Skip to main content

Thrombotic Thrombocytopenic Purpura, Atypical Hemolytic Uremic Syndrome, and Spectrum of Thrombotic Microangiopathy

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pediatric Nephrology

Abstract

Thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS) are thrombotic microangiopathies (TMAs) which are characterized by microangiopathic hemolytic anemia (MAHA) and thrombocytopenia and show significant overlap in clinical presentation but are distinct in their underlying pathology.

TTP is caused by an inherited or acquired deficiency in a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13). ADAMTS13 cleaves von Willebrand factor (VWF) when released from endothelial cells, thus preventing the accumulation of prothrombotic ultra-large VWF (ULFWF) multimers. By difference, hemolytic uremic syndrome (HUS) is caused by infections with Shiga toxin (Stx)-producing Escherichia coli (E. coli; STEC HUS). And in the atypical form of HUS (aHUS), the endothelial injury is caused by complement dysregulation due to genetic (gain- or loss-of-function mutations) or autoimmune (inhibiting autoantibodies) causes. Recently, transient complement dysregulation has also been recognized in the absence of mutations and autoantibodies but rather as a consequence of infections, autoimmune diseases, drugs, mechanical endothelial injury, etc., thus defining a spectrum of secondary TMAs.

The advent of high precision medications which allow for the safe and efficient treatment of aHUS and TTP has fundamentally changed patient outcomes and quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Moschcowitz E. Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed disease. Proc N Y Pathol Soc. 1924;24:21–4.

    Google Scholar 

  2. Singer K, Bornstein FP, Wile SA. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses. Blood. 1947;2(6):542–54.

    Article  CAS  PubMed  Google Scholar 

  3. Schulman I, Pierce M, Lukens A, Currimbhoy Z. Studies on thrombopoiesis. I. A factor in Normal human plasma required for platelet production; chronic thrombocytopenia due to its deficiency. Blood. 1960;16:943–57.

    Article  CAS  PubMed  Google Scholar 

  4. Upshaw JD Jr. Congenital deficiency of a factor in Normal plasma that reverses microangiopathic hemolysis and thrombocytopenia. N Engl J Med. 1978;298(24):1350–2. https://doi.org/10.1056/NEJM197806152982407.

    Article  PubMed  Google Scholar 

  5. Byrnes JJ, Khurana M. Treatment of thrombotic thrombocytopenic purpura with plasma. N Engl J Med. 1977;297(25):1386–9. https://doi.org/10.1056/NEJM197712222972507.

    Article  CAS  PubMed  Google Scholar 

  6. Lian EC, Harkness DR, Byrnes JJ, Wallach H, Nunez R. Presence of a platelet aggregating factor in the plasma of patients with thrombotic thrombocytopenic purpura (TTP) and its inhibition by normal plasma. Blood. 1979;53(2):333–8.

    Article  CAS  PubMed  Google Scholar 

  7. Moake JL, Byrnes JJ, Troll JH, Weinstein MJ, Colannini MN, Azocar J. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenia purpura. N Engl J Med. 1982;307:1432–5.

    Article  CAS  PubMed  Google Scholar 

  8. Furlan M, Robles R, Lammle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996;87(10):4223–34.

    Article  CAS  PubMed  Google Scholar 

  9. Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood. 1996;87(10):4235–44.

    Article  CAS  PubMed  Google Scholar 

  10. Fujikawa K, Suzuki H, McMullen B, Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood. 2001;98(6):1662–6. https://doi.org/10.1182/blood.v98.6.1662.

    Article  CAS  PubMed  Google Scholar 

  11. Gerritsen HE, Robles R, Lammle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood. 2001;98(6):1654–61. https://doi.org/10.1182/blood.v98.6.1654.

    Article  CAS  PubMed  Google Scholar 

  12. Levy GC, Nichols WC, Lian EC, Foroud T. Mutations in a member of the ADAMTS13 gene family cause thrombotic thrombocytopenia purpura. Nature. 2001;413:488–94.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem. 2001;276(44):41059–63. https://doi.org/10.1074/jbc.C100515200.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou W, Inada M, Lee TP, Benten D, Lyubsky S, Bouhassira EE, Gupta S, Tsai HM. ADAMTS13 is expressed in hepatic stellate cells. Lab Investig. 2005;85(6):780–8. https://doi.org/10.1038/labinvest.3700275.

    Article  CAS  PubMed  Google Scholar 

  15. South K, Lane DA. ADAMTS-13 and von Willebrand factor: a dynamic duo. J Thromb Haemost. 2018;16(1):6–18. https://doi.org/10.1111/jth.13898.

    Article  CAS  PubMed  Google Scholar 

  16. Kremer Hovinga JA, Coppo P, Lammle B, Moake JL, Miyata T, Vanhoorelbeke K. Thrombotic thrombocytopenic purpura. Nat Rev Dis Primers. 2017;3:17020. https://doi.org/10.1038/nrdp.2017.20.

    Article  PubMed  Google Scholar 

  17. Joly BS, Coppo P, Veyradier A. Pediatric thrombotic thrombocytopenic purpura. Eur J Haematol. 2018;101(4):425–34. https://doi.org/10.1111/ejh.13107.

    Article  PubMed  Google Scholar 

  18. Joly BS, Boisseau P, Roose E, Stepanian A, Biebuyck N, Hogan J, Provot F, et al. ADAMTS13 gene mutations influence ADAMTS13 conformation and disease age-onset in the French cohort of Upshaw-Schulman syndrome. Thromb Haemost. 2018;118(11):1902–17. https://doi.org/10.1055/s-0038-1673686.

    Article  PubMed  Google Scholar 

  19. Alwan F, Vendramin C, Liesner R, Clark A, Lester W, Dutt T, Thomas W, et al. Characterization and treatment of congenital thrombotic thrombocytopenic purpura. Blood. 2019;133(15):1644–51. https://doi.org/10.1182/blood-2018-11-884700.

    Article  CAS  PubMed  Google Scholar 

  20. van Dorland HA, Taleghani MM, Sakai K, Friedman KD, George JN, Hrachovinova I, Knobl PN, et al. The international hereditary thrombotic thrombocytopenic purpura registry: key findings at enrollment until 2017. Haematologica. 2019;104(10):2107–15. https://doi.org/10.3324/haematol.2019.216796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moatti-Cohen M, Garrec C, Wolf M, Boisseau P, Galicier L, Azoulay E, Stepanian A, et al. Unexpected frequency of Upshaw-Schulman syndrome in pregnancy-onset thrombotic thrombocytopenic purpura. Blood. 2012;119(24):5888–97. https://doi.org/10.1182/blood-2012-02-408914.

    Article  CAS  PubMed  Google Scholar 

  22. Scully M, Thomas M, Underwood M, Watson H, Langley K, Camilleri RS, Clark A, et al. Thrombotic thrombocytopenic purpura and pregnancy: presentation, management, and subsequent pregnancy outcomes. Blood. 2014;124(2):211–9. https://doi.org/10.1182/blood-2014-02-553131.

    Article  CAS  PubMed  Google Scholar 

  23. Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339(22):1585–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomas MR, de Groot R, Scully MA, Crawley JT. Pathogenicity of anti-ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. EBioMedicine. 2015;2(8):942–52. https://doi.org/10.1016/j.ebiom.2015.06.007.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vendramin C, Thomas M, Westwood JP, Scully M. Bethesda assay for detecting inhibitory anti-ADAMTS13 antibodies in immune-mediated thrombotic thrombocytopenic purpura. TH Open. 2018;2(3):e329–33. https://doi.org/10.1055/s-0038-1672187.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luken BM, Turenhout EA, Hulstein JJ, Van Mourik JA, Fijnheer R, Voorberg J. The spacer domain of ADAMTS13 contains a major binding site for antibodies in patients with thrombotic thrombocytopenic purpura. Thromb Haemost. 2005;93(2):267–74. https://doi.org/10.1160/TH04-05-0301.

    Article  CAS  PubMed  Google Scholar 

  27. Amorosi EL, Ultmann JE. Thrombotic thrombocytopenic purpura: report of 16 cases and review of the literature. Medicine. 1966;45:139–59.

    Article  Google Scholar 

  28. Page EE, Kremer Hovinga JA, Terrell DR, Vesely SK, George JN. Thrombotic thrombocytopenic purpura: diagnostic criteria, clinical features, and long-term outcomes from 1995 through 2015. Blood Adv. 2017;1(10):590–600. https://doi.org/10.1182/bloodadvances.2017005124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coppo P, Schwarzinger M, Buffet M, Wynckel A, Clabault K, Presne C, Poullin P, et al. Predictive features of severe acquired ADAMTS13 deficiency in idiopathic thrombotic microangiopathies: the French TMA reference center experience. PLoS One. 2010;5(4):e10208. https://doi.org/10.1371/journal.pone.0010208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bendapudi PK, Hurwitz S, Fry A, Marques MB, Waldo SW, Li A, Sun L, et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol. 2017;4(4):e157–64. https://doi.org/10.1016/S2352-3026(17)30026-1.

    Article  PubMed  Google Scholar 

  31. Linder GE, Sloan SR, Bendapudi P, Makar RS. Assessment of the plasmic score utility for classification of pediatric thrombotic microangiopathies. Blood. 2019;134:1075.

    Article  Google Scholar 

  32. Gupta GK, Hendrickson JE, Tormey CA. Application of PLASMIC score in prediction of ADAMTS13 deficiency in a pediatric case of acquired thrombotic thrombocytopenic purpura. J Clin Apher. 2020;35(2):140–1. https://doi.org/10.1002/jca.21767.

