reaction method with aid of electromagnetic stirring. Mater Res Express 5:116502. https://doi.org/10.1088/2053-1591/aadbee

    Article  CAS  Google Scholar 

  28. Hao G, Shi C-S, Zhao N-Q, Liu E-Z, He C-N, He F, Ma L-Y (2018) Microstructural evolution and mechanical behavior of in situ synthesized MgAl2O4 whiskers reinforced 6061 Al alloy composite after hot extrusion and annealing. Rare Met 42:1732–1742. https://doi.org/10.1007/s12598-018-1119-6

    Article  CAS  Google Scholar 

  29. Liu J, Chen Z, Zhang F, Ji G, Wang M, Ma Y, Ji V, Zhong S, Wu Y, Wang H (2018) Simultaneously increasing strength and ductility of nanoparticles reinforced Al composites via accumulative orthogonal extrusion process. Mater Res Lett 6:406–412. https://doi.org/10.1080/21663831.2018.1471421

    Article  CAS  Google Scholar 

  30. Chen YD, Dan CY, Chen C, Chen CX, Jin L, Wang HW, Chen Z (2023) Quasi in situ investigation on the influence of particle stimulate nucleation on recrystallization textures in TiB2 particles reinforced Al–3wt%Mg composites. J Mater Sci 58:9337–9348. https://doi.org/10.1007/s10853-023-08574-5

    Article  CAS  Google Scholar 

  31. Thakur A, Gupta RK, Udhayabanu V, Peshwe DR, Mahajan YY (2023) Ultrasonic assisted reactive synthesis and characterization of Al–MgAl2O4 in-situ composite. Mater Chem Phys 297:127311. https://doi.org/10.1016/j.matchemphys.2023.127311

    Article  CAS  Google Scholar 

  32. Chen YD, Li ZC, Dan CY, Chen YC, Wang HW, Wang L, Liu J, Wu Y, Chen Z (2022) Abnormal grain growth in in situ TiB2 particle-reinforced 7055 Al composites. J Mater Sci 57:1778–1795. https://doi.org/10.1007/s10853-021-06635-1

    Article  CAS  Google Scholar 

  33. Shu R, Jiang X, Li J, Shao Z, Zhu D, Song T, Luo Z (2019) Microstructures and mechanical properties of Al–Si alloy nanocomposites hybrid reinforced with nano-carbon and in-situ Al2O3. J Alloy Compd 800:150–162. https://doi.org/10.1016/j.jallcom.2019.06.030

    Article  CAS  Google Scholar 

  34. Zhang GP, Mei QS, Li CL, Chen F, Mei XM, Li JY, Ruan XF (2020) Fabrication and properties of Al–TiAl3–Al2O3 composites with high content of reinforcing particles by accumulative roll-bonding and spark plasma sintering. Mater Today Commun 24:101060. https://doi.org/10.1016/j.mtcomm.2020.101060

    Article  CAS  Google Scholar 

  35. Zhao G, Shi Z, Ta N, Ji G, Zhang R (2015) Effect of the heating rate on the microstructure of in situ Al2O3 particle-reinforced Al matrix composites prepared via displacement reactions in an Al/CuO system. Mater Des 66:492–497. https://doi.org/10.1016/j.matdes.2014.06.023

    Article  CAS  Google Scholar 

  36. Liu X, Chen G, Zhang Z, Zhao Y, Yan Q, Mou S, Zhang H (2019) Preparation and mechanical properties of in situ submicron MgAl2O4p/6061Al composites from Al–Mg–SiO2 system. Mater Res Express 6:096521. https://doi.org/10.1088/2053-1591/ab2ce5

    Article  CAS  Google Scholar 

  37. Cheng J-f, Li G-r, Wang H-m, Li P-s, Li C-q (2018) Influence of high pulsed magnetic field on the dislocations and mechanical properties of Al2O3/Al composites. J Mater Eng Perform 27:1083–1092. https://doi.org/10.1007/s11665-018-3191-3

