Skip to main content

Minimally Invasive Glaucoma Surgery (MIGS)

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology
  • 140 Accesses

Abstract

With an ever-growing field of glaucoma surgery, countless options are now available to surgeons to help better control the single most important risk factor to glaucoma progression: intraocular pressure (IOP). Microinvasive glaucoma surgery (MIGS) aims at achieving IOP reduction in a safer, more predictable and physiologic manner compared to traditional glaucoma surgery. MIGS can either target Schlemm’s canal, the suprachoroidal space or completely bypass the outflow system and drain subconjunctival. This chapter will review many of the current MIGS options and provide information about device specifications, implantation techniques, complications, and current literature review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Saheb H, Ahmed II. Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol. 2012;23(2):96–104.

    Article  PubMed  Google Scholar 

  2. Tsai JC, McClure CA, Ramos SE, Schlundt DG, Pichert JW. Compliance barriers in glaucoma: a systematic classification. J Glaucoma. 2003;12(5):393–8.

    Article  PubMed  Google Scholar 

  3. Wolfram C, Stahlberg E, Pfeiffer N. Patient-reported nonadherence with glaucoma therapy. J Ocul Pharmacol Ther. 2019;35(4):223–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chawla A, McGalliard JN, Batterbury M. Use of eyedrops in glaucoma: how can we help to reduce non-compliance? Acta Ophthalmol Scand. 2007;85:464.

    Article  PubMed  Google Scholar 

  5. Skalicky SE, Goldberg I, McCluskey P. Ocular surface disease and quality of life in patients with glaucoma. Am J Ophthalmol. 2012;153(1):1–9.e2.

    Article  PubMed  Google Scholar 

  6. Fechtner RD, Godfrey DG, Budenz D, Stewart JA, Stewart WC, Jasek MC. Prevalence of ocular surface complaints in patients with glaucoma using topical intraocular pressure-lowering medications. Cornea. 2010;29(6):618–21.

    Article  PubMed  Google Scholar 

  7. Ahmed IIK, Fea A, Au L, Ang RE, Harasymowycz P, Jampel H, et al. A prospective randomized trial comparing Hydrus and iStent micro-invasive glaucoma glaucoma surgery implants for standalone treatment of open-angle glaucoma: the COMPARE Study. Ophthalmology. 2019;127:52–61.

    Article  PubMed  Google Scholar 

  8. Katz LJ, Erb C, Carceller Guillamet A, Fea AM, Voskanyan L, Giamporcaro JE, et al. Long-term titrated IOP control with one, two, or three trabecular micro-bypass stents in open-angle glaucoma subjects on topical hypotensive medication: 42-month outcomes. Clin Ophthalmol. 2018;12:255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fea AM, Belda JI, Rekas M, Junemann A, Chang L, Pablo L, et al. Prospective unmasked randomized evaluation of the iStent inject ((R)) versus two ocular hypotensive agents in patients with primary open-angle glaucoma. Clin Ophthalmol. 2014;8:875–82.

    PubMed  PubMed Central  Google Scholar 

  10. Fea AM, Ahmed II, Lavia C, Mittica P, Consolandi G, Motolese I, et al. Hydrus microstent compared to selective laser trabeculoplasty in primary open angle glaucoma: one year results. Clin Exp Ophthalmol. 2017;45(2):120–7.

    Article  PubMed  Google Scholar 

  11. Vold S, Ahmed II, Craven ER, Mattox C, Stamper R, Packer M, et al. Two-year COMPASS trial results: supraciliary microstenting with phacoemulsification in patients with open-angle glaucoma and cataracts. Ophthalmology. 2016;123(10):2103–12.

    Article  PubMed  Google Scholar 

  12. Denis P, Hirneiß C, Reddy KP, Kamarthy A, Calvo E, Hussain Z, et al. A first-in-human study of the efficacy and safety of MINIject in patients with medically uncontrolled open-angle glaucoma (STAR-I). Ophthalmol Glaucoma. 2019;2:290–7.

    Article  PubMed  Google Scholar 

  13. Batlle JF, Fantes F, Riss I, Pinchuk L, Alburquerque R, Kato YP, et al. Three-year follow-up of a novel aqueous humor microShunt. J Glaucoma. 2016;25(2):e58–65.