    Article  PubMed  Google Scholar 

  33. Mackie I, Mancini I, Muia J, Kremer Hovinga J, Nair S, Machin S, Baker R. International Council for Standardization in Haematology (ICSH) recommendations for laboratory measurement of ADAMTS13. Int J Lab Hematol. 2020;42(6):685–96. https://doi.org/10.1111/ijlh.13295.

    Article  PubMed  Google Scholar 

  34. Kremer Hovinga JA, George JN. Hereditary thrombotic thrombocytopenic purpura. N Engl J Med. 2019;381(17):1653–62. https://doi.org/10.1056/NEJMra1813013.

    Article  PubMed  Google Scholar 

  35. Rock GA. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325(6):393–7.

    Article  CAS  PubMed  Google Scholar 

  36. Cuker A, Cataland SR, Coppo P, de la Rubia J, Friedman KD, George JN, Knoebl PN, et al. Redefining outcomes in immune TTP: an international working group consensus report. Blood. 2021;137(14):1855–61. https://doi.org/10.1182/blood.2020009150.

    Article  CAS  PubMed  Google Scholar 

  37. Cataland SR, Kourlas PJ, Yang S, Geyer S, Witkoff L, Wu H, Masias C, George JN, Wu HM. Cyclosporine or steroids as an adjunct to plasma exchange in the treatment of immune-mediated thrombotic thrombocytopenic purpura. Blood Adv. 2017;1(23):2075–82. https://doi.org/10.1182/bloodadvances.2017009308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Balduini CL, Gugliotta L, Luppi M, Laurenti L, Klersy C, Pieresca C, Quintini G, et al. High versus standard dose methylprednisolone in the acute phase of idiopathic thrombotic thrombocytopenic purpura: a randomized study. Ann Hematol. 2010;89(6):591–6. https://doi.org/10.1007/s00277-009-0877-5.

    Article  CAS  PubMed  Google Scholar 

  39. Falter T, Herold S, Weyer-Elberich V, Scheiner C, Schmitt V, von Auer C, Messmer X, et al. Relapse rate in survivors of acute autoimmune thrombotic thrombocytopenic purpura treated with or without rituximab. Thromb Haemost. 2018;118(10):1743–51. https://doi.org/10.1055/s-0038-1668545.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Froissart A, Buffet M, Veyradier A, Poullin P, Provot F, Malot S, Schwarzinger M, et al. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French Thrombotic Microangiopathies Reference Center. Crit Care Med. 2012;40(1):104–11. https://doi.org/10.1097/CCM.0b013e31822e9d66.

    Article  CAS  PubMed  Google Scholar 

  41. Page EE, Kremer Hovinga JA, Terrell DR, Vesely SK, George JN. Rituximab reduces risk for relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2016;127(24):3092–4. https://doi.org/10.1182/blood-2016-03-703827.

    Article  CAS  PubMed  Google Scholar 

  42. Scully M, McDonald V, Cavenagh J, Hunt BJ, Longair I, Cohen H, Machin SJ. A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood. 2011;118(7):1746–53. https://doi.org/10.1182/blood-2011-03-341131.

    Article  CAS  PubMed  Google Scholar 

  43. Owattanapanich W, Wongprasert C, Rotchanapanya W, Owattanapanich N, Ruchutrakool T. Comparison of the long-term remission of rituximab and conventional treatment for acquired thrombotic thrombocytopenic purpura: a systematic review and meta-analysis. Clin Appl Thromb Hemost. 2019;25:1076029618825309. https://doi.org/10.1177/1076029618825309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pavenski K. Relapse of immune thrombotic thrombocytopenic purpura following vaccination with COVID19 MRNA vaccine. TH Open. 2021;5(3):e335–7. https://doi.org/10.1055/s-0041-1732342.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Krogh AS, Waage A, Quist-Paulsen P. Congenital thrombotic thrombocytopenic purpura. Tidsskr Nor Laegeforen. 2016;136(17):1452–7. https://doi.org/10.4045/tidsskr.15.1272.

    Article  PubMed  Google Scholar 

  46. Fakhouri F, Scully M, Provôt F, Blasco M, Coppo P, Noris M, Paizis K, et al. Management of thrombotic microangiopathy in pregnancy and postpartum: report from an international working group. Blood. 2020;136(19):2103–17. https://doi.org/10.1182/blood.2020005221.

    Article  CAS  PubMed  Google Scholar 

  47. Thomas MR, Robinson S, Scully MA. How we manage thrombotic microangiopathies in pregnancy. Br J Haematol. 2016;173(6):821–30. https://doi.org/10.1111/bjh.14045.

    Article  PubMed  Google Scholar 

  48. Furlan M, Robles R, Morselli B, Sandoz P, Lammle B. Recovery and half-life of von Willebrand factor-cleaving protease after plasma therapy in patients with thrombotic thrombocytopenic purpura. Thromb Haemost. 1999;81(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  49. Kovarova P, Hrdlickova R, Blahutova S, Cermakova Z. ADAMTS13 kinetics after therapeutic plasma exchange and plasma infusion in patients with Upshaw-Schulman syndrome. J Clin Apher. 2019;34(1):13–20. https://doi.org/10.1002/jca.21664.

    Article  PubMed  Google Scholar 

  50. Taylor A, Vendramin C, Oosterholt S, Della Pasqua O, Scully M. Pharmacokinetics of plasma infusion in congenital thrombotic thrombocytopenic purpura. J Thromb Haemost. 2019;17(1):88–98. https://doi.org/10.1111/jth.14345.

    Article  CAS  PubMed  Google Scholar 

  51. Scully M, Hibbard C, Ewenstein B. Recombinant ADAMTS 13 in thrombotic thrombocytopenic purpura. Oncoscience. 2017;4(11–12):160–1. https://doi.org/10.18632/oncoscience.380.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Peyvandi F, Scully M, Kremer Hovinga JA, Cataland S, Knobl P, Wu H, Artoni A, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2016;374(6):511–22. https://doi.org/10.1056/NEJMoa1505533.

    Article  CAS  PubMed  Google Scholar 

  53. Scully M, Cataland SR, Peyvandi F, Coppo P, Knobl P, Kremer Hovinga JA, Metjian A, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380(4):335–46. https://doi.org/10.1056/NEJMoa1806311.

    Article  CAS  PubMed  Google Scholar 

  54. Knoebl P, Cataland S, Peyvandi F, Coppo P, Scully M, Kremer Hovinga JA, Metjian A, et al. Efficacy and safety of open-label caplacizumab in patients with exacerbations of acquired thrombotic thrombocytopenic purpura in the HERCULES study. J Thromb Haemost. 2020;18(2):479–84. https://doi.org/10.1111/jth.14679.

    Article  CAS  PubMed  Google Scholar 

  55. Bhoopalan SV, Hankins J, George J, Ryder A, Onder AM, Puri L. Use of caplacizumab in a child with refractory thrombotic thrombocytopenic purpura. Pediatr Blood Cancer. 2019;66(7):e27737. https://doi.org/10.1002/pbc.27737.

    Article  PubMed  Google Scholar 

  56. Dutt T, Shaw RJ, Stubbs M, Yong J, Bailiff B, Cranfield T, Crowley MP, et al. Real-world experience with caplacizumab in the management of acute TTP. Blood. 2021;137(13):1731–40. https://doi.org/10.1182/blood.2020007599.

    Article  CAS  PubMed  Google Scholar 

  57. Kaczmarek V, Holle J, Astudillo R, Kempf C, Bufler P, Muller D. Caplacizumab for relapsing thrombotic thrombocytopenic purpura. Pediatr Nephrol. 2019;34(9):1625–8. https://doi.org/10.1007/s00467-019-04281-z.

    Article  PubMed  Google Scholar 

  58. Kirpalani A, Garabon J, Amos K, Patel S, Sharma AP, Ganesan SL, Barton M, et al. Thrombotic thrombocytopenic purpura temporally associated with BNT162b2 vaccination in an adolescent successfully treated with caplacizumab. Br J Haematol. 2021; https://doi.org/10.1111/bjh.17782.

  59. Nagel MB, Ryder A, Lobbins M, Bhatt N. Refractory acquired thrombotic thrombocytopenic purpura treated with caplacizumab in a pediatric patient with systemic lupus erythematosus. Pediatr Blood Cancer. 2021;68(1):e28534. https://doi.org/10.1002/pbc.28534.

    Article  PubMed  Google Scholar 

  60. Pasupuleti M, Walse B, Nordahl EA, Mörgelin M, Malmsten M, Schmidtchen A. Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans. J Biol Chem. 2007;282(4):2520–8. https://doi.org/10.1074/jbc.M607848200.

    Article  CAS  PubMed  Google Scholar 

  61. Bekassy Z, Fagerström IL, Bader M, Karpman D. Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol. 2021; https://doi.org/10.1038/s41577-021-00634-8.

  62. Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity – a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br J Haematol. 2018;180(6):782–98. https://doi.org/10.1111/bjh.15062.

    Article  PubMed  Google Scholar 

  63. Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and functions of complement. Nat Immunol. 2017;18(12):1288–98. https://doi.org/10.1038/ni.3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lubbers R, van Essen MF, van Kooten C, Trouw LA. Production of complement components by cells of the immune system. Clin Exp Immunol. 2017;188(2):183–94. https://doi.org/10.1111/cei.12952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol. 2019;19(8):503–16. https://doi.org/10.1038/s41577-019-0168-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. White RT, Damm D, Hancock N, Rosen BS, Lowell BB, Usher P, Flier JS, Spiegelman BM. Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem. 1992;267(13):9210–3. https://doi.org/10.1016/S0021-9258(19)50409-4.

