Introduction

An intensive search for drugs effective in chemotherapy of viral infections and/or various cancers has been underway for decades. Nitrogen-containing heterocycles have diverse applications, from drugs used as antitumor agents and enzyme inhibitors (Dell’Erba et al., 1992; De Angelis et al., 2005; Iida et al., 2005) to optical materials used in light-emitting diodes and conducting polymers (Cornil et al., 2001). For example, benzo[c]isoxazole derivatives are prescribed as antipsychotic risperidone drugs (Szarfman et al., 2006) and play a key role in many organic reactions (Loudon and Tennant, 1964), notably those leading to anthranilic acids. Also, acridine derivatives, such as acridones, pyridoacridines, and imidazoacridines, are one of the oldest classes of bioactive compounds that are widely used as antibacterial (Mitra et al., 2014), antiprion (Kukowska-Kaszuba and Dzierzbicka 2007), antimalarial (Joshi and Viswanathan, 2006; Winter et al., 2008) anticancer (Kamal et al., 2004; Belmont et al., 2007), and antitumor (Qiao et al., 2012; Lang et al., 2013) agents. Recently, various derivatives of the acridine series also demonstrated significant inhibitory activities toward Plasmodium (Girault et al., 2000, 2001), Trypanosoma (Gamage et al., 1997) and Leishmania (Werbovetz et al., 1994; Di Giorgio et al., 2003) parasites, as well as potent antiviral properties (Lowden and Bastow, 2003; Goodell et al., 2006).

Recently, we reported synthesis of new derivatives of imidazo[4,5-a]acridines as very effective antibacterial agents (Sadeghian et al., 2012; Rahimizadeh et al., 2009). In continuation of our research work on the synthesis of bioactive nitrogen heterocyclic compounds (Rahimizadeh et al., 2009, 2010; Sadeghian et al., 2010; Bakavoli et al., 2010; Pordel et al., 2013), in this study, we explored the preparation and investigation of some imidazo[4,5-a]acridones as potential antiviral agents against different viral strains. Furthermore, the cytotoxic activity of these compounds was also determined.

Experimental

Materials, methods, and instruments

Methanol, N,N-dimethylformamide (DMF), methyl iodide, n-propyl bromide, n-butyl bromide, isobutyl bromide, phenyl acetonitrile, 2-(4-chlorophenyl)acetonitrile, and 2-(4-bromophenyl)acetonitrile were purchased from Merck. Potassium hydroxide was purchased from Sigma–Aldrich. All solvents were dried according to standard procedures. Compounds 1ad were synthesized as described in the literature (Preston, 2009).

Melting points were measured on an electrothermal type-9100 melting-point apparatus. The IR (as KBr disks) spectra were obtained on a Tensor 27 spectrometer, and only noteworthy absorptions are listed. The 13C NMR (100 MHz) and 1H NMR (400 MHz) spectra were recorded on a Bruker Avance DRX-400 FT spectrometer in CDCl3 and DMSO-d 6 . Chemical shifts are reported in ppm downfield from TMS as internal standard; coupling constant J is given in Hz. The mass spectra were recorded on a Varian Mat, CH-7 at 70 eV. Elemental analysis was performed on a Thermo Finnigan Flash EA microanalyzer. All measurements were carried out at room temperature.

General procedure for the synthesis of compounds 3a–j

With stirring to a solution of KOH (13 g, 231 mmol) in methanol (50 mL), 1-alkyl-5-nitrobenzimidazole 1ad (10 mmol) and aryl acetonitriles 2ac (12 mmol) were added. The mixture was refluxed for 4 h and then poured into water. The precipitate was collected by filtration, washed with water, and air-dried to give 3aj. Further purification was achieved by crystallization from suitable solvent such as EtOH.

3-Methyl-8-phenyl-3H-imidazo[4′,5′:3,4]benzo[c]isoxazole (3a)

Pale yellow crystals (methanol); m.p.: 267–269 °C [lit.(Rahimizadeh et al., 2009) m.p.: 266–268 °C]; 1H NMR (400 MHz, CDCl3) δ = 3.43 (s, 3H, N–CH3), 7.41 (d, J = 8.0 Hz, 1H, Ar H), 7.55–7.81 (m, 7H, Ar H). 13C NMR (100 MHz, CDCl3): δ = 162.4 (C, C-5), 159.7 (C, C-8), 153.6 (C, C-2), 149.4 (CH, C-7), 132.5 (C, C-9), 130.9 (CH, C-14), 129.3 (CH, C-12, C-13), 128.4 (CH, C-10, C-11), 125.8 (C, C-1), 120.5 (CH, C-4), 115.6 (CH, C-6), 103.1 (C, C-3), 35.1 (CH3, N–CH3).