    Article  CAS  Google Scholar 

  38. Sun X, Zhu H, Zhang D, Li C, Li J, Huang J (2019) Reaction mechanisms and tensile properties of the composites fabricated by Al–B2O3 system. J Wuhan Univ Technol Mat Sci Edit 34:1024–1029. https://doi.org/10.1007/s11595-019-2154-3

    Article  CAS  Google Scholar 

  39. Najarian AR, Emadi R, Hamzeh M (2018) Fabrication of as-cast Al matrix composite reinforced by Al2O3/Al3Ni hybrid particles via in-situ reaction and evaluation of its mechanical properties. Mater Sci Eng B 231:57–65. https://doi.org/10.1016/j.mseb.2018.09.002

    Article  CAS  Google Scholar 

  40. Sharma A, Lee H, Ahn B (2021) Microstructure and properties of in-situ Al–Si/Al2O3 composites prepared by displacement reaction. Powder Metall 64:192–197. https://doi.org/10.1080/00325899.2021.1899453

    Article  CAS  Google Scholar 

  41. Gao T, Liu L, Song J, Liu G, Liu X (2021) Synthesis and characterization of an in-situ Al2O3/Al–Cu composite with a heterogeneous structure. J Alloy Compd 868:159283. https://doi.org/10.1016/j.jallcom.2021.159283

    Article  CAS  Google Scholar 

  42. Bian Y, Gao T, Liu L, Liu G, Liu X (2020) Liquid-solid reaction mechanism in Al–ZrO2(–B2O3) system and the preparation of (α-Al2O3+ZrB2/ZrAl3)/Al composites. J Alloys Compd 842:155926. https://doi.org/10.1016/j.jallcom.2020.155926

    Article  CAS  Google Scholar 

  43. Li G, Xu T, Wang H, Xie M, Liu M, Zhang D, Zhao Y, Chen G, Kai X (2019) Microstructure and performance of nanometer γ-Al2O3p/Al composite fabricated in Al–Co3O4 components. Mater Lett 253:346–348. https://doi.org/10.1016/j.matlet.2019.06.093

    Article  CAS  Google Scholar 

  44. Zhang GP, Mei QS, Chen F, Ma Y, Mei XM, Li JY, Ruan XF, Wan L (2019) Production of a high strength Al/(TiAl3+Al2O3) composite from an Al–TiO2 system by accumulative roll-bonding and spark plasma sintering. Mater Sci Eng A 752:192–198. https://doi.org/10.1016/j.msea.2019.03.012

    Article  CAS  Google Scholar 

  45. Chao ZL, Zhang LC, Jiang LT, Qiao J, Xu ZG, Chi HT, Wu GH (2019) Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al–TiO2 system. J Alloys Compd 775:290–297. https://doi.org/10.1016/j.jallcom.2018.09.376

    Article  CAS  Google Scholar 

  46. Lakra S, Bandyopadhyay TK, Das S, Das K (2021) In situ dual matrix composite with segregated microstructure fabricated from Al–TiO2–B2O3 system by mechanical thermal process. J Alloys Compd 860:158527. https://doi.org/10.1016/j.jallcom.2020.158527

    Article  CAS  Google Scholar 

  47. Saboori A, Chen X, Badini C, Fino P, Pavese M (2019) Reactive spontaneous infiltration of Al-activated TiO2 by molten aluminum. T Nonferr Metal Soc 29:657–666. https://doi.org/10.1016/s1003-6326(19)64976-9

    Article  CAS  Google Scholar 

  48. He X, Lin B, Zhang W, Xiao H, Zhang W (2022) Microstructures and enhanced mechanical properties of (Al3Ti+Al2O3)/Al-Si composites with co-continuous network structure prepared by pressure infiltration. Ceram Int 48:36824–36834. https://doi.org/10.1016/j.ceramint.2022.08.246