    Article  CAS  PubMed  Google Scholar 

  67. Chimenti MS, Ballanti E, Triggianese P, Perricone R. Vasculitides and the complement system: a comprehensive review. Clin Rev Allergy Immunol. 2015;49(3):333–46. https://doi.org/10.1007/s12016-014-8453-8.

    Article  CAS  PubMed  Google Scholar 

  68. Fakhouri F, Frémeaux-Bacchi V. Thrombotic microangiopathy in AHUS and beyond: clinical clues from complement genetics. Nat Rev Nephrol. 2021;17(8):543–53. https://doi.org/10.1038/s41581-021-00424-4.

    Article  CAS  PubMed  Google Scholar 

  69. Pouw RB, Ricklin D. Tipping the balance: intricate roles of the complement system in disease and therapy. Semin Immunopathol. 2021;43(6):757–71. https://doi.org/10.1007/s00281-021-00892-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weinstein A, Alexander RV, Zack DJ. A review of complement activation in SLE. Curr Rheumatol Rep. 2021;23(3):16. https://doi.org/10.1007/s11926-021-00984-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zipfel PF, Wiech T, Gröne H-J, Skerka C. Complement catalyzing glomerular diseases. Cell Tissue Res. 2021;385(2):355–70. https://doi.org/10.1007/s00441-021-03485-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Trachtman H, Christen E, Cnaan A. Urinary neutrophil gelatinase-associated lipocalin in D+ HUS: a novel marker of renal injury. Pediatr Nephrol. 2006;21:989–94.

    Article  PubMed  Google Scholar 

  73. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729–40. https://doi.org/10.1038/nri2620.

    Article  CAS  PubMed  Google Scholar 

  74. Escudero-Esparza A, Kalchishkova N, Kurbasic E, Jiang WG, Blom AM. The novel complement inhibitor human CUB and sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly. FASEB J. 2013;27(12):5083–93. https://doi.org/10.1096/fj.13-230706.

    Article  CAS  PubMed  Google Scholar 

  75. Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ. C1q: a fresh look upon an old molecule. Mol Immunol. 2017;89:73–83. https://doi.org/10.1016/j.molimm.2017.05.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dobó J, Pál G, Cervenak L, Gál P. The emerging roles of mannose-binding lectin-associated serine proteases (MASPs) in the lectin pathway of complement and beyond. Immunol Rev. 2016;274(1):98–111. https://doi.org/10.1111/imr.12460.

    Article  CAS  PubMed  Google Scholar 

  77. Kurosawa S, Stearns-Kurosawa DJ. Complement, thrombotic microangiopathy and disseminated intravascular coagulation. J Intensive Care. 2014;2(1):61. https://doi.org/10.1186/s40560-014-0061-4.

    Article  Google Scholar 

  78. Intracellular Complement – the Complosome – in Immune Cell Regulation – ScienceDirect. n.d.. https://www.sciencedirect.com/science/article/pii/S0161589017301360?via%3Dihub. Accessed 1 Dec 2021.

  79. Aigner C, Schmidt A, Gaggl M, Sunder-Plassmann G. An updated classification of thrombotic microangiopathies and treatment of complement gene variant-mediated thrombotic microangiopathy. Clin Kidney J. 2019;12(3):333–7. https://doi.org/10.1093/ckj/sfz040.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bohlson SS, Garred P, Kemper C, Tenner AJ. Complement nomenclature – deconvoluted. Front Immunol. 2019;10:1308. https://doi.org/10.3389/fimmu.2019.01308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371:654–66.

    Article  CAS  PubMed  Google Scholar 

  82. Loirat C, Fakhouri F, Ariceta G, Besbas N, Bitzan M, Bjerre A, Coppo R, et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016;31(1):15–39. https://doi.org/10.1007/s00467-015-3076-8.

    Article  PubMed  Google Scholar 

  83. Constantinescu AR. Non-enteropathic hemolytic uremic syndrome: causes and short-term course. Am J Kidney Dis. 2004;43(6):976–82.

    Article  PubMed  Google Scholar 

  84. Taylor CM. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol. 2010;148(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  85. Sellier-Leclerc AL. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2007;18(8):2392–400.

    Article  CAS  PubMed  Google Scholar 

  86. Loirat C, Frémeaux-Bacchi V. Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 2011;6:60. https://doi.org/10.1186/1750-1172-6-60.

  87. Caprioli J. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108(4):1267–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fremeaux-Bacchi V. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013;8(4):554–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Noris M. Relative role of genetic complement abnormalities in sporadic and familial AHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Espie E. Surveillance of hemolytic uremic syndrome in children less than 15 years of age, a system to monitor O157 and non-O157 Shiga toxin-producing Escherichia coli infections in France, 1996–2006. Pediatr Infect Dis J. 2008;27(7):595–601.

    Article  PubMed  Google Scholar 

  91. Spinale JM, Ruebner RL, Copelovitch L, Kaplan BS. Long-term outcomes of Shiga toxin hemolytic uremic syndrome. Pediatr Nephrol. 2013;28(11):2097–105.

    Article  PubMed  Google Scholar 

  92. Brocklebank V, Wood KM, Kavanagh D. Thrombotic microangiopathy and the kidney. Clin J Am Soc Nephrol. 2018;13(2):300–17. https://doi.org/10.2215/CJN.00620117.

    Article  CAS  PubMed  Google Scholar 

  93. Goodship THJ, Terence Cook H, Fakhouri F, Fervenza FC, Frémeaux-Bacchi V, Kavanagh D, Nester CM, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “kidney disease: improving global outcomes” (KDIGO) controversies conference. Kidney Int. 2017;91(3):539–51. https://doi.org/10.1016/j.kint.2016.10.005.

    Article  CAS  PubMed  Google Scholar 

  94. Allen U, Licht C. Pandemic H1N1 influenza A infection and (atypical) HUS – more than just another trigger? Pediatr Nephrol. 2011;26(1):3–5.

    Article  PubMed  Google Scholar 

  95. Dragon-Durey MA. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol. 2010;21(12):2180–7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fang CJ. Membrane cofactor protein mutations in atypical hemolytic uremic syndrome (AHUS), fatal Stx-HUS, C3 glomerulonephritis, and the HELLP syndrome. Blood. 2008;111(2):624–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kwon T. Varicella as a trigger of atypical haemolytic uraemic syndrome associated with complement dysfunction: two cases. Nephrol Dial Transplant. 2009;24(9):2752–4.

    Article  PubMed  Google Scholar 

  98. Lee BH. Atypical hemolytic uremic syndrome associated with complement factor H autoantibodies and CFHR1/CFHR3 deficiency. Pediatr Res. 2009;66(3):336–40.

    Article  CAS  PubMed  Google Scholar 

  99. Sallée M, Ismail K, Fakhouri F, Vacher-Coponat H, Moussi-Francés J, Frémaux-Bacchi V, Burtey S. Thrombocytopenia is not mandatory to diagnose haemolytic and uremic syndrome. BMC Nephrol. 2013;14(1):3. https://doi.org/10.1186/1471-2369-14-3.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Formeck C, Swiatecka-Urban A. Extra-renal manifestations of atypical hemolytic uremic syndrome. Pediatr Nephrol. 2019;34(8):1337–48. https://doi.org/10.1007/s00467-018-4039-7.

    Article  PubMed  Google Scholar 

  101. Khalid M, Andreoli S. Extrarenal manifestations of the hemolytic uremic syndrome associated with Shiga toxin-producing Escherichia coli (STEC HUS). Pediatr Nephrol. 2019;34(12):2495–507. https://doi.org/10.1007/s00467-018-4105-1.

    Article  PubMed  Google Scholar 

  102. Medeni S, Serife SN, Cetintepe T, Ozlu C, Tasli F, Adibelli ZH, Bilgir O, Tatar E. An adult case of atypical hemolytic uremic syndrome presented with posterior reversible encephalopathy syndrome: successful response to late-onset eculizumab treatment. Hematol Rep. 2018;10(3):75. https://doi.org/10.4081/hr.2018.7553.

    Article  Google Scholar 

  103. Sallee M. Myocardial infarction is a complication of factor H-associated atypical HUS. Nephrol Dial Transplant. 2010;25(6):2028–32.

    Article  PubMed  Google Scholar 

  104. Noris M, Bresin E, Mele C, Remuzzi G. Genetic atypical hemolytic-uremic syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Mirzaa GM, Amemiya A, editors. GeneReviews® [Internet]. Seattle: University of Washington; 2007 [updated 2021 Sep 23].

    Google Scholar 

  105. Osborne AJ, Breno M, Borsa NG, Fengxiao B, Frémeaux-Bacchi V, Gale DP, van den Heuvel LP, et al. Statistical validation of rare complement variants provides insights into the molecular basis of atypical hemolytic uremic syndrome and C3 glomerulopathy. J Immunol. 2018;200(7):2464–78. https://doi.org/10.4049/jimmunol.1701695.

    Article  CAS  PubMed  Google Scholar 

  106. Lemaire M, Noone D, Lapeyraque A-L, Licht C, Frémeaux-Bacchi V. Inherited kidney complement diseases. Clin J Am Soc Nephrol. 2021;16(6):942–56. https://doi.org/10.2215/CJN.11830720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I – molecular mechanisms of activation and regulation. Front Immunol. 2015;6:262. https://doi.org/10.3389/fimmu.2015.00262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Warwicker P, Goodship TJH, Donne RL, Pirson Y, Nicholls A, Ward RM, Turnpenny P, Goodship JA. Genetic studies into inherited and sporadic hemolytic syndrome. Kidney Int. 1998;53:836–44.