8-(4-Chlorophenyl)-3-methyl-3H-imidazo[4′,5′:3,4]benzo[c]isoxazole (3b)

Pale yellow crystals (methanol); m.p.: 293–295 °C (lit. [Rahimizadeh et al., 2009] m.p.: 292–294 °C); 1H NMR (400 MHz, CDCl3) δ 3.92 (s, 3H, N-CH3), 7.42 (d, J = 9.5 Hz, 1H, Ar H), 7.58 (d, J = 9.5 Hz, 1H, Ar H), 7.67 (d, J = 8.8 Hz, 2H, Ar H), 7.89 (s, 1H, Ar H), 8.87 (d, J = 8.8 Hz, 2H, Ar H). 13C NMR (100 MHz, CDCl3): δ = 162.9 (C, C-5), 157.3 (C, C-8), 153.2 (C, C-2), 149.0 (CH, C-7), 135.3 (CH, C-14), 133.9 (C, C-9), 131.2 (CH, C-12, C-13), 129.9 (CH, C-10, C-11), 125.6 (C, C-1), 120.2 (CH, C-4), 115.5 (CH, C-6), 102.8 (C, C-3), 35.6 (CH3, N–CH3).

8-Phenyl-3-propyl-3H-imidazo[4′,5′:3,4]benzo[c]isoxazole (3c)

Pale yellow crystals (methanol); m.p.: 121–122 °C [lit.(Rahimizadeh et al., 2009) m.p.: 119–122 °C]; 1H NMR (400 MHz, CDCl3) δ 0.99 (t, J = 7.0 Hz, 3H, CH2CH 3 ), 1.77–2.12 (m, 2H, CH 2 –CH3), 4.21 (t, J = 7.0 Hz, 2H, N–CH2), 7.47–7.69 (m, 6H, Ar H), 7.89 (s, 1H, Ar H), 8.89 (d, J = 8.0 Hz, 1H, Ar H). 13C NMR (100 MHz, CDCl3): δ = 163.7 (C, C-8), 162.7 (C, C-5), 148.4 (CH, C-7), 147.3 (C, C-2), 133.8 (C, C-9), 130.3 (CH, C-14), 129.5 (CH, C-12, C-13), 127.9 (CH, C-10, C-11), 123.0 (C, C-1), 120.4 (CH, C-4), 111.2 (CH, C-6), 102.8 (C, C-3), 49.3 (CH2, N–CH2), 21.9 (CH2, CH2–CH3), 13.0 (CH3, CH2–CH3).

8-(4-Chlorophenyl)-3-propyl-3H-imidazo[4′,5′:3,4]benzo[c]isoxazole (3d)

Pale yellow crystals (methanol); m.p.: 160–163 °C [lit.(Rahimizadeh et al., 2009) m.p.: 158–160 °C]; 1H NMR (400 MHz, CDCl3) δ 1.05 (t, J = 7.3 Hz, 3H, CH2–CH 3 ), 1.85–2.21 (m, 2H, CH2–CH 2 –CH3), 4.18 (t, J = 7.3 Hz, 2H, N–CH2), 7.40 (d, J = 9.5 Hz, 1H, Ar H), 7.56 (d, J = 9.5 Hz, 1H, Ar H), 7.62 (d, J = 8.6 Hz, 2H, Ar H), 7.86 (s, 1H, Ar H), 8.89 (d, J = 8.6 Hz, 2H, Ar H). 13C NMR (100 MHz, CDCl3): δ = 162.7 (C, C-5), 158.73 (C, C-8), 148.9 (CH, C-7), 147.1 (C, C-2), 133.4 (CH, C-14), 130.5 (CH, C-12, C-13), 129.7 (CH, C-10, C-11), 129.5 (C, C-9), 122.7 (C, C-1), 120.4 (CH, C-4), 112.0 (CH, C-6), 103.3 (C, C-3), 49.5 (CH2, N–CH2), 22.3(CH2, CH2–CH3), 13.1 (CH3, CH2–CH3).

3-Butyl-8-phenyl-3H-imidazo[4′,5′:3,4]benzo[c]isoxazole (3e)

Pale yellow crystals (methanol); m.p.: 113–115 °C [lit.(Rahimizadeh et al., 2009) m.p.: 110–112 °C]; 1H NMR (400 MHz, CDCl3) δ 0.97 (t, J = 7.0 Hz, 3H, CH2–CH 3 ), 1.21–1.56 (m, 2H, CH2–CH 2 –CH3), 1.81–2.09 (m, 2H, CH2–CH 2 –CH2–CH3), 4.23 (t, J = 7.0 Hz, 2H, N–CH2), 7.47–7.69 (m, 6H, Ar H), 7.88 (s, 1H, Ar H), 8.89 (d, J = 8.0 Hz, 1H, Ar H). 13C NMR (100 MHz, CDCl3): δ = 162.3 (C, C-5), 159.6 (C, C-8), 148.6 (C, C-2), 146.0 (CH, C-7), 132.5 (C, C-9), 131.2 (CH, C-14), 129.2 (CH, C-12, C-13), 128.6 (CH, C-10, C-11), 121.1 (CH, C-4), 123.5 (C, C-1), 113.9 (CH, C-6), 103.2 (C, C-3), 48.3 (CH2, N–CH2), 31.0(CH2, CH2–CH2), 21.9 (CH2, CH2–CH2), 13.8 (CH3, CH2–CH3).