    Article  CAS  Google Scholar 

  49. Liu H, Ruiying Z, Sen Y, Jinxuan L, Han Y (2019) Effect of TiO2 particle size on reinforcements, reaction mode and kinetics in Al–TiO2–C system. Mater Res Express 6:116505. https://doi.org/10.1088/2053-1591/ab4398

    Article  CAS  Google Scholar 

  50. Wang Y, Zhang J, Sun C, Cheng Z, Pang Z, Wang L, Chen H, Liu N (2022) Hypereutectic Al–Si matrix composites prepared by in situ Fe2O3/Al system. J Wuhan Univ Technol Mat Sci Edit 36:636–643. https://doi.org/10.1007/s11595-021-2455-1

    Article  CAS  Google Scholar 

  51. Raghu R, Nampoothiri J, Satish Kumar T, Subramanian R (2019) Microstructure and mechanical properties of Al/MgAl2O4 in situ composites synthesized by ultrasonic cavitation. Trans Indian Inst Met 72:1013–1021. https://doi.org/10.1007/s12666-019-01564-9

    Article  CAS  Google Scholar 

  52. Xu T, Li G, Xie M, Liu M, Zhang D, Zhao Y, Chen G, Kai X (2019) Microstructure and mechanical properties of in-situ nano γ-Al2O3p/A356 aluminum matrix composite. J Alloys Compd 787:72–85. https://doi.org/10.1016/j.jallcom.2019.02.045

    Article  CAS  Google Scholar 

  53. David Raja Selvam J, Dinaharan I, Vibin Philip S, Mashinini PM (2018) Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2+Al2O3) hybrid aluminum matrix composites. J Alloys Compd 740:529–535. https://doi.org/10.1016/j.jallcom.2018.01.016

    Article  CAS  Google Scholar 

  54. Nie B, Huimin L, Qu Y, Hu Q (2019) Study on the interface structure between in-situ reaction products and the aluminum matrix of Al–Ti–C–CuO–La2O3 system. Mater Res Express 6:1065–1067. https://doi.org/10.1088/2053-1591/ab4331

    Article  CAS  Google Scholar 

  55. Afkham Y, Khosroshahi RA, Rahimpour S, Aavani C, Brabazon D, Mousavian RT (2018) Enhanced mechanical properties of in situ aluminium matrix composites reinforced by alumina nanoparticles. Arch Civ Mech Eng 18:215–226. https://doi.org/10.1016/j.acme.2017.06.011

    Article  Google Scholar 

  56. Zhang C, Ao M, Zhai J, Shi Z, Liu H (2022) The reaction products of the Al–Nb–B2O3–CuO system in an Al 6063 alloy melt and their influence on the alloy’s structure and characteristics. Materials 15:8898. https://doi.org/10.3390/ma15248898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bian Y, Gao T, Li Z, Sun Q, Ma X, Liu X (2019) In-situ synthesis of an Al composite reinforced with multi-scale Al12Mo, (Al, Zr, Si) and Al2O3 particles through a multi-stage reaction. Mater Sci Eng A 762:138069. https://doi.org/10.1016/j.msea.2019.138069

    Article  CAS  Google Scholar 

  58. Feng Z, Wei Z, Su X, Gao Q, Xu G, Huang P, Wang W, Zu G, Mu Y (2022) Foamability and mechanical properties of in situ submicron MgAl2O4p/Al composite foams by ultrasonic method. Mater Lett 326:132968. https://doi.org/10.1016/j.matlet.2022.132968

    Article  CAS  Google Scholar 

  59. Raghu R, Nampoothiri J, Satish Kumar T (2018) In-situ generation of MgAl2O4 particles in Al–Mg alloy using H3BO3 addition for grain refinement under ultrasonic treatment. Measurement 129:389–394. https://doi.org/10.1016/j.measurement.2018.07.056