    Article  PubMed  Google Scholar 

  14. Pillunat LE, Erb C, Jünemann AG, Kimmich F. Micro-invasive glaucoma surgery (MIGS): a review of surgical procedures using stents. Clin Ophthalmol. 2017;11:1583–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Francis BA, Singh K, Lin SC, Hodapp E, Jampel HD, Samples JR, et al. Novel glaucoma procedures: a report by the American Academy of Ophthalmology. Ophthalmology. 2011;118(7):1466–80.

    Article  PubMed  Google Scholar 

  16. Minckler DS, Baerveldt G, Alfaro MR, Francis BA. Clinical results with the Trabectome for treatment of open-angle glaucoma. Ophthalmology. 2005;112(6):962–7.

    Article  PubMed  Google Scholar 

  17. Voskanyan L, Garcia-Feijoo J, Belda JI, Fea A, Junemann A, Baudouin C. Prospective, unmasked evaluation of the iStent(R) inject system for open-angle glaucoma: synergy trial. Adv Ther. 2014;31(2):189–201.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grover DS, Smith O, Fellman RL, Godfrey DG, Gupta A, Montes de Oca I, et al. Gonioscopy-assisted transluminal trabeculotomy: an Ab interno circumferential trabeculotomy: 24 months follow-up. J Glaucoma. 2018;27(5):393–401.

    Article  PubMed  Google Scholar 

  19. Grant WM. Further studies on facility of flow through the trabecular meshwork. AMA Arch Ophthalmol. 1958;60(4 Part 1):523–33.

    Article  CAS  PubMed  Google Scholar 

  20. Moses RA, Grodzki WJ Jr, Etheridge EL, Wilson CD. Schlemm’s canal: the effect of intraocular pressure. Invest Ophthalmol Vis Sci. 1981;20(1):61–8.

    CAS  PubMed  Google Scholar 

  21. Fernandez-Barrientos Y, Garcia-Feijoo J, Martinez-de-la-Casa JM, Pablo LE, Fernandez-Perez C, Garcia SJ. Fluorophotometric study of the effect of the glaukos trabecular microbypass stent on aqueous humor dynamics. Invest Ophthalmol Vis Sci. 2010;51(7):3327–32.

    Article  PubMed  Google Scholar 

  22. Fea AM. Phacoemulsification versus phacoemulsification with micro-bypass stent implantation in primary open-angle glaucoma: randomized double-masked clinical trial. J Cataract Refract Surg. 2010;36(3):407–12.

    Article  PubMed  Google Scholar 

  23. Samuelson TW, Katz LJ, Wells JM, Duh YJ, Giamporcaro JE. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology. 2011;118(3):459–67.

    Article  PubMed  Google Scholar 

  24. Samuelson TW, Sarkisian SR Jr, Lubeck DM, Stiles MC, Duh YJ, Romo EA, et al. Prospective, randomized, controlled pivotal trial of an Ab interno implanted trabecular micro-bypass in primary open-angle glaucoma and cataract: two-year results. Ophthalmology. 2019;126(6):811–21.

    Article  PubMed  Google Scholar 

  25. Arriola-Villalobos P, Martinez-de-la-Casa JM, Diaz-Valle D, Garcia-Vidal SE, Fernandez-Perez C, Garcia-Sanchez J, et al. Mid-term evaluation of the new Glaukos iStent with phacoemulsification in coexistent open-angle glaucoma or ocular hypertension and cataract. Br J Ophthalmol. 2013;97(10):1250–5.

    Article  PubMed  Google Scholar 

  26. Spiegel D, Kobuch K, Hill RA, Gross RL. Schlemm’s canal implant: a new method to lower intraocular pressure in patients with POAG? Ophthalmic Surg Lasers. 1999;30(6):492–4.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou J, Smedley GT. A trabecular bypass flow hypothesis. J Glaucoma. 2005;14(1):74–83.

    Article  PubMed  Google Scholar 

  28. Spiegel D, Wetzel W, Haffner DS, Hill RA. Initial clinical experience with the trabecular micro-bypass stent in patients with glaucoma. Adv Ther. 2007;24(1):161–70.

    Article  PubMed  Google Scholar 

  29. Spiegel D, Kobuch K. Trabecular meshwork bypass tube shunt: initial case series. Br J Ophthalmol. 2002;86(11):1228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bahler CK, Smedley GT, Zhou J, Johnson DH. Trabecular bypass stents decrease intraocular pressure in cultured human anterior segments. Am J Ophthalmol. 2004;138(6):988–94.