3-Butyl-8-(4-chlorophenyl)-3H-imidazo[4′,5′:3,4]benzo[c]isoxazole (3f)

Pale yellow crystals(methanol); m.p.: 155–157 °C [lit.(Rahimizadeh et al., 2009) m.p.: 157–159 °C]; 1H NMR (400 MHz, CDCl3) δ 0.98 (t, J = 7.0 Hz, 3H, CH2–CH 3 ), 1.23–1.58 (m, 2H, CH2–CH 2 –CH3), 1.82–2.10 (m, 2H, CH2–CH 2 –CH2–CH3), 4.24 (t, J = 7.0 Hz, 2H, N–CH2), 7.41 (d, J = 9.5 Hz, 1H, Ar H), 7.56 (d, J = 9.5 Hz, 1H, Ar H), 7.61 (d, J = 8.6 Hz, 2H, Ar H), 7.90 (s, 1H, Ar H), 8.87 (d, J = 8.6 Hz, 2H, Ar H). 13C NMR (100 MHz, CDCl3): δ = 162.8 (C, C-5), 157.5 (C, C-8), 155.0 (C, C-2), 149.8 (CH, C-7), 134.1 (CH, C-14), 132.0 (C, C-9), 131.0 (CH, C-12, C-13), 129.9 (CH, C-10, C-11), 122.7 (CH, C-4), 123.7 (C, C-1), 114.8 (CH, C-6), 103.2 (C, C-3), 48.7 (CH2, N–CH2), 31.5(CH2, CH2–CH2), 22.0 (CH2, CH2–CH2), 13.9 (CH3, CH2–CH3).

8-(4-Bromophenyl)-3-methyl-3H-imidazo[4′,5′:3,4]benzo[c]isoxazole (3g)

Pale yellow crystals (ethanol); yield (79 %), m.p.: 277–280 °C; 1H NMR (400 MHz, CDCl3): δ 3.92 (s, 3H, N–CH3), 7.40 (d, J = 9.0 Hz, 1H, Ar H), 7.53 (d, J = 9.0 Hz, 1H, Ar H), 7.7 (d, J = 8.0 Hz, 2H, Ar H), 7.83 (s, 1H, Ar H), 8.75 (d, J = 8.0 Hz, 2H, Ar H) ppm. 13C NMR (100 MHz, CDCl3): δ = 162.8 (C, C-5), 153.5 (C, C-2), 153.2 (C, C-8), 149.7 (CH, C-7), 134.1 (CH, C-12, C-13), 130.7 (CH, C-10, C-11), 130.1 (C, C-9), 126.0 (C, C-1), 124.6 (CH, C-14), 120.1 (CH, C-4), 115.0 (CH, C-6), 100.8 (C, C-3), 35.3 (CH3, N–CH3). MS (70 eV): m/z 330 [M + 2] + (7), 91 (100). Anal. Calcd for C15H10BrN3O (328.2): C, 54.90; H, 3.07; N, 12.80. Found: C, 54.60; H, 3.02; N, 13.01.

8-(4-Bromophenyl)-3-propyl-3H-imidazo[4′,5′:3,4]benzo[c]isoxazole (3h)

Pale yellow crystals (ethanol); yield (72 %), m.p.: 170–172 °C; 1H NMR (400 MHz, CDCl3): δ 0.97 (t, J = 7.2 Hz, 3H, CH2–CH 3 ), 1.95 (m, 2H, CH2–CH 2 –CH3), 4.18 (t, J = 7.2 Hz, 2H, N–CH2), 7.43 (d, J = 9.0 Hz, 1H, Ar H), 7.55 (d, J = 9.0 Hz, 1H, Ar H), 7.75 (d, J = 8.8 Hz, 2H, Ar H), 7.85 (s, 1H, Ar H), 8.75 (d, J = 8.8 Hz, 2H, Ar H) ppm. 13C NMR (100 MHz, CDCl3): δ = 162.5 (C, C-5), 156.1 (C, C-8), 148.1 (CH, C-7), 146.9 (C, C-2), 134.7 (CH, C-12, C-13), 130.8 (CH, C-10, C-11), 130.5 (C, C-9), 126.1 (C, C-1), 124.9 (CH, C-14), 120.1 (CH, C-4), 115.7 (CH, C-6), 100.5 (C, C-3), 49.3 (CH2, N–CH2), 22.1 (CH2, CH2–CH3), 13.3 (CH3, CH2–CH3). MS (70 eV): m/z 358 [M + 2] + (5), 91 (100). Anal. Calcd for C17H14BrN3O (356.2): C, 57.32; H, 3.96; N, 11.80. Found: C, 56.96; H, 3.93; N, 11.65.

8-(4-Bromophenyl)-3-butyl-3H-imidazo[4′,5′:3,4]benzo[c]isoxazole (3i)