    Article  Google Scholar 

  60. Jia L, Rong X, Zhao D, Zhang X, He C, Zhao N (2022) Microstructural characteristic and mechanical properties of the in-situ MgAl2O4 reinforced Al matrix composite based on Al–Mg–ZnO system. J Alloys Compd 891:161991. https://doi.org/10.1016/j.jallcom.2021.161991

    Article  CAS  Google Scholar 

  61. Narain V, Ray S (2019) Variation in mechanical properties with MnO2 content in cast and forged in-situ Al–8Mg–MnO2 composites. J Mater Res Technol 8:4489–4497. https://doi.org/10.1016/j.jmrt.2019.07.062

    Article  CAS  Google Scholar 

  62. Yang L, Wang L, Yang M (2020) The influencing factor of MgAl2O4 on heterogeneous nucleation and grain refinement in Al alloy melts. Materials 13:231. https://doi.org/10.3390/ma13010231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen B, Kondoh K, Umeda J, Li S, Jia L, Li J (2019) Interfacial in-situ Al2O3 nanoparticles enhance load transfer in carbon nanotube (CNT)-reinforced aluminum matrix composites. J Alloys Compd 789:25–29. https://doi.org/10.1016/j.jallcom.2019.03.063

    Article  CAS  Google Scholar 

  64. Zhou C, Lv M, Zan YN, Liu Y, Shao XH, Wang QZ, Wang D, Xiao BL, Ma ZY (2022) Microstructure and mechanical properties of aluminum matrix composites produced by Al–La2O3 in-situ reaction. Mater Charact 188:111887. https://doi.org/10.1016/j.matchar.2022.111887

    Article  CAS  Google Scholar 

  65. Feng S, Li Q, Liu W, Shu G, Wang X (2020) Microstructure and mechanical properties of Al–B4C composite at elevated temperature strengthened with in situ Al2O3 network. Rare Met 39:671–679. https://doi.org/10.1007/s12598-019-01279-2

    Article  CAS  Google Scholar 

  66. Rong X, Chen X, Zhao D, Zhang X, He C, Shi C, Zhao N (2023) Effect of aging treatment on microstructure and mechanical properties of Al matrix composite reinforced by in-situ intragranular Al2O3. Mater Charact 204:113215. https://doi.org/10.1016/j.matchar.2023.113215

    Article  CAS  Google Scholar 

  67. Gao T, Liu L, Liu G, Liu S, Li C, Li M, Zhao K, Han M, Wu Y, Liu X (2022) In-situ synthesis of an Al–based composite reinforced with nanometric γ-Al2O3 and submicron AlB2 particles. J Alloys Compd 920:165985. https://doi.org/10.1016/j.jallcom.2022.165985

    Article  CAS  Google Scholar 

  68. Qu X, Wang F, Shi C, Zhao N, Liu E, He C, He F (2018) In situ synthesis of a gamma-Al2O3 whisker reinforced aluminium matrix composite by cold pressing and sintering. Mater Sci Eng A 709:223–231. https://doi.org/10.1016/j.msea.2017.10.063

    Article  CAS  Google Scholar 

  69. Shan Y, Pu B, Liu E, Shi C, He C, Zhao N (2020) In-situ synthesis of CNTs@Al2O3 wrapped structure in aluminum matrix composites with balanced strength and toughness. Mater Sci Eng A 797:140058. https://doi.org/10.1016/j.msea.2020.140058

    Article  CAS  Google Scholar 

  70. Rong X, Zhang X, Zhao D, He C, Shi C, Liu E, Zhao N (2021) In-situ Al2O3–Al interface contribution towards the strength-ductility synergy of Al-CuO composite fabricated by solid-state reactive sintering. Scr Mater 198:113825. https://doi.org/10.1016/j.scriptamat.2021.113825

    Article  CAS  Google Scholar 

  71. Rong X, Zhao D, He C, Shi C, Liu E, Zhao N (2021) Revealing the strengthening and toughening mechanisms of Al–CuO composite fabricated via in-situ solid-state reaction. Acta Mater 204:116524. https://doi.org/10.1016/j.actamat.2020.116524