    Article  CAS  PubMed  Google Scholar 

  109. Pickering MC, Cook HT. Translational mini-review series on complement factor H: renal diseases associated with complement factor H: novel insights from humans and animals: factor H and renal disease. Clin Exp Immunol. 2008;151(2):210–30. https://doi.org/10.1111/j.1365-2249.2007.03574.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Noris M, Brioschi S, Caprioli J, Todeschini M, Bresin E, Porrati F, Gamba S, Remuzzi G. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet. 2003;362(9395):1542–7. https://doi.org/10.1016/S0140-6736(03)14742-3.

    Article  CAS  PubMed  Google Scholar 

  111. Richards A, Kemp EJ, Liszewski MK, Goodship JA, Lampe AK, Decorte R, Muslumanogglu MH, et al. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2003;100(22):12966–71. https://doi.org/10.1073/pnas.2135497100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bresin E. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol. 2013;24(3):475–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Frémeaux-Bacchi V, Arzouk N, Ferlicot S, Charpentier B, Snanoudj R, Dürrbach A. Recurrence of HUS due to CD46/MCP mutation after renal transplantation: a role for endothelial microchimerism. Am J Transplant. 2007;7(8):2047–51. https://doi.org/10.1111/j.1600-6143.2007.01888.x.

    Article  CAS  PubMed  Google Scholar 

  114. Fremeaux-Bacchi V. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet. 2004;41(6):e84. https://doi.org/10.1136/jmg.2004.019083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kavanagh D, Kemp EJ, Mayland E, Winney RJ, Duffield JS, Warwick G, Richards A, Ward R, Goodship JA, Goodship THJ. Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(7):2150–5. https://doi.org/10.1681/ASN.2005010103.

    Article  CAS  PubMed  Google Scholar 

  116. Bienaime F, Dragon-Durey M-A, Regnier CH, Nilsson SC, Kwan WH, Blouin J, Jablonski M, et al. Mutations in components of complement influence the outcome of factor I-associated atypical hemolytic uremic syndrome. Kidney Int. 2010;77(4):339–49. https://doi.org/10.1038/ki.2009.472.

    Article  CAS  PubMed  Google Scholar 

  117. Fremeaux-Bacchi V. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112(13):4948–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Roumenina LT, Frimat M, Miller EC, Provot F, Dragon-Durey M-A, Bordereau P, Bigot S, et al. A prevalent C3 mutation in AHUS patients causes a direct C3 convertase gain of function. Blood. 2012;119(18):4182–91. https://doi.org/10.1182/blood-2011-10-383281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jorge E. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2007;104(1):240–5.

    Article  CAS  Google Scholar 

  120. Roumenina LT, Jablonski M, Hue C, Blouin J, Dimitrov JD, Dragon-Durey M-A, Cayla M, et al. Hyperfunctional C3 convertase leads to complement deposition on endothelial cells and contributes to atypical hemolytic uremic syndrome. Blood. 2009;114(13):2837–45. https://doi.org/10.1182/blood-2009-01-197640.

    Article  CAS  PubMed  Google Scholar 

  121. Binette TM, Taylor FB, Peer G, Bajzar L. Thrombin-thrombomodulin connects coagulation and fibrinolysis: more than an in vitro phenomenon. Blood. 2007;110(9):3168–75. https://doi.org/10.1182/blood-2007-03-078824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Delvaeye M, Esmon CT, Del-Favero J, Lambrechts D, Conway EM. Thrombomodulin mutations in atypical hemolytic–uremic syndrome. N Engl J Med. 2009;13:345.

    Article  Google Scholar 

  123. Anastasiou G, Gialeraki A, Merkouri E, Politou M, Travlou A. Thrombomodulin as a regulator of the anticoagulant pathway: implication in the development of thrombosis. Blood Coagul Fibrinolysis. 2012;23(1):1–10. https://doi.org/10.1097/MBC.0b013e32834cb271.

    Article  CAS  PubMed  Google Scholar 

  124. Sharma AP, Greenberg CR, Prasad AN, Prasad C. Hemolytic uremic syndrome (HUS) secondary to cobalamin C (CblC) disorder. Pediatr Nephrol. 2007;22(12):2097–103. https://doi.org/10.1007/s00467-007-0604-1.

    Article  PubMed  Google Scholar 

  125. Lemaire M. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bu F, Maga T, Meyer NC, Wang K, Thomas CP, Nester CM, Smith RJH. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2014;25(1):55–64. https://doi.org/10.1681/ASN.2013050453.

    Article  CAS  PubMed  Google Scholar 

  127. Beck BB, van Spronsen FJ, Diepstra A, Berger RMF, Kömhoff M. Renal thrombotic microangiopathy in patients with cblC defect: review of an under-recognized entity. Pediatr Nephrol. 2017;32(5):733–41. https://doi.org/10.1007/s00467-016-3399-0.

    Article  PubMed  Google Scholar 

  128. Geraghty MT. Cobalamin C defect associated with hemolytic-uremic syndrome. J Pediatr. 1992;120(6):934–7.

    Article  CAS  PubMed  Google Scholar 

  129. Lerner-Ellis JP, Tirone JC, Pawelek PD, Doré C, Atkinson JL, Watkins D, Morel CF, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, CblC type. Nat Genet. 2006;38(1):93–100. https://doi.org/10.1038/ng1683.

    Article  CAS  PubMed  Google Scholar 

  130. Thauvin-Robinet C. The adolescent and adult form of cobalamin C disease: clinical and molecular Spectrum. J Neurol Neurosurg Psychiatry. 2008;79(6):725–8.

    Article  CAS  PubMed  Google Scholar 

  131. Russo P. A congenital anomaly of vitamin B12 metabolism: a study of three cases. Hum Pathol. 1992;23(5):504–12.

    Article  CAS  PubMed  Google Scholar 

  132. Carrillo-Carrasco N, Chandler RJ, Venditti CP. Combined methylmalonic acidemia and homocystinuria, CblC type. I. Clinical presentations, diagnosis and management. J Inherit Metab Dis. 2012;35(1):91–102. https://doi.org/10.1007/s10545-011-9364-y.

    Article  CAS  PubMed  Google Scholar 

  133. Menni F. Neonatal atypical hemolytic uremic syndrome due to methylmalonic aciduria and homocystinuria. Pediatr Nephrol. 2012;27(8):1401–5.

    Article  PubMed  Google Scholar 

  134. Azukaitis K, Simkova E, Majid MA, Galiano M, Benz K, Amann K, Bockmeyer C, et al. The phenotypic spectrum of nephropathies associated with mutations in diacylglycerol kinase ε. J Am Soc Nephrol. 2017;28(10):3066–75. https://doi.org/10.1681/ASN.2017010031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brocklebank V, Kumar G, Howie AJ, Chandar J, Milford DV, Craze J, Evans J, et al. Long-term outcomes and response to treatment in diacylglycerol kinase epsilon nephropathy. Kidney Int. 2020;97(6):1260–74. https://doi.org/10.1016/j.kint.2020.01.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ozaltin F, Li B, Rauhauser A, An S-W, Soylemezoglu O, Gonul II, Taskiran EZ, et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J Am Soc Nephrol. 2013;24(3):377–84. https://doi.org/10.1681/ASN.2012090903.

    Article  CAS  PubMed  Google Scholar 

  137. Bruneau S, Néel M, Roumenina LT, Frimat M, Laurent L, Frémeaux-Bacchi V, Fakhouri F. Loss of DGKε induces endothelial cell activation and death independently of complement activation. Blood. 2015;125(6):1038–46. https://doi.org/10.1182/blood-2014-06-579953.

    Article  CAS  PubMed  Google Scholar 

  138. Zhu J, Chaki M, Lu D, Ren C, Wang S-S, Rauhauser A, Li B, et al. Loss of diacylglycerol kinase epsilon in mice causes endothelial distress and impairs glomerular Cox-2 and PGE2 production. Am J Physiol Renal Physiol. 2016;310(9):F895–908. https://doi.org/10.1152/ajprenal.00431.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu D, Ding Q, Dai DF, Padhy B, Nayak MK, Li C, Purvis M, et al. Loss of diacylglycerol kinase İ causes thrombotic microangiopathy by impairing endothelial VEGFA signaling. JCI Insight. 2021;6(9):e146959.

    Article  PubMed Central  Google Scholar 

  140. Mehta R, Shapiro AD. Plasminogen deficiency. Haemophilia. 2008;14(6):1261–8. https://doi.org/10.1111/j.1365-2516.2008.01825.x.

    Article  CAS  PubMed  Google Scholar 

  141. Schuster V, Hügle B, Tefs K. Plasminogen deficiency. J Thromb Haemost. 2007;5(12):2315–22. https://doi.org/10.1111/j.1538-7836.2007.02776.x.

    Article  CAS  PubMed  Google Scholar 

  142. Dragon-Durey M-A, Blanc C, Garnier A, Hofer J, Sethi SK, Zimmerhackl L-B. Anti-factor H autoantibody–associated hemolytic uremic syndrome: review of literature of the autoimmune form of HUS. Semin Thromb Hemost. 2010;36(6):633–40. https://doi.org/10.1055/s-0030-1262885.

    Article  CAS  PubMed  Google Scholar 

  143. Skerka C, Józsi M, Zipfel P, Dragon-Durey M-A, Fremeaux-Bacchi V. Autoantibodies in haemolytic uraemic syndrome (HUS). Thromb Haemost. 2009;101(2):227–32. https://doi.org/10.1160/TH08-05-0322.

    Article  CAS  PubMed  Google Scholar 

  144. Dragon-Durey M-A, Loirat C, Cloarec S, Macher M-A, Blouin J, Nivet H, Weiss L, Fridman WH, Frémeaux-Bacchi V. Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(2):555–63. https://doi.org/10.1681/ASN.2004050380.