Pale yellow crystals (ethanol); yield (75 %), m.p.: 155–157 °C; 1H NMR (400 MHz, CDCl3): δ 0.92 (t, J = 7.0 Hz, 3H, CH2–CH 3 ), 1.4 (m, 2H, CH2–CH 2 –CH3), 1.95 (m, 2H, CH2–CH 2 –CH2–CH3), 4.23 (t, J = 7.0 Hz, 2H, N–CH2), 7.44 (d, J = 9.0 Hz, 1H, Ar H), 7.57 (d, J = 9.0 Hz, 1H, Ar H), 7.71 (d, J = 9.0 Hz, 2H, Ar H), 7.83 (s, 1H, Ar H), 8.78 (d, J = 9.0 Hz, 2H, Ar H) ppm. 13C NMR (100 MHz, CDCl3): δ = 162.3 (C, C-5), 156.3 (C, C-8), 148.0 (CH, C-7), 146.1 (C, C-2), 134.5 (CH, C-12, C-13), 131.1 (CH, C-10, C-11), 130.4 (C, C-9), 126.2 (C, C-1), 125.4 (CH, C-14), 120.3 (CH, C-4), 115.9 (CH, C-6), 100.3 (C, C-3), 49.0 (CH2, N–CH2), 31.4 (CH2, CH2–CH2), 22.5 (CH2, CH2–CH2), 13.7 (CH3, CH2–CH3). MS (70 eV): m/z 372 [M + 2] + (3), 91 (100). Anal. Calcd for C18H16BrN3O (370.2): C, 58.39; H, 4.36; N, 11.35. Found: C, 58.12; H, 4.32; N, 11.23.

8-(4-Bromophenyl)-3-isobutyl-3H-imidazo [4′,5′:3,4] benzo [c] isoxazole (3j)

Pale yellow crystals (ethanol); yield (78 %), m.p.: 153–155 °C; 1H NMR (400 MHz, CDCl3): δ 1.01 (d, J = 7.2 Hz, 6H, CH(CH 3 )2), 2.22 (m, 1H, CH(CH3)2), 4.04 (d, J = 7.2 Hz, 2H, N–CH2), 7.46 (d, J = 9.2 Hz, 1H, Ar H), 7.57 (d, J 2 = 9.2 Hz, 1H, Ar H), 7.75 (d, J = 8.8 Hz, 2H, Ar H), 7.86 (s, 1H, Ar H), 8.81 (d, J = 8.8 Hz, 2H, Ar H) ppm. 13C NMR (100 MHz, CDCl3): δ = 162.6 (C, C-5), 156.3 (C, C-8), 148.1 (CH, C-7), 146.3 (C, C-2), 134.7 (CH, C-12, C-13), 131.3 (CH, C-10, C-11), 130.5 (C, C-9), 126.7 (C, C-1), 125.0 (CH, C-14), 120.9 (CH, C-4), 116.3 (CH, C-6), 99.8 (C, C-3), 53.8 (CH2, N–CH2), 28.8 (CH, CH(CH3)2), 18.6 (CH3, CH(CH3)2). MS (70 eV): m/z 372 [M + 2] + (1), 91 (100). Anal. Calcd for C18H16BrN3O (370.2): C, 58.39; H, 4.36; N, 11.35. Found: C, 58.18; H, 4.31; N, 11.12.

General procedure for the synthesis of 4a–j

To a solution of 3aj (10 mmol) in concentrated sulfuric acid (100 mL) maintained at −10 °C, sodium nitrite (5 g, 150 mmol) was added with stirring over a half-hour period. After the addition was completed, the mixture was allowed to warm to room temperature and to stand at room temperature for 48 h. After pouring this mixture into crushed ice and water (500 mL), the solid which precipitated was removed by filtration, was washed with water and then acetone, and dried to give 4aj.

3-Methyl-6,11-dihydro-3H-imidazo[4,5-a]acridin-11-one (4a)

Yellowish needles (EtOH + CH3CN); m.p.: >300 °C [lit.(Rahimizadeh et al., 2009) m.p.: >300 °C]; IR (KBr): 3420 cm−1 (NH), 1660 cm−1 (C=O). 1H NMR (400 MHz, DMSO-d 6 ): δ 3.92 (s, 3H, N–CH3), 7.41 (d, J = 8.9 Hz, 1H, Ar H), 7.45–7.85 (m, 5H, Ar H), 8.33 (s, 1H, Ar H), 11.79 (br s, 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ = 175.1 (C = O, C9), 141.6 (C, C-11), 140.3 (CH, C-7), 140.6 (C, C-1), 129.1 (CH, C-12), 127.7 (C, C-10), 126.7 (CH, C-15), 122.4 (C, C-2), 120.0 (CH, C-13), 119.3 (CH, C-6), 117.9 (CH, C-4), 117.5 (CH, C-14), 117.0 (CH, C-5), 107.7 (CH, C-3), 33.3 (CH3, N–CH3). MS (70 eV): m/z 249 [M] + (3), 91 (100); Anal. Calcd for C15H11N3O (249.3): C, 72.28; H, 4.45; N, 16.86. Found: C, 72.01; H, 4.42; N, 17.04.

8-Chloro-3-methyl-6,11-dihydro-3H-imidazo[4,5-a]acridin-11-one (4b)

Yellowish needles (EtOH + CH3CN); m.p.: >300 °C (decomp) [lit.(Rahimizadeh et al., 2009) m.p.: >300 °C]; IR (KBr): 3415 cm−1 (NH), 1660 cm−1 (C = O). 1H NMR (400 MHz, DMSO-d 6 ) δ 4.04 (s, 3H, N–CH3), 7.32 (dd, J = 9.5 Hz, J = 2.1 Hz, 1H, Ar H), 7.78 (d, J = 9.4 Hz, 1H, Ar H), 7.85 (d, J = 9.4 Hz, 1H, Ar H), 8.12 (d, J = 2.1 Hz, 1H, Ar H), 8.25 (d, J = 9.5 Hz, 1H, Ar H) 8.45 (s, 1H, Ar H), 11.83 (br s, 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ = 175.1 (C = O, C9), 141.9 (C, C-11), 141.4 (CH, C-7), 140.6 (C, C-1), 138.2 (CH, C-12), 127.0 (C, C-10), 126.4 (CH, C-15), 122.2 (C, C-2), 119.9 (CH, C-13), 119.2 (CH, C-6), 117.9 (CH, C-4), 117.3 (CH, C-14), 117.0 (CH, C-5), 107.4 (CH, C-3), 33.4 (CH3, N–CH3). MS (70 eV): m/z 285 [M + 2] + (1), 91 (100); Anal. Calcd for C15H10ClN3O (283.7): C, 63.50; H, 3.55; N, 14.81. Found: C, 63.43; H, 3.52; N, 14.89.