    Article  CAS  Google Scholar 

  72. Wang F, Li J, Shi C, Zhao N, Liu E, He C, He F (2018) Preparation and mechanical properties of in-situ synthesized nano-MgAl2O4 particles and MgxAl(1–x)B2 whiskers co-reinforced Al matrix composites. Mater Sci Eng A 735:236–242. https://doi.org/10.1016/j.msea.2018.08.054

    Article  CAS  Google Scholar 

  73. Wang F, Li J, Shi C, Liu E, He C, Zhao N (2019) Orientation relationships and interface structure in MgAl2O4 and MgAlB4 co-reinforced Al matrix composites. ACS Appl Mater Interfaces 11:42790–42800. https://doi.org/10.1021/acsami.9b14923

    Article  CAS  PubMed  Google Scholar 

  74. Zan YN, Zhou YT, Zhao H, Liu ZY, Wang QZ, Wang D, Wang WG, Xiao BL, Ma ZY (2020) Enhancing high-temperature strength of (B4C+Al2O3)/Al designed for neutron absorbing materials by constructing lamellar structure. Compos B Eng 183:107674. https://doi.org/10.1016/j.compositesb.2019.107674

    Article  CAS  Google Scholar 

  75. Zan YN, Zhang Q, Zhou YT, Liu ZY, Wang QZ, Wang D, Xiao BL, Ren WC, Ma ZY (2020) Introducing graphene (reduced graphene oxide) into Al matrix composites for enhanced high-temperature strength. Compos B Eng 195:108095. https://doi.org/10.1016/j.compositesb.2020.108095

    Article  CAS  Google Scholar 

  76. Zhang X, Li S, Pan B, Pan D, Zhou S, Yang S, Jia L, Kondoh K (2018) A novel strengthening effect of in-situ nano Al2O3w on CNTs reinforced aluminum matrix nanocomposites and the matched strengthening mechanisms. J Alloys Compd 764:279–288. https://doi.org/10.1016/j.jallcom.2018.06.006

    Article  CAS  Google Scholar 

  77. Chen B, Kondoh K, Li JS, Qian M (2020) Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in-situ alumina nanoparticles. Compos B Eng 183:107691. https://doi.org/10.1016/j.compositesb.2019.107691

    Article  CAS  Google Scholar 

  78. Wan J, Yang J, Zhou X, Chen B, Shen J, Kondoh K, Li J (2023) Superior tensile properties of graphene/Al composites assisted by in-situ alumina nanoparticles. Carbon 204:447–455. https://doi.org/10.1016/j.carbon.2022.12.088

    Article  CAS  Google Scholar 

  79. Salarpour M, Sharifitabar M, Amirabadi H (2022) Characterization of 1050Al/Al3Ni/ZrO2 hybrid surface composites fabricated by friction stir processing. Int J Appl Ceram Technol 19:2379–2392. https://doi.org/10.1111/ijac.14060

    Article  CAS  Google Scholar 

  80. AzimiRoeen G, Kashani-Bozorg SF, Nosko M, Lotfian S (2019) Mechanical and microstructural characterization of hybrid aluminum nanocomposites synthesized from an Al–Fe3O4 system by friction stir processing. Met Mater Int 26:1441–1453. https://doi.org/10.1007/s12540-019-00393-1

    Article  CAS  Google Scholar 

  81. Keshavarz H, Kokabi A, Movahedi M (2023) Microstructure and mechanical properties of Al/graphite-zirconium oxide hybrid composite fabricated by friction stir processing. Mater Sci Eng A 862:144470. https://doi.org/10.1016/j.msea.2022.144470