    Article  CAS  PubMed  Google Scholar 

  145. Józsi M, Strobel S, Dahse H-M, Liu W-S, Hoyer PF, Oppermann M, Skerka C, Zipfel PF. Anti-factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood. 2007;110(5):1516–8. https://doi.org/10.1182/blood-2007-02-071472.

    Article  CAS  PubMed  Google Scholar 

  146. Strobel S, Hoyer PF, Mache CJ, Sulyok E, Liu W-S, Richter H, Oppermann M, Zipfel PF, Jozsi M. Functional analyses indicate a pathogenic role of factor H autoantibodies in atypical haemolytic uraemic syndrome. Nephrol Dial Transplant. 2010;25(1):136–44. https://doi.org/10.1093/ndt/gfp388.

    Article  CAS  PubMed  Google Scholar 

  147. Dragon-Durey MA. The high frequency of complement factor H related CFHR1 gene deletion is restricted to specific subgroups of patients with atypical haemolytic uraemic syndrome. J Med Genet. 2009;46(7):447–50.

    Article  CAS  PubMed  Google Scholar 

  148. Jozsi M. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111(3):1512–4.

    Article  CAS  PubMed  Google Scholar 

  149. Moore I. Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood. 2010;115(2):379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Skerka C, Chen Q, Fremeaux-Bacchi V, Roumenina LT. Complement factor H related proteins (CFHRs). Mol Immunol. 2013;56(3):170–80. https://doi.org/10.1016/j.molimm.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  151. Kavanagh D, Pappworth IY, Anderson H, Hayes CM, Moore I, Hunze E-M, Bennaceur K, et al. Factor I autoantibodies in patients with atypical hemolytic uremic syndrome: disease-associated or an epiphenomenon? Clin J Am Soc Nephrol. 2012;7(3):417–26. https://doi.org/10.2215/CJN.05750611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Puraswani M, Khandelwal P, Saini H, Saini S, Gurjar BS, Sinha A, Shende RP, et al. Clinical and immunological profile of anti-factor H antibody associated atypical hemolytic uremic syndrome: a nationwide database. Front Immunol. 2019;10:1282. https://doi.org/10.3389/fimmu.2019.01282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Govindarajan S, Rawat A, Ramachandran R, Hans R, Dawman L, Tiewsoh K. Anti-complement factor I antibody associated atypical hemolytic uremic syndrome – a new insight for future perspective! Immunobiology. 2020;225(5):152000. https://doi.org/10.1016/j.imbio.2020.152000.

    Article  CAS  PubMed  Google Scholar 

  154. Corvillo F, Okrój M, Nozal P, Melgosa M, Sánchez-Corral P, López-Trascasa M. Nephritic factors: an overview of classification, diagnostic tools and clinical associations. Front Immunol. 2019;10:886. https://doi.org/10.3389/fimmu.2019.00886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hofer J, Janecke AR, Zimmerhackl LB, Riedl M, Rosales A, Giner T, Cortina G, et al. Complement factor H-related protein 1 deficiency and factor H antibodies in pediatric patients with atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2013;8(3):407–15. https://doi.org/10.2215/CJN.01260212.

    Article  CAS  PubMed  Google Scholar 

  156. Bagga A, Khandelwal P, Mishra K, Thergaonkar R, Vasudevan A, Sharma J, Indian Society of Pediatric Nephrology, et al. Hemolytic uremic syndrome in a developing country: consensus guidelines. Pediatr Nephrol. 2019;34(8):1465–82. https://doi.org/10.1007/s00467-019-04233-7.

    Article  PubMed  Google Scholar 

  157. Brocklebank V, Johnson S, Sheerin TP, Marks SD, Gilbert RD, Tyerman K, Kinoshita M, et al. Factor H autoantibody is associated with atypical hemolytic uremic syndrome in children in the United Kingdom and Ireland. Kidney Int. 2017;92(5):1261–71. https://doi.org/10.1016/j.kint.2017.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Noone D, Waters A, Pluthero FG, Geary DF, Kirschfink M, Zipfel PF, Licht C. Successful treatment of DEAP-HUS with eculizumab. Pediatr Nephrol. 2014;29(5):841–51. https://doi.org/10.1007/s00467-013-2654-x.

    Article  PubMed  Google Scholar 

  159. Williams ME, Balogun RA. Principles of separation: indications and therapeutic targets for plasma exchange. Clin J Am Soc Nephrol. 2014;9(1):181–90. https://doi.org/10.2215/CJN.04680513.

    Article  CAS  PubMed  Google Scholar 

  160. Hofer J, Khursigara MR, Perl M, Giner T, Rosales A, Cortina G, Waldegger S, Jungraithmayr T, Würzner R. Early relapse rate determines further relapse risk: results of a 5-year follow-up study on pediatric CFH-Ab HUS. Pediatr Nephrol. 2021;36(4):917–25. https://doi.org/10.1007/s00467-020-04751-9.

    Article  PubMed  Google Scholar 

  161. Khandelwal P, Gupta A, Sinha A, Saini S, Hari P, Dragon Durey M-A, Bagga A. Effect of plasma exchange and immunosuppressive medications on antibody titers and outcome in anti-complement factor H antibody-associated hemolytic uremic syndrome. Pediatr Nephrol. 2015;30(3):451–7. https://doi.org/10.1007/s00467-014-2948-7.

    Article  PubMed  Google Scholar 

  162. Edey MM. Association of a factor H mutation with hemolytic uremic syndrome following a diarrheal illness. Am J Kidney Dis. 2008;51(3):487–90.

    Article  CAS  PubMed  Google Scholar 

  163. Ermini L. Common genetic variants in complement genes other than CFH, CD46 and the CFHRs are not associated with AHUS. Mol Immunol. 2012;49(4):640–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bento D. Triggering of atypical hemolytic uremic syndrome by influenza A (H1N1). Ren Fail. 2010;32(6):753–6.

    Article  CAS  PubMed  Google Scholar 

  165. Bu F, Meyer NC, Zhang Y, Borsa NG, Thomas C, Nester C, Smith RJH. Soluble C5b-9 as a biomarker for complement activation in atypical hemolytic uremic syndrome. Am J Kidney Dis. 2015;65(6):968–9. https://doi.org/10.1053/j.ajkd.2015.02.326.

    Article  CAS  PubMed  Google Scholar 

  166. Venables JP, Strain L, Routledge D, Bourn D, Powell HM, Warwicker P, Diaz-Torres ML, et al. Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med. 2006;3(10):e431. https://doi.org/10.1371/journal.pmed.0030431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ariceta G. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol. 2009;24(4):687–96.

    Article  PubMed  Google Scholar 

  168. Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.

    Google Scholar 

  169. Wijnsma KL, Duineveld C, Wetzels JFM, et al. Eculizumab in atypical hemolytic uremic syndrome: strategies toward restrictive use. Pediatr Nephrol. 2019;34:2261–77. https://doi.org/10.1007/s00467-018-4091-3.

  170. Benoit SW, Fukuda T, VandenHeuvel K, Witte D, Fuller C, Willis J, Dixon BP, Drake KA. Case report: a typical HUS presenting with acute rhabdomyolysis highlights the need for individualized eculizumab dosing. Front Pediatr. 2022;10:841051. https://doi.org/10.3389/fped.2022.841051.

  171. Bouwmeester RN, Ter Avest M, Wijnsma KL, Duineveld C, Ter Heine R, Volokhina EB, Van Den Heuvel LPWJ, Wetzels JFM, van de Kar NCAJ. Case report: variable pharmacokinetic profile of eculizumab in an aHUS patient. Front Immunol. 2021;11:612706. https://doi.org/10.3389/fimmu.2020.612706.

  172. Gatault P, Brachet G, Ternant D, Degenne D, Récipon G, Barbet C, Gyan E, Gouilleux-Gruart V, Bordes C, Farrell A, Halimi JM, Watier H. Therapeutic drug monitoring of eculizumab: rationale for an individualized dosing schedule. mAbs. 2015;7(6):1205–11. https://doi.org/10.1080/19420862.2015.1086049.

  173. Barbour T, Scully M, Ariceta G, Cataland S, Garlo K, Heyne N, Luque Y, et al. Long-term efficacy and safety of the long-acting complement C5 inhibitor ravulizumab for the treatment of atypical hemolytic uremic syndrome in adults. Kidney Int Rep. 2021;6(6):1603–13. https://doi.org/10.1016/j.ekir.2021.03.884.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Tanaka K, Adams B, Aris AM, Fujita N, Ogawa M, Ortiz S, Vallee M, Greenbaum LA. The long-acting C5 inhibitor, ravulizumab, is efficacious and safe in pediatric patients with atypical hemolytic uremic syndrome previously treated with eculizumab. Pediatr Nephrol. 2021;36(4):889–98. https://doi.org/10.1007/s00467-020-04774-2.

    Article  PubMed  Google Scholar 

  175. Fakhouri F, Zuber J, Frémeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. Lancet. 2017;390(10095):681–96. https://doi.org/10.1016/S0140-6736(17)30062-4.

    Article  PubMed  Google Scholar 

  176. Le Quintrec M, Lionet A, Kamar N, Karras A, Barbier S, Buchler M, Fakhouri F, et al. Complement mutation-associated De novo thrombotic microangiopathy following kidney transplantation. Am J Transplant. 2008;8(8):1694–701. https://doi.org/10.1111/j.1600-6143.2008.02297.x.