3-Propyl-6,11-dihydro-3H-imidazo[4,5-a]acridin-11-one (4c)

Yellowish needles (EtOH + CH3CN); m.p.: >300 °C (decomp) [lit.(Rahimizadeh et al., 2009) m.p.: >300 °C]; IR (KBr): 3415 cm−1 (NH), 1660 cm−1 (C=O). 1H NMR (400 MHz, DMSO-d 6 ) δ 0.79 (t, J = 7.0 Hz, 3H, CH2–CH 3 ), 1.71–2.06 (m, 2H, CH2–CH 2 –CH3), 4.26 (t, J = 7.0 Hz, 2H, N–CH2), 7.15–8.15 (m, 6H, Ar H), 8.30 (s, 1H, Ar H), 11.86 (br s, 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ = 175.0 (C = O, C9), 140.2 (C, C-11), 139.4 (CH, C-7), 138.5 (C, C-1), 129.3 (CH, C-12), 127.1 (C, C-10), 126.1 (CH, C-15), 122.1 (C, C-2), 119.5 (CH, C-13), 118.8 (CH, C-6), 117.2 (CH, C-4), 117.0 (CH, C-14), 116.6 (CH, C-5), 106.9 (CH, C-3), 52.5 (CH2, N–CH2), 21.6 (CH2, CH2–CH3), 10.0 (CH3, CH2–CH3). MS (70 eV): m/z 277 [M] + (3), 91 (100); Anal. Calcd for C17H15N3O (277.3): C, 73.63; H, 5.45; N, 15.15. Found: C, 73.49; H, 5.41; N, 15.41.

8-Chloro-3-propyl-6,11-dihydro-3H-imidazo[4,5-a]acridin-11-one (4d)

Yellowish needles (EtOH + CH3CN); m.p.: >300 °C (decomp) [lit.(Rahimizadeh et al., 2009) m.p.: >300 °C]; IR (KBr): 3415 cm−1 (NH), 1660 cm−1 (C=O). 1H NMR (400 MHz, DMSO-d 6 ) δ 0.83 (t, J = 7.1 Hz, 3H, CH2–CH 3 ), 1.69–1.95 (m, 2H, CH2–CH 2 –CH3), 4.29 (t, J = 7.1 Hz, 2H, N–CH2), 7.25 (dd, J = 9.5 Hz, J = 2.1 Hz, 1H, Ar H), 7.68 (d, J = 9.4 Hz, 1H, Ar H), 7.75 (d, J = 9.4 Hz, 1H, Ar H), 8.17 (d, J = 2.1 Hz, 1H, Ar H), 8.25 (d, J = 9.5 Hz, 1H, Ar H), 8.35 (s, 1H, Ar H), 11.80 (br s, 1H, NH);. 13C NMR (100 MHz, DMSO-d6): δ = 175.1 (C = O, C9), 140.2 (C, C-11), 140.0 (CH, C-7), 139.6 (C, C-1), 137.4 (CH, C-12), 128.4 (C, C-10), 126.1 (CH, C-15), 121.9 (C, C-2), 119.1 (CH, C-13), 119.0 (CH, C-6), 117.7 (CH, C-4), 117.1 (CH, C-14), 115.2 (CH, C-5), 106.7 (CH, C-3), 52.8 (CH2, N–CH2), 21.6 (CH2, CH2–CH3), 10.1 (CH3, CH2–CH3). MS (70 eV): m/z 313 [M + 2] + (1), 91 (100); Anal. Calcd for C17H14ClN3O (311.8): C, 65.49; H, 4.53; N, 13.48. Found: C, 65.23; H, 4.51; N, 13.69.

3-Butyl-6,11-dihydro-3H-imidazo[4,5-a]acridin-11-one (4e)