    Article  CAS  Google Scholar 

  82. Fereiduni E, Movahedi M, Baghdadchi A (2017) Ultrahigh-strength friction stir spot welds of aluminium alloy obtained by Fe3O4 nanoparticles. Sci Technol Weld Join 23:63–70. https://doi.org/10.1080/13621718.2017.1356031

    Article  CAS  Google Scholar 

  83. Madhu HC, Ajay Kumar P, Perugu CS, Kailas SV (2018) Microstructure and mechanical properties of friction stir process derived Al–TiO2 Nanocomposite. J Mater Eng Perform 27:1318–1326. https://doi.org/10.1007/s11665-018-3188-y

    Article  CAS  Google Scholar 

  84. Chen C-F, Huang C-N, Kao P-W (2020) Nanometer-sized δ*-Al2O3-reinforced aluminum composites using the friction stir process: A TEM study. Mater Charact 170:110704. https://doi.org/10.1016/j.matchar.2020.110704

    Article  CAS  Google Scholar 

  85. Amram D, Schuh CA (2020) Mechanical alloying produces grain boundary segregation in Fe–Mg powders. Scr Mater 180:57–61. https://doi.org/10.1016/j.scriptamat.2020.01.021

    Article  CAS  Google Scholar 

  86. Alam SN, Sharma N, Panda D, Kumar A, Sampenga D, Sairam A, Sarky V, Krupateja MB (2018) Mechanical milling of Al and synthesis of in-situ Al2O3 particles by mechanical alloying of Al–CuO system. J Alloy Compd 753:799–812. https://doi.org/10.1016/j.jallcom.2018.03.273

    Article  CAS  Google Scholar 

  87. Azimi-Roeen G, Kashani-Bozorg SF, Nosko M, Nagy Š, Maťko I (2018) Formation of Al/(Al13Fe4 + Al2O3) nano-composites via mechanical alloying and friction stir processing. J Mater Eng Perform 27:471–482. https://doi.org/10.1007/s11665-018-3170-8

    Article  CAS  Google Scholar 

  88. Chen C-L, Lin C-H (2019) In-situ dispersed La oxides of Al6061 composites by mechanical alloying. J Alloys Compd 775:1156–1163. https://doi.org/10.1016/j.jallcom.2018.10.093

    Article  CAS  Google Scholar 

  89. Sakamoto T, Kukeya S, Ohfuji H (2019) Microstructure and room and high temperature mechanical properties of ultrafine structured Al-5 wt%Y2O3 and Al-5 wt%La2O3 nanocomposites fabricated by mechanical alloying and hot pressing. Mater Sci Eng A 748:428–433. https://doi.org/10.1016/j.msea.2019.01.091

    Article  CAS  Google Scholar 

  90. Karabulut Y, Ünal R (2022) Additive manufacturing of ceramic particle-reinforced aluminum-based metal matrix composites: a review. J Mater Sci 57:19212–19242. https://doi.org/10.1007/s10853-022-07850-0

    Article  CAS  Google Scholar 

  91. Shi Q, Mertens R, Dadbakhsh S, Li G, Yang S (2022) In-situ formation of particle reinforced Aluminium matrix composites by laser powder bed fusion of Fe2O3/AlSi12 powder mixture using laser melting/remelting strategy. J Mater Process Technol 299:117357. https://doi.org/10.1016/j.jmatprotec.2021.117357

    Article  CAS  Google Scholar 

  92. Ahmadvand MS, Azarniya A, Madaah Hosseini HR (2019) Thermomechanical synthesis of hybrid in-situ Al-(Al3Ti+Al2O3) composites through nanoscale Al–Al2TiO5 reactive system. J Alloys Compd 789:493–505. https://doi.org/10.1016/j.jallcom.2019.03.054

    Article  CAS  Google Scholar 

  93. Yolshina LA, Kvashnichev AG, Vichuzhanin DI, Smirnova EO (2022) Mechanical and thermal properties of aluminum matrix composites reinforced by in situ Al2O3 nanoparticles fabricated via direct chemical reaction in molten salts. Appl Sci 12:8907. https://doi.org/10.3390/app12178907