    Article  PubMed  Google Scholar 

  177. Zuber J, Frimat M, Caillard S, Kamar N, Gatault P, Petitprez F, Couzi L, et al. Use of highly individualized complement blockade has revolutionized clinical outcomes after kidney transplantation and renal epidemiology of atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2019;30(12):2449–63. https://doi.org/10.1681/ASN.2019040331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Riedl M, Fakhouri F, Le Quintrec M, Noone D, Jungraithmayr T, Fremeaux-Bacchi V, Licht C. Spectrum of complement-mediated thrombotic microangiopathies: pathogenetic insights identifying novel treatment approaches. Semin Thromb Hemost. 2014;40(4):444–64. https://doi.org/10.1055/s-0034-1376153.

    Article  CAS  PubMed  Google Scholar 

  179. Noris M, Galbusera M, Gastoldi S, Macor P, Banterla F, Bresin E, Tripodo C, et al. Dynamics of complement activation in AHUS and how to monitor eculizumab therapy. Blood. 2014;124(11):1715–26. https://doi.org/10.1182/blood-2014-02-558296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Andreoli SP, Zimmerhackl LB, Noris M, Remuzzi G. Hemolytic uremic syndrome. N Engl J Med. 2009;361:1676–87.

    Article  Google Scholar 

  181. Noone DG, Riedl M, Pluthero FG, Bowman ML, Kathryn Liszewski M, Lily L, Quan Y, et al. Von Willebrand factor regulates complement on endothelial cells. Kidney Int. 2016;90(1):123–34. https://doi.org/10.1016/j.kint.2016.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Galbusera M, Noris M, Gastoldi S, Bresin E, Mele C, Breno M, Cuccarolo P, et al. An ex vivo test of complement activation on endothelium for individualized eculizumab therapy in hemolytic uremic syndrome. Am J Kidney Dis. 2019;74(1):56–72. https://doi.org/10.1053/j.ajkd.2018.11.012.

    Article  CAS  PubMed  Google Scholar 

  183. Timmermans SAMEG, Damoiseaux JGMC, Werion A, Reutelingsperger CP, Morelle J, van Paassen P. Functional and genetic landscape of complement dysregulation along the spectrum of thrombotic microangiopathy and its potential implications on clinical outcomes. Kidney Int Rep. 2021;6(4):1099–109. https://doi.org/10.1016/j.ekir.2021.01.034.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Jodele S, Dandoy CE, Lane A, Laskin BL, Teusink-Cross A, Myers KC, Wallace GH, et al. Complement blockade for TA-TMA: lessons learned from large pediatric cohort treated with eculizumab. Blood. 2020; https://doi.org/10.1182/blood.2019004218.

  185. Le Clech A, Simon-Tillaux N, Provôt F, Delmas Y, Vieira-Martins P, Limou S, Halimi J-M, et al. Atypical and secondary hemolytic uremic syndromes have a distinct presentation and no common genetic risk factors. Kidney Int. 2019;95(6):1443–52. https://doi.org/10.1016/j.kint.2019.01.023.

    Article  PubMed  Google Scholar 

  186. Kang E, Yoo SH, Doyeun O, Joo KW, Kim YS, Yoon S-S, Kim I, Park S, Lee H, Koh Y. Clinical dissection of thrombotic microangiopathy. Ann Hematol. 2017;96(10):1715–26. https://doi.org/10.1007/s00277-017-3063-1.

    Article  CAS  PubMed  Google Scholar 

  187. Cavero T, Rabasco C, López A, Román E, Ávila A, Sevillano Á, Huerta A, et al. Eculizumab in secondary atypical haemolytic uraemic syndrome. Nephrol Dial Transplant. 2017;32(3):466–74. https://doi.org/10.1093/ndt/gfw453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fakhouri F. Pregnancy-associated hemolytic uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol. 2010;21(5):859–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bruel A, Kavanagh D, Noris M, Delmas Y, Wong EKS, Bresin E, Provôt F, et al. Hemolytic uremic syndrome in pregnancy and postpartum. Clin J Am Soc Nephrol. 2017;12(8):1237–47. https://doi.org/10.2215/CJN.00280117.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Fakhouri F, Scully M, Ardissino G, Al-Dakkak I, Miller B, Rondeau E. Pregnancy-triggered atypical hemolytic uremic syndrome (AHUS): a global AHUS registry analysis. J Nephrol. 2021;34(5):1581–90. https://doi.org/10.1007/s40620-021-01025-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Huerta A, Arjona E, Portoles J, Lopez-Sanchez P, Rabasco C, Espinosa M, Cavero T, et al. A retrospective study of pregnancy-associated atypical hemolytic uremic syndrome. Kidney Int. 2018;93(2):450–9. https://doi.org/10.1016/j.kint.2017.06.022.

    Article  PubMed  Google Scholar 

  192. Demir E, Yazici H, Ozluk Y, Kilicaslan I, Turkmen A. Pregnant woman with atypical hemolytic uremic syndrome delivered a healthy newborn under eculizumab treatment. Case Rep Nephrol Dial. 2016;6(3):143–8. https://doi.org/10.1159/000454946.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Rondeau E, Ardissino G, Caby-Tosi M-P, Al-Dakkak I, Fakhouri F, Miller B, Scully M, Global aHUS Registry. Pregnancy in women with atypical hemolytic uremic syndrome. Nephron. 2021:1–10. https://doi.org/10.1159/000518171.

  194. Socié G, Caby-Tosi M-P, Marantz JL, Cole A, Bedrosian CL, Gasteyger C, Mujeebuddin A, Hillmen P, Vande Walle J, Haller H. Eculizumab in paroxysmal nocturnal haemoglobinuria and atypical haemolytic uraemic syndrome: 10-year pharmacovigilance analysis. Br J Haematol. 2019;185(2):297–310. https://doi.org/10.1111/bjh.15790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Verbiest A, Pirenne J, Dierickx D. De novo thrombotic microangiopathy after non-renal solid organ transplantation. Blood Rev. 2014;28(6):269–79. https://doi.org/10.1016/j.blre.2014.09.001.

    Article  PubMed  Google Scholar 

  196. Zarifian A. Cyclosporine-associated thrombotic microangiopathy in renal allografts. Kidney Int. 1999;55(6):2457–66.

    Article  CAS  PubMed  Google Scholar 

  197. Zuber J, Le Quintrec M, Sberro-Soussan R, Loirat C, Frémeaux-Bacchi V, Legendre C. New insights into postrenal transplant hemolytic uremic syndrome. Nat Rev Nephrol. 2011;7(1):23–35. https://doi.org/10.1038/nrneph.2010.155.

    Article  PubMed  Google Scholar 

  198. Lapointe M, Mark Baillie G, Shanmuga Bhaskar S, Richardson MS, Self SE, Baliga PK, Rajagopalan P. Cyclosporine-induced hemolytic uremic syndrome and hemorrhagic colitis following renal transplantation: CyA-HUS following renal transplantation. Clin Transpl. 1999;13(6):526–30. https://doi.org/10.1034/j.1399-0012.1999.130614.x.

    Article  CAS  Google Scholar 

  199. Neild GH. Effect of cyclosporin A on prostacyclin synthesis by vascular tissue. Thromb Res. 1983;32(4):373–9.

    Article  CAS  PubMed  Google Scholar 

  200. Reynolds JC, Agodoa LY, Yuan CM, Abbott KC. Thrombotic microangiopathy after renal transplantation in the United States. Am J Kidney Dis. 2003;42(5):1058–68. https://doi.org/10.1016/j.ajkd.2003.07.008.

    Article  PubMed  Google Scholar 

  201. Miriuka SG, Rao V, Peterson M, Tumiati L, Delgado DH, Mohan R, Ramzy D, Stewart D, Ross HJ, Waddell TK. MTOR inhibition induces endothelial progenitor cell death. Am J Transplant. 2006;6(9):2069–79. https://doi.org/10.1111/j.1600-6143.2006.01433.x.

    Article  CAS  PubMed  Google Scholar 

  202. Sartelet H. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. Am J Transplant. 2005;5(10):2441–7.

    Article  PubMed  Google Scholar 

  203. Fortin M-C, Raymond M-A, Madore F, Fugere J-A, Paquet M, St-Louis G, Hebert M-J. Increased risk of thrombotic microangiopathy in patients receiving a cyclosporin-sirolimus combination. Am J Transplant. 2004;4(6):946–52. https://doi.org/10.1111/j.1600-6143.2004.00428.x.

    Article  CAS  PubMed  Google Scholar 

  204. Garg N, Rennke HG, Pavlakis M, Zandi-Nejad K. De novo thrombotic microangiopathy after kidney transplantation. Transplant Rev. 2018;32(1):58–68. https://doi.org/10.1016/j.trre.2017.10.001.

    Article  Google Scholar 

  205. Satoskar AA, Pelletier R, Adams P, Nadasdy GM, Brodsky S, Pesavento T, Henry M, Nadasdy T. De novo thrombotic microangiopathy in renal allograft biopsies-role of antibody-mediated rejection: de novo thrombotic microangiopathy in renal allografts. Am J Transplant. 2010;10(8):1804–11. https://doi.org/10.1111/j.1600-6143.2010.03178.x.

    Article  CAS  PubMed  Google Scholar 

  206. Suarez ML, Gonzalez WC, Thongprayoon C, Mao MA, Leeaphorn N, Bathini T. Outcomes of kidney transplant patients with atypical hemolytic uremic syndrome treated with eculizumab: a systematic review and meta-analysis. J Clin Med. 2019;8(7):919. https://doi.org/10.3390/jcm8070919.

    Article  CAS  Google Scholar 

  207. Karthikeyan V, Parasuraman R, Shah V, Vera E, Venkat KK. Outcome of plasma exchange therapy in thrombotic microangiopathy after renal transplantation. Am J Transplant. 2003;3(10):1289–94. https://doi.org/10.1046/j.1600-6143.2003.00222.x.