Yellowish needles (EtOH + CH3CN); m.p.: >300 °C (decomp) [lit.(Rahimizadeh et al., 2009) m.p.: >300 °C]; IR (KBr): 3415 cm−1 (NH), 1660 cm−1 (C=O). 1H NMR (400 MHz, DMSO-d 6 ) δ 0.87 (t, J = 7.0 Hz, 3H, CH2–CH 3 ), 1.16–1.51 (m, 2H, CH2–CH 2 –CH3), 1.75–2.03 (m, 2H, CH2–CH 2 –CH2–CH3), 4.30 (t, J = 7.0 Hz, 2H, N–CH2), 7.10–8.10 (m, 6H, Ar H), 8.31 (s, 1H, Ar H), 11.81 (br s, 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ = 175.1 (C = O, C9), 140.3 (C, C-11), 138.9 (CH, C-7), 138.0 (C, C-1), 129.3 (CH, C-12), 127.2 (C, C-10), 126.2 (CH, C-15), 122.1 (C, C-2), 119.5 (CH, C-13), 118.9 (CH, C-6), 117.3 (CH, C-4), 117.0 (CH, C-14), 116.6 (CH, C-5), 107.0 (CH, C-3), 49.7 (CH2, N–CH2), 30.8 (CH2, CH2–CH2), 20.4 (CH2, CH2–CH2), 11.1 (CH3, CH2–CH3). MS (70 eV): m/z 291 [M] + (5), 91 (100); Anal. Calcd for C18H17N3O (291.3): C, 74.21; H, 5.88; N, 14.42. Found: C, 73.97; H, 5.85; N, 14.50.

3-Butyl-8-chloro-6,11-dihydro-3H-imidazo[4,5-a]acridin-11-one (4f)

Yellowish needles (EtOH + CH3CN); m.p.: >300 °C (decomp) [lit.(Rahimizadeh et al., 2009) m.p.: >300 °C]; 1H NMR (400 MHz, DMSO-d 6 ) δ 0.86 (t, J = 6.5 Hz, 3H, CH2–CH 3 ), 1.13–1.48 (m, 2H, CH2–CH 2 –CH3), 1.73–2.01 (m, 2H, CH2–CH 2 –CH2–CH3), 4.33 (t, J = 6.5 Hz, 2H, N–CH2), 7.21(dd, J = 9.5 Hz, J = 2.1 Hz, 1H, Ar H), 7.58 (d, J = 9.4 Hz, 1H, Ar H), 7.65 (d, J = 9.4 Hz, 1H, Ar H), 8.15 (d, J = 2.1 Hz, 1H, Ar H), 8.25 (d, J = 9.5 Hz, 1H, Ar H) 8.30 (s, 1H, Ar H), 11.91 (br s, 1H, NH); IR (KBr): 3415 cm−1 (NH), 1660 cm−1 (C = O).);13C NMR (100 MHz, DMSO-d6): δ = 175.1 (C = O, C9), 140.3 (C, C-11), 139.7 (CH, C-7), 139.1 (C, C-1), 137.4 (CH, C-12), 128.4 (C, C-10), 126.2 (CH, C-15), 121.9 (C, C-2), 119.2 (CH, C-13), 119.0 (CH, C-6), 117.7 (CH, C-4), 117.2 (CH, C-14), 115.2 (CH, C-5), 107.4 (CH, C-3), 49.9 (CH2, N–CH2), 30.7 (CH2, CH2–CH2), 20.4 (CH2, CH2–CH2), 11.1 (CH3, CH2–CH3). MS (70 eV): m/z 327 [M + 2] + (2), 91 (100); Anal. Calcd for C18H16ClN3O (325.8): C, 66.36; H, 4.95; N, 12.90. Found: C, 66.03; H, 4.94; N, 13.09.

8-Bromo-3-methyl-3H-imidazo[4,5-a]acridin-11(6H)-one (4g)

Yellowish needles (EtOH + CH3CN); yield (70 %), m.p.: >300 °C (decomp); IR(KBr): 3400 cm−1 (NH), 1632 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d 6 ): δ 3.93 (s, 3H, N–CH3), 7.24 (dd, J = 8.4 Hz, J′ = 1.2 Hz, 1H, Ar H), 7.66 (d, J = 9.2 Hz, 1H, Ar H), 7.85 (d, J = 9.2 Hz, 1H, Ar H), 7.94(s, 1H, Ar H), 8.05 (d, J = 1.2 Hz, 1H, Ar H), 8.43 (d, J = 8.4 Hz, 1H, Ar H), 11.8 (br s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ = 175.1 (C=O, C9), 148.7 (CH, C-10), 143.4 (C, C-11), 141.9 (CH, C-7), 140.2 (C, C-1), 138.8 (CH, C-12), 129.5 (C, C-14), 125.1 (CH, C-15), 124.2 (C, C-2), 117.1 (CH, C-13), 119.0 (CH, C-6), 117.1 (CH, C-4), 117.6 (CH, C-5), 107.8 (CH, C-3), 33.9 (CH3, N–CH3). MS (70 eV): m/z 330 [M + 2] + (5), 91 (100). Anal. Calcd for C15H10BrN3O (328.2): C, 54.90; H, 3.07; N, 12.80. Found: C, 54.70; H, 3.02; N, 12.69.