    Article  CAS  Google Scholar 

  94. Kwon J, Ducere JM, Alphonse P, Bahrami M, Petrantoni M, Veyan JF, Tenailleau C, Esteve A, Rossi C, Chabal YJ (2013) Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction. ACS Appl Mater Interfaces 5:605–613. https://doi.org/10.1021/am3019405

    Article  CAS  PubMed  Google Scholar 

  95. Ying DY, Zhang DL (2003) Solid state reactions between CuO and Cu(Al) or Cu9Al4 in mechanically milled composite powders. Mater Sci Eng A 361:321–330. https://doi.org/10.1016/s0921-5093(03)00567-7

    Article  Google Scholar 

  96. Umbrajkar SM, Schoenitz M, Dreizin EL (2006) Exothermic reactions in Al–CuO nanocomposites. Thermochim Acta 451:34–43. https://doi.org/10.1016/j.tca.2006.09.002

    Article  CAS  Google Scholar 

  97. Zhao G, Shi Z-m, Ta N, Zhang R-y (2014) Effect of CuO particle size on synthesis temperature and microstructure of Al2O3p–Al composites from Al–CuO system. Trans Nonferr Metal Soc 24:3901–3906. https://doi.org/10.1016/s1003-6326(14)63549-4

    Article  CAS  Google Scholar 

  98. Chen B, Zhou XY, Zhang B, Kondoh K, Li JS, Qian M (2020) Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles. Mater Sci Eng A 795:139930. https://doi.org/10.1016/j.msea.2020.139930

    Article  CAS  Google Scholar 

  99. Lanthony C, Guiltat M, Ducere JM, Verdier A, Hemeryck A, Djafari-Rouhani M, Rossi C, Chabal YJ, Esteve A (2014) Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: copper and oxygen deposition on aluminum (111) surfaces. ACS Appl Mater Interfaces 6:15086–15097. https://doi.org/10.1021/am503126k

    Article  CAS  PubMed  Google Scholar 

  100. Zahid GH, Azhar T, Musaddiq M, Rizvi SS, Ashraf M, Hussain N, Iqbal M (2011) In situ processing and aging behaviour of an aluminium/Al2O3 composite. Mater Des 32:1630–1635. https://doi.org/10.1016/j.matdes.2010.10.020

    Article  CAS  Google Scholar 

  101. Kobashi M, Choh T (1992) The fabrication of particulate composite by in situ oxidation process. J Jpn Inst Light Met 42:138–142

    Article  CAS  Google Scholar 

  102. Xue J, Yu X, Yao M, Huang H (2023) The solid-state combustion synthesis of in-situ hybrid (Al3Ni+Al2O3)/Al composites and evaluation of its mechanical properties. J Alloys Compd 934:167917. https://doi.org/10.1016/j.jallcom.2022.167917

    Article  CAS  Google Scholar 

  103. Huang L, Zhao Y, Kai X, Guan C, Gao X, Zhao P, Wang T (2022) Research on high strength and creep behavior of in-situ (Al2O3 + ZrB2)/7055 Al nanocomposites. Mater Charact 193:112296. https://doi.org/10.1016/j.matchar.2022.112296

    Article  CAS  Google Scholar 

  104. Sun H, Saba F, Fan G, Tan Z, Li Z (2022) Micro/nano-reinforcements in bimodal-grained matrix: a heterostructure strategy for toughening particulate reinforced metal matrix composites. Scr Mater 217:114774. https://doi.org/10.1016/j.scriptamat.2022.114774

    Article  CAS  Google Scholar 

  105. Gao T, Li C, Li M, Zhao K, Wu Y, Liu X (2022) Influence of heterogeneous microstructure on the tensile properties of (Al2O3+AlB2)/Al composites. Compos Commun 36:101401. https://doi.org/10.1016/j.coco.2022.101401