    Article  PubMed  Google Scholar 

  31. Hunter KS, Fjield T, Heitzmann H, Shandas R, Kahook MY. Characterization of micro-invasive trabecular bypass stents by ex vivo perfusion and computational flow modeling. Clin Ophthalmol. 2014;8:499–506.

    PubMed  PubMed Central  Google Scholar 

  32. Spiegel D, Wetzel W, Neuhann T, Stuermer J, Hoeh H, Garcia-Feijoo J, et al. Coexistent primary open-angle glaucoma and cataract: interim analysis of a trabecular micro-bypass stent and concurrent cataract surgery. Eur J Ophthalmol. 2009;19(3):393–9.

    Article  PubMed  Google Scholar 

  33. Spiegel D, Garcia-Feijoo J, Garcia-Sanchez J, Lamielle H. Coexistent primary open-angle glaucoma and cataract: preliminary analysis of treatment by cataract surgery and the iStent trabecular micro-bypass stent. Adv Ther. 2008;25(5):453–64.

    Article  PubMed  Google Scholar 

  34. Fea AM, Consolandi G, Zola M, Pignata G, Cannizzo P, Lavia C, et al. Micro-bypass implantation for primary open-angle glaucoma combined with phacoemulsification: 4-year follow-up. J Ophthalmol. 2015;795357:2015.

    Google Scholar 

  35. Craven ER, Katz LJ, Wells JM, Giamporcaro JE. Cataract surgery with trabecular micro-bypass stent implantation in patients with mild-to-moderate open-angle glaucoma and cataract: two-year follow-up. J Cataract Refract Surg. 2012;38(8):1339–45.

    Article  PubMed  Google Scholar 

  36. Vold SD, Voskanyan L, Tetz M, Auffarth G, Masood I, Au L, et al. Newly diagnosed primary open-angle glaucoma randomized to 2 trabecular bypass stents or prostaglandin: outcomes through 36 months. Ophthalmol Ther. 2016;5(2):161–72.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Katz LJ, Erb C, Carceller GA, Fea AM, Voskanyan L, Wells JM, et al. Prospective, randomized study of one, two, or three trabecular bypass stents in open-angle glaucoma subjects on topical hypotensive medication. Clin Ophthalmol. 2015;9:2313–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Belovay GW, Naqi A, Chan BJ, Rateb M, Ahmed II. Using multiple trabecular micro-bypass stents in cataract patients to treat open-angle glaucoma. J Cataract Refract Surg. 2012;38(11):1911–7.

    Article  PubMed  Google Scholar 

  39. Buchacra O, Duch S, Milla E, Stirbu O. One-year analysis of the iStent trabecular microbypass in secondary glaucoma. Clin Ophthalmol. 2011;5:321–6.

    PubMed  PubMed Central  Google Scholar 

  40. Arriola-Villalobos P, Martinez-de-la-Casa JM, Diaz-Valle D, Fernandez-Perez C, Garcia-Sanchez J, Garcia-Feijoo J. Combined iStent trabecular micro-bypass stent implantation and phacoemulsification for coexistent open-angle glaucoma and cataract: a long-term study. Br J Ophthalmol. 2012;96(5):645–9.

    Article  PubMed  Google Scholar 

  41. Ahmed II, Katz LJ, Chang DF, Donnenfeld ED, Solomon KD, Voskanyan L, et al. Prospective evaluation of microinvasive glaucoma surgery with trabecular microbypass stents and prostaglandin in open-angle glaucoma. J Cataract Refract Surg. 2014;40(8):1295–300.

    Article  PubMed  Google Scholar 

  42. Johnstone MA, Grant WG. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol. 1973;75(3):365–83.

    Article  CAS  PubMed  Google Scholar 

  43. Battista SA, Lu Z, Hofmann S, Freddo T, Overby DR, Gong H. Reduction of the available area for aqueous humor outflow and increase in meshwork herniations into collector channels following acute IOP elevation in bovine eyes. Invest Ophthalmol Vis Sci. 2008;49(12):5346–52.

    Article  PubMed  Google Scholar 

  44. Gulati V, Fan S, Hays CL, Samuelson TW, Ahmed II, Toris CB. A novel 8-mm Schlemm’s canal scaffold reduces outflow resistance in