8-Bromo-3-propyl-3H-imidazo [4,5-a]acridin-11(6H)-one (4h)

Yellowish needles (EtOH + CH3CN); yield (65 %), m.p.: >300 °C (decomp); IR(KBr): 3392 cm−1 (NH), 1633 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d 6 ): δ 0.86 (t, J = 6.8 Hz, 3H, CH2–CH 3 ), 1.84 (m, 2H, CH2–CH 2 –CH3), 4.31 (t, J = 6.8 Hz, 2H, N–CH2), 7.38 (d, J = 8.8 Hz, 1H, Ar H), 7.41 (d, J = 8.8 Hz, 1H, Ar H), 7.74 (s, 1H, Ar H), 8.08 (dd, J = 8.4 Hz, J′ = 1.2 Hz, 1H, Ar H), 8.18 (d, J = 8.4 Hz, 1H, Ar H), 8.35 (d, J = 1.2 Hz, 1H, Ar H), 11.8 (br s, 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ = 175.3 (C=O, C9), 148.5 (CH, C-10), 143.7 (C, C-11), 141.9 (CH, C-7), 140.5 (C, C-1), 138.4 (CH, C-12), 129.7 (C, C-14), 125.3 (CH, C-15), 124.4 (C, C-2), 117.4 (CH, C-13), 119.1 (CH, C-6), 117.2 (CH, C-4), 117.9 (CH, C-5), 107.8 (CH, C-3), 53.5 (CH2, N–CH2), 21.7 (CH2, CH2–CH3), 10.0 (CH3, CH2–CH3). MS (70 eV): m/z 358 [M + 2] + (4), 91 (100); Anal. Calcd for C17H14BrN3O (356.2): C, 57.32; H, 3.96; N, 11.80. Found: C, 57.70; H, 4.05; N, 11.56.

8-Bromo-3-butyl-3H-imidazo [4,5-a]acridin-11(6H)-one (4i)

Yellowish needles (EtOH + CH3CN); yield (67 %), m.p.: >300 °C (decomp); IR(KBr): 3423 cm−1 (NH), 1636 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d 6 ): δ 0.90 (t, J = 6.7 Hz, 3H, CH2–CH 3 ), 1.26 (m, 2H, CH2–CH 2 –CH3), 1.83 (m, 2H, CH2CH 2 –CH2–CH3), 4.41 (t, J = 6.7 Hz, 2H, N–CH2), 7.43 (d, J = 7.0 Hz, 1H, Ar H), 7.53 (d, J = 7.0 Hz, 1H, Ar H), 7.8 (s, 1H, Ar H), 8.15 (dd, J = 8.4 Hz, J′ = 1.2 Hz, 1H, Ar H), 8.25 (d, J = 8.4 Hz, 1H, Ar H), 8.86 (d, J = 1.2 Hz, 1H, Ar H), 12.06 (br s, 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ = 175.4 (C=O, C9), 148.6 (CH, C-10), 143.9 (C, C-11), 142.3 (CH, C-7), 140.6 (C, C-1), 138.3 (CH, C-12), 129.7 (C, C-14), 125.4 (CH, C-15), 124.6 (C, C-2), 117.8 (CH, C-13), 119.3 (CH, C-6), 117.1 (CH, C-4), 117.4 (CH, C-5), 107.0 (CH, C-3), 49.5 (CH2, N–CH2), 30.5 (CH2, CH2–CH2), 20.3 (CH2, CH2–CH2), 11.0 (CH3, CH2–CH3). MS (70 eV): m/z 372 [M + 2] + (3), 91 (100); Anal. Calcd for C18H16BrN3O (370.2): C, 58.39; H, 4.36; N, 11.35. Found: C, 58.67; H, 4.39; N, 11.25.

8-Bromo-3-isobutyl-3H-imidazo [4,5-a]acridin-11(6H)-one (4j)

Yellowish needles (EtOH + CH3CN); yield (72 %), m.p.: >300 °C (decomp); IR(KBr): 3391 cm−1 (NH), 1633 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d 6 ): δ 0.67 (d, J = 7.0 Hz, 6H, CH(CH 3 )2), 1.98 (m, 1H, CH(CH3)2), 4.14 (d, J = 7.0 Hz, 2H, N–CH2), 7.27 (d, J = 8.8 Hz, 1H, Ar H), 7.31 (d, J = 8.8 Hz, 1H, Ar H), 7.62 (s, 1H, Ar H), 7.95 (dd, J = 8.4 Hz, J′ = 1.2 Hz, 1H, Ar H), 8.2 (d, J = 8.4 Hz, 1H, Ar H), 8.37 (d, J = 1.2 Hz, 1H, Ar H), 11.81 (br s, 1H, NH); 13C NMR (100 MHz, DMSO-d6): δ = 175.3 (C=O, C9), 148.5 (CH, C-10), 143.8 (C, C-11), 142.0 (CH, C-7), 140.4 (C, C-1), 138.7 (CH, C-12), 129.7 (C, C-14), 125.6 (CH, C-15), 124.9 (C, C-2), 117.8 (CH, C-13), 119.3 (CH, C-6), 117.0 (CH, C-4), 117.2 (CH, C-5), 107.4 (CH, C-3), 54.6 (CH2, N–CH2), 29.5 (CH, CH(CH3)2), 18.5 (CH3, CH(CH3)2). MS (70 eV): m/z 372 [M + 2] + (2), 91 (100); Anal. Calcd for C18H16BrN3O (370.2): C, 58.39; H, 4.36; N, 11.35. Found: C, 58.21; H, 4.33; N, 11.19.