    Article  PubMed  Google Scholar 

  208. Bhatti S, Alghamdi M. Atypical hemolytic uremic syndrome after liver transplant treated with eculizumab. Cureus. 2020; https://doi.org/10.7759/cureus.9230.

  209. Jodele S. A new paradigm: diagnosis and management of HSCT-associated thrombotic microangiopathy as multi-system endothelial injury. Blood Rev. 2014;29(3):191–204.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Changsirikulchai S, Myerson D, Guthrie KA, McDonald GB, Alpers CE, Hingorani SR. Renal thrombotic microangiopathy after hematopoietic cell transplant: role of GVHD in pathogenesis. Clin J Am Soc Nephrol. 2009;4(2):345–53. https://doi.org/10.2215/CJN.02070508.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Dvorak CC, Higham C, Shimano KA. Transplant-associated thrombotic microangiopathy in pediatric hematopoietic cell transplant recipients: a practical approach to diagnosis and management. Front Pediatr. 2019;7:133. https://doi.org/10.3389/fped.2019.00133.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Jodele S, Licht C, Goebel J, Dixon BP, Zhang K, Sivakumaran TA, Davies SM, Pluthero FG, Lily L, Laskin BL. Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood. 2013;122(12):2003–7. https://doi.org/10.1182/blood-2013-05-501445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhang R, Zhou M, Qi J, Miao W, Zhang Z, Wu D, Han Y. Efficacy and safety of eculizumab in the treatment of transplant-associated thrombotic microangiopathy: a systematic review and meta-analysis. Front Immunol. 2021;11:564647. https://doi.org/10.3389/fimmu.2020.564647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Martis N, Jamme M, Bagnis-Isnard C, Pouteil-Noble C, Presne C, Vigneau C, Grangé S, et al. Systemic autoimmune disorders associated with thrombotic microangiopathy: a cross-sectional analysis from the French national TMA registry: systemic autoimmune disease-associated TMA. Eur J Intern Med. 2021;93:78–86. https://doi.org/10.1016/j.ejim.2021.05.040.

    Article  CAS  PubMed  Google Scholar 

  215. Shin HS, Nester CM, Dixon BP. Comorbidity of inflammatory bowel disease with atypical hemolytic uremic syndrome in pediatric patients. Clin Nephrol Case Stud. 2019;7(1):35–40. https://doi.org/10.5414/CNCS109511.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Kello N, El Khoury L, Marder G, Furie R, Zapantis E, Horowitz DL. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: case series and review of literature. Semin Arthritis Rheum. 2019;49(1):74–83. https://doi.org/10.1016/j.semarthrit.2018.11.005.

    Article  CAS  PubMed  Google Scholar 

  217. Chen M-H, Chen M-H, Chen W-S, Mu-Hsin Chang P, Lee H-T, Lin H-Y, Huang D-F. Thrombotic microangiopathy in systemic lupus erythematosus: a cohort study in North Taiwan. Rheumatology. 2011;50(4):768–75. https://doi.org/10.1093/rheumatology/keq311.

    Article  PubMed  Google Scholar 

  218. Song D, Li-hua W, Wang F-m, Yang X-w, Zhu D, Chen M, Feng Y, Liu G, Zhao M-h. The spectrum of renal thrombotic microangiopathy in lupus nephritis. Arthritis Res Ther. 2013;15(1):R12. https://doi.org/10.1186/ar4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ornstein BW, Atkinson JP, Densen P. The complement system in pediatric systemic lupus erythematosus, atypical hemolytic uremic syndrome, and complocentric membranoglomerulopathies. Curr Opin Rheumatol. 2012;24(5):522–9. https://doi.org/10.1097/BOR.0b013e328356896b.

    Article  CAS  PubMed  Google Scholar 

  220. Edelbauer M, Kshirsagar S, Riedl M, Haffner D, Billing H, Tönshoff B, Ross S, et al. Markers of childhood lupus nephritis indicating disease activity. Pediatr Nephrol. 2011;26(3):401–10. https://doi.org/10.1007/s00467-010-1720-x.

    Article  PubMed  Google Scholar 

  221. Zhao J, Wu H, Khosravi M, Cui H, Qian X, Kelly JA, Kaufman KM, et al. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet. 2011;7(5):e1002079. https://doi.org/10.1371/journal.pgen.1002079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Foltyn Zadura A, Anna PF, Zipfel MI, Bokarewa GS, Jönsen A, Nilsson SC, Hillarp A, Saxne T, Trouw LA, Blom AM. Factor H autoantibodies and deletion of complement factor H-related protein-1 in rheumatic diseases in comparison to atypical hemolytic uremic syndrome. Arthritis Res Ther. 2012;14(4):R185. https://doi.org/10.1186/ar4016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hamasaki K, Mimura T, Kanda H, Kubo K, Setoguchi K, Satoh T, Misaki Y, Yamamoto K. Systemic lupus erythematosus and thrombotic thrombocytopenic purpura: a case report and literature review. Clin Rheumatol. 2003;22(4–5):355–8. https://doi.org/10.1007/s10067-003-0742-1.

    Article  CAS  PubMed  Google Scholar 

  224. Tonooka K, Ito H, Shibata T, Ozaki S. Recombinant human soluble thrombomodulin for treatment of thrombotic microangiopathy associated with lupus nephritis: table 1. J Rheumatol. 2012;39(8):1766. https://doi.org/10.3899/jrheum.111137.

    Article  PubMed  Google Scholar 

  225. Pattanashetti N, Anakutti H, Ramachandran R, Rathi M, Sharma A, Nada R, Gupta KL. Effect of thrombotic microangiopathy on clinical outcomes in Indian patients with lupus nephritis. Kidney Int Rep. 2017;2(5):844–9. https://doi.org/10.1016/j.ekir.2017.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010–21. https://doi.org/10.1056/NEJMra1705454.

    Article  CAS  PubMed  Google Scholar 

  227. Rangel M, Alghamdi I, Contreras G, Harrington T, Db Thomas L, Barisoni D, Andrews MW, Asif A, Nayer A. Catastrophic antiphospholipid syndrome with concurrent thrombotic and hemorrhagic manifestations. Lupus. 2013;22(8):855–64. https://doi.org/10.1177/0961203313491024.

    Article  CAS  PubMed  Google Scholar 

  228. Canaud G, Kamar N, Anglicheau D, Esposito L, Rabant M, Noël L-H, Guilbeau-Frugier C, et al. Eculizumab improves posttransplant thrombotic microangiopathy due to antiphospholipid syndrome recurrence but fails to prevent chronic vascular changes: eculizumab and antiphospholipid syndrome recurrence. Am J Transplant. 2013;13(8):2179–85. https://doi.org/10.1111/ajt.12319.

    Article  CAS  PubMed  Google Scholar 

  229. Chaturvedi S, Brodsky RA, McCrae KR. Complement in the pathophysiology of the antiphospholipid syndrome. Front Immunol. 2019;10:449. https://doi.org/10.3389/fimmu.2019.00449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chen S-F, Wang H, Huang Y-M, Li Z-Y, Wang S-X, Feng Y, Zhao M-H, Chen M. Clinicopathologic characteristics and outcomes of renal thrombotic microangiopathy in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis. Clin J Am Soc Nephrol. 2015;10(5):750–8. https://doi.org/10.2215/CJN.07910814.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Van Timmeren MM, Chen M, Heeringa P. Review article: pathogenic role of complement activation in anti-neutrophil cytoplasmic auto-antibody-associated vasculitis. Nephrology. 2009;14(1):16–25. https://doi.org/10.1111/j.1440-1797.2009.01086.x.

    Article  CAS  PubMed  Google Scholar 

  232. Jayne DRW, Bruchfeld AN, Harper L, Schaier M, Venning MC, Hamilton P, Burst V, et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol. 2017;28(9):2756–67. https://doi.org/10.1681/ASN.2016111179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Manenti L, Urban ML, Maritati F, Galetti M, Vaglio A. Complement blockade in ANCA-associated vasculitis: an index case, current concepts and future perspectives. Intern Emerg Med. 2017;12(6):727–31. https://doi.org/10.1007/s11739-017-1636-6.

    Article  PubMed  Google Scholar 

  234. Kind T. Cobalamin C disease presenting as hemolytic-uremic syndrome in the neonatal period. J Pediatr Hematol Oncol. 2002;24(4):327–9.

    Article  PubMed  Google Scholar 

  235. Lerner-Ellis JP. Spectrum of mutations in MMACHC, allelic expression, and evidence for genotype-phenotype correlations. Hum Mutat. 2009;30(7):1072–81.

    Article  CAS  PubMed  Google Scholar 

  236. Cornec-Le Gall E, Emilie YD, De Parscau L, Doucet L, Ogier H, Benoist J-F, Fremeaux-Bacchi V, Le Meur Y. Adult-onset eculizumab-resistant hemolytic uremic syndrome associated with cobalamin C deficiency. Am J Kidney Dis. 2014;63(1):119–23. https://doi.org/10.1053/j.ajkd.2013.08.031.

    Article  CAS  PubMed  Google Scholar 

  237. Tran PN, Tran M-H. Cobalamin deficiency presenting with thrombotic microangiopathy (TMA) features: a systematic review. Transfus Apher Sci. 2018;57(1):102–6. https://doi.org/10.1016/j.transci.2018.01.003.

    Article  PubMed  Google Scholar 

  238. Al-Nouri ZL, Reese JA, Terrell DR, Vesely SK, George JN. Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood. 2015;125(4):616–8. https://doi.org/10.1182/blood-2014-11-611335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Estrada CC, Maldonado A, Mallipattu SK. Therapeutic inhibition of VEGF signaling and associated nephrotoxicities. J Am Soc Nephrol. 2019;30(2):187–200. https://doi.org/10.1681/ASN.2018080853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Weitz IC. Thrombotic microangiopathy in cancer. Semin Thromb Hemost. 2019;45(4):348–53. https://doi.org/10.1055/s-0039-1687893.