    Article  Google Scholar 

  106. Jiang S, Huang L, Gao X, Liu G, Zhang R, Jiao Y, Peng S, An Q, Wang S, Geng L (2021) Interstitial carbon induced FCC-Ti exhibiting ultrahigh strength in a Ti37Nb28Mo28–C7 complex concentrated alloy. Acta Mater 203:116456. https://doi.org/10.1016/j.actamat.2020.10.075

    Article  CAS  Google Scholar 

  107. Guo R-F, Wang Y, Shen P, Shaga A, Ma Y-H, Jiang Q-C (2020) Influence of matrix property and interfacial reaction on the mechanical performance and fracture mechanism of TiC reinforced Al matrix lamellar composites. Mater Sci Eng A 775:138956. https://doi.org/10.1016/j.msea.2020.138956

    Article  CAS  Google Scholar 

  108. Zhang X, Xu Y, Wang M, Liu E, Zhao N, Shi C, Lin D, Zhu F, He C (2020) A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites. Nat Commun 11:2775. https://doi.org/10.1038/s41467-020-16490-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lakra S, Bandyopadhyay TK, Das S, Das K (2020) Synthesis and characterization of in-situ (Al–Al3Ti–Al2O3)/Al dual matrix composite. J Alloys Compd 842:155745. https://doi.org/10.1016/j.jallcom.2020.155745

    Article  CAS  Google Scholar 

  110. Gao T, Liu L, Zhao K, Liu S, Han M, Liu G, Liu X (2022) Design and fabrication of a (6.4γ-Al2O3 + 18Al13Fe4)/Al (wt%) composite utilizing fine grain strengthening and dispersion strengthening at elevated temperatures. Mater. Des 215:110432. https://doi.org/10.1016/j.matdes.2022.110432

    Article  CAS  Google Scholar 

  111. Rong X, Zhao D, Chen X, Zhang X, Wan D, Shi C, He C, Zhao N (2023) Towards the work hardening and strain delocalization achieved via in-situ intragranular reinforcement in Al–CuO composite. Acta Mater 256:119110. https://doi.org/10.1016/j.actamat.2023.119110

    Article  CAS  Google Scholar 

  112. Li XN, Li PY, Liu ZQ, Ma K, Liu ZY, Xiao BL, Ma ZY (2023) Microstructure and mechanical properties of Ti3AlC2 reinforced Al–4.5 Cu–1.5 Mg composites fabricated by powder metallurgy. J Mater Sci 58:2570–2580. https://doi.org/10.1007/s10853-023-08185-0

    Article  CAS  Google Scholar 

  113. Rong X, Chen X, Zhao D, Zhang X, He C, Shi C, Zhao N (2023) High mechanical strengthened CNTs/Al composite concepts with robust interface and intragranular reinforcement achieved via interfacial thermite reaction. Compos Part A Appl Sci Manuf 173:107630. https://doi.org/10.1016/j.compositesa.2023.107630

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Chinese National Natural Science Fund for Distinguished Young Scholars [Grant No. 52025015], the National Natural Science Foundation of China [Grant Nos. 52271010, 52201162, 52130105 and 52101181], the Natural Science Foundation of Tianjin City [No. 21JCZDJC00510] and the Postdoctoral Research Foundation of China [No. 2022M712344].

Author information

Authors and Affiliations

Authors

Contributions

XR contributed to the investigation and writing—original draft. DZ contributed to the data curation, investigation, and writing—revising and editing. CH was involved in the conceptualization and supervision. NZ assisted in the supervision, project administration, and writing—revising and editing.

Corresponding authors

Correspondence to Dongdong Zhao or Naiqin Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the work reported in this paper.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, X., Zhao, D., He, C. et al. Review: recent progress in aluminum matrix composites reinforced by in situ oxide ceramics. J Mater Sci 59, 9657–9684 (2024). https://doi.org/10.1007/s10853-023-09120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09120-z

Navigation