Biological evaluations

Antiviral assay (MIC or EC50) (Clercq et al., 1980, 1987)

Confluent cell cultures in microtiter 96-well plates were inoculated with 100 CCID50 of virus, one CCID50 being the virus dose required to infect 50 % of the cell cultures. After 1–2 h of virus adsorption period, residual virus was removed, and the cell cultures were incubated at 37 °C in the presence of varying concentrations of the test compounds (dilutions were made based upon CTC50). Viral cytopathogenicity was recorded as soon as it reached completion in the control virus infected cell cultures that were not treated with the test compounds after 4–5 days of post infection, microscopically. The antiviral activity of the compounds 4aj was expressed as the effective concentration required for inhibiting the viral cytopathic effect by 50 % (MIC or EC50). The CTC50 and MIC of the test compounds were compared with the standard drugs brivudine (BVDU), cidofovir, acyclovir, and ribavirin under similar conditions. By adopting the above procedure, the MIC or EC50 for all the compounds 4aj was determined.

Cytotoxicity activity assay (Piotrowska et al., 2012)

Murine leukemia L1210, human T-lymphocyte CEM, human cervix carcinoma (HeLa), and human lung fibroblast (HEL) cells were suspended at 300,000–500,000 cells/mL of culture medium, and 100 μL of a cell suspension was added to 100 μL of an appropriate dilution of the test compounds in wells of 96-well microtiter plates. After incubation at 37 °C for two (L1210) or three (CEM, HeLa, HEL) days, the cell number was determined using a Coulter counter. The IC50 was defined as the compound concentration required to inhibit cell proliferation by 50 %.

Results and discussion

Chemistry

Initially, N-alkyl-5-nitrobenzimidazoles 1ad were obtained from 5-nitrobenzimidazole using different alkyl halides treatment in DMF and KOH as previously described (Preston, 2009). 3H-imidazo[4′,5′:3,4]benzo [c] isoxazoles 3aj were accessed through the nucleophilic substitution of hydrogen of N-alkyl-5-nitrobenzimidazoles 1ad with aryl acetonitriles 2ac under basic conditions (Rahimizadeh et al., 2009; Sahraei et al., 2013; Pordel 2012) (Scheme 1). Derivatives of 3aj were converted to 3H-imidazo[4,5-a]acridones 4aj in concentrated sulfuric acid containing nitrous acid at room temperature by Tanasescu reaction (Tanasescu 1927) in fairly good yields (Scheme 1). Compounds 3gj and 4gj are new heterocyclic compounds. The structures of compounds 3gj and 4gj were unambiguously characterized on the basis of their IR, 1H NMR and mass spectra.

Scheme 1
scheme 1

Synthesis of compounds 3aj and 4aj

Antiviral and cytostatic evaluation

Compounds 4aj were evaluated for antiviral and cytostatic activity using the method described in experimental section. The results of antiviral screening of compounds 4aj against herpes simplex virus-1 (KOS), herpes simplex virus-2 (G), vaccinia virus, vesicular stomatitis virus, and herpes simplex virus-1 TK-KOS ACV r are shown in Table 1. The results of assay indicate that all the compounds have shown varying degree of cytotoxicity (i.e., from 90 to 200 μM). Based on the CTC50 non-toxic concentrations, all the synthesized compounds were subjected for antiviral activity determination against different viral strains. The results of antiviral activity (Table 1) indicated that all 3H-imidazo[4,5-a]acridones 4aj exhibited good-to-moderate antiviral activity against mentioned organisms from approximately 8 to 150 μM which is comparable with the reference drug Ribavirin.

Table 1 Antiviral activity of compounds 4aj in E6SM cell cultures

Also, the results revealed that compounds 4b, 4d, and 4f in which the R2 substituent is a chlorine function displayed greater antiviral activity than did others. Compound 4f (R2 = Cl and R1 = Bu) was the most potent of the tested compounds against viral strains. It might be due to the chain lengths and chlorine substituent that change the binding characteristics of ligands to their respective receptors and, thereby, improve the biological activities.

The cytotoxicity of the tested compounds toward the uninfected host cells was defined as the minimum compound concentration (MCC) that caused a microscopically detectable alteration of normal cell morphology. The 50 % cytostatic concentration (CC50), causing a 50 % decrease in cell proliferation, was determined against murine leukemia L1210, human lymphocyte CEM, human cervix carcinoma HeLa, and human lung fibroblast HEL cells. All of the tested compounds affected cell morphology of HEL, HeLa, Vero, MDCK, and CrFK cells at concentrations ranging from 60 to 200 μM for HeLa cells, L1210, CEM, and HEL cells (Table 2).

Table 2 Cytostatic activity of compounds 4aj

In conclusion, we synthesized a series of 3-alkyl-6,11-dihydro-3H-imidazo[4,5-a]acridin-11-one, 8-chloro-3-propyl-6,11-dihydro-3H-imidazo[4,5-a]acridin-11-one, and new 8-bromo-3-propyl-6,11-dihydro-3H-imidazo[4,5-a]acridin-11-one, which were structurally confirmed by IR, 1H NMR, 13C NMR, elemental, and MS spectral analysis. The antiviral screening for all 3H-imidazo[4,5-a]acridones (4aj) against a broad panel of DNA and RNA viral strains indicated that these compounds emerged as promising antiviral activity against different viral strains. Additionally, compounds 4aj proved slightly cytostatic (middle to higher micromolar range: 60–200 μM).

Such compounds could be selected as lead compounds for the development of novel antiviral agents active against herpes simplex virus, vaccinia virus, and vesicular stomatitis virus.