    Article  PubMed  Google Scholar 

  241. Zakarija A. Ticlopidine- and clopidogrel-associated thrombotic thrombocytopenic purpura (TTP): review of clinical, laboratory, epidemiological, and pharmacovigilance findings (1989–2008). Kidney Int Suppl. 2009;75(112):S20.

    Article  CAS  Google Scholar 

  242. Gottschall JL. Quinine-induced immune thrombocytopenia with hemolytic uremic syndrome: clinical and serological findings in nine patients and review of literature. Am J Hematol. 1994;47(4):283–9.

    Article  CAS  PubMed  Google Scholar 

  243. Webb RF. Acute intravascular haemolysis due to quinine. N Z Med J. 1980;91(651):14–6.

    CAS  PubMed  Google Scholar 

  244. Kojouri K, Vesely SK, George JN. Quinine-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: frequency, clinical features, and long-term outcomes. Ann Intern Med. 2001;135(12):1047–51.

    Article  CAS  PubMed  Google Scholar 

  245. Page EE, Little DJ, Vesely SK, George JN. Quinine-induced thrombotic microangiopathy: a report of 19 patients. Am J Kidney Dis. 2017;70(5):686–95. https://doi.org/10.1053/j.ajkd.2017.05.023.

    Article  CAS  PubMed  Google Scholar 

  246. Jackson AM. Thrombotic microangiopathy and renal failure associated with antineoplastic chemotherapy. Ann Intern Med. 1984;101(1):41–4.

    Article  CAS  PubMed  Google Scholar 

  247. Zupancic M, Shah PC, Shah-Khan F. Gemcitabine-associated thrombotic thrombocytopenic purpura. Lancet Oncol. 2007;8(7):634–41.

    Article  CAS  PubMed  Google Scholar 

  248. Hanna WT, Krauss S, Regester RF, Murphy WM. Renal disease after mitomycin c therapy. Cancer. 1981;48(12):2583–8. https://doi.org/10.1002/1097-0142(19811215)48:12<2583::AID-CNCR2820481208>3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  249. Izzedine H. Gemcitabine-induced thrombotic microangiopathy: a systematic review. Nephrol Dial Transplant. 2006;21(11):3038–45.

    Article  CAS  PubMed  Google Scholar 

  250. Weitz IC, Deloughery T. Effective treatment of chemotherapy induced atypical haemolytic uraemic syndrome: a case series of 7 treated patients. Br J Haematol. 2018;183(1):136–9. https://doi.org/10.1111/bjh.14910.

    Article  PubMed  Google Scholar 

  251. Gilbert RD. Cisplatin-induced haemolytic uraemic syndrome associated with a novel intronic mutation of treated with eculizumab. Clin Kidney J. 2013;6(4):421–5.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Dieckmann KP, Struss WJ, Budde U. Evidence for acute vascular toxicity of cisplatin-based chemotherapy in patients with germ cell tumour. Anticancer Res. 2011;31(12):4501–5.

    CAS  PubMed  Google Scholar 

  253. Choi MK. TTP-HUS associated with sunitinib. Cancer Res Treat. 2008;40(4):211–3.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Eremina V. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med. 2008;358(11):1129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Hanna RM, Tran N-T, Patel SS, Hou J, Jhaveri KD, Parikh R, Selamet U, et al. Thrombotic microangiopathy and acute kidney injury induced after intravitreal injection of vascular endothelial growth factor inhibitors VEGF blockade-related TMA after intravitreal use. Front Med. 2020;7:579603. https://doi.org/10.3389/fmed.2020.579603.

    Article  Google Scholar 

  256. Diorio C, McNerney KO, Lambert M, Paessler M, Anderson EM, Henrickson SE, Chase J, et al. Evidence of thrombotic microangiopathy in children with SARS-CoV-2 across the spectrum of clinical presentations. Blood Adv. 2020;4(23):6051–63. https://doi.org/10.1182/bloodadvances.2020003471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Dwyre DM, Bell AM, Siechen K, Sethi S, Raife TJ. Disseminated histoplasmosis presenting as thrombotic microangiopathy. Transfusion. 2006;46(7):1221–5. https://doi.org/10.1111/j.1537-2995.2006.00873.x.

    Article  PubMed  Google Scholar 

  258. Veesenmeyer AF, Edmonson MB. Trends in US hospital stays for Streptococcus pneumoniae–associated hemolytic uremic syndrome. Pediatr Infect Dis J. 2013;32(7):731–5. https://doi.org/10.1097/INF.0b013e31828b31c8.

    Article  PubMed  Google Scholar 

  259. Fattahi F, Zetoune FS, Ward PA. Complement as a major inducer of harmful events in infectious sepsis. Shock. 2020;54(5):595–605. https://doi.org/10.1097/SHK.0000000000001531.

    Article  PubMed  Google Scholar 

  260. Joffre J, Hellman J, Ince C, Ait-Oufella H. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020;202(3):361–70. https://doi.org/10.1164/rccm.201910-1911TR.

    Article  CAS  PubMed  Google Scholar 

  261. Selleng K, Warkentin TE, Greinacher A, Morris AM, Walker IR, Alexander Heggtveit H, Eichler P, Cybulsky IJ. Very severe thrombocytopenia and fragmentation hemolysis mimicking thrombotic thrombocytopenic purpura associated with a giant intracardiac vegetation infected with Staphylococcus epidermidis: role of monocyte procoagulant activity induced by bacterial supernatant. Am J Hematol. 2007;82(8):766–71. https://doi.org/10.1002/ajh.20821.

    Article  PubMed  Google Scholar 

  262. Figueroa JE, Densen P. Infectious diseases associated with complement deficiencies. Clin Microbiol Rev. 1991;4(3):359–95. https://doi.org/10.1128/CMR.4.3.359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Agarwal HS, Latifi SQ. Streptococcus pneumoniae-associated hemolytic uremic syndrome in the era of pneumococcal vaccine. Pathogens. 2021;10(6):727. https://doi.org/10.3390/pathogens10060727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Brandt J, Wong C, Mihm S. Invasive pneumococcal disease and hemolytic uremic syndrome. Pediatrics. 2002;110:371–5.

    Article  PubMed  Google Scholar 

  265. Copelovitch L, Kaplan BS. Streptococcus pneumoniae-associated haemolytic uremic syndrome. Pediatr Nephrol. 2008;23:1951–6.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Nathanson S, Deschenes G. Prognosis of Streptococcus pneumoniae induced hemolytic uremic syndrome. Pediatr Nephrol. 2001;16:362–5.

    Article  CAS  PubMed  Google Scholar 

  267. Gómez Delgado I, Irene FC, Nozal P, Arjona E, Madrid Á, Melgosa M, Bravo J, et al. Complement genetic variants and FH desialylation in S. pneumoniae-haemolytic uraemic syndrome. Front Immunol. 2021;12:641656. https://doi.org/10.3389/fimmu.2021.641656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Szilágyi Á, Kiss N, Bereczki C, Tálosi G, Rácz K, Túri S, Györke Z, et al. The role of complement in Streptococcus pneumoniae-associated haemolytic uraemic syndrome. Nephrol Dial Transplant. 2013;28(9):2237–45. https://doi.org/10.1093/ndt/gft198.

    Article  CAS  PubMed  Google Scholar 

  269. Holle J, Habbig S, Gratopp A, Mauritsch A, Müller D, Thumfart J. Complement activation in children with streptococcus pneumoniae associated hemolytic uremic syndrome. Pediatr Nephrol. 2021;36(5):1311–5. https://doi.org/10.1007/s00467-021-04952-w.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Rubin S, Cremer A, Boulestreau R, Rigothier C, Kuntz S, Gosse P. Malignant hypertension: diagnosis, treatment and prognosis with experience from the Bordeaux cohort. J Hypertens. 2019;37(2):316–24. https://doi.org/10.1097/HJH.0000000000001913.

    Article  CAS  PubMed  Google Scholar 

  271. Timmermans SAMEG, Wérion A, Damoiseaux JGMC, Morelle J, Reutelingsperger CP, van Paassen P. Diagnostic and risk factors for complement defects in hypertensive emergency and thrombotic microangiopathy. Hypertension. 2020;75(2):422–30. https://doi.org/10.1161/HYPERTENSIONAHA.119.13714.

    Article  CAS  PubMed  Google Scholar 

  272. Praga M, Rodríguez de Córdoba S. Secondary atypical hemolytic uremic syndromes in the era of complement blockade. Kidney Int. 2019;95(6):1298–300. https://doi.org/10.1016/j.kint.2019.01.043.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Licht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Riedl Khursigara, M., Benoit, S., Patriquin, C.J., Lemaire, M., Licht, C. (2022). Thrombotic Thrombocytopenic Purpura, Atypical Hemolytic Uremic Syndrome, and Spectrum of Thrombotic Microangiopathy. In: Emma, F., Goldstein, S., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27843-3_43-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27843-3_43-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27843-3

  • Online ISBN: 978-3-642-27843-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Thrombotic Thrombocytopenic Purpura, Atypical Hemolytic Uremic Syndrome, and Spectrum of Thrombotic Microangiopathy
    Published:
    21 July 2022

    DOI: https://doi.org/10.1007/978-3-642-27843-3_43-2

  2. Original

    Published:
    10 February 2015

    DOI: https://doi.org/10.1007/978-3-642-27843-3_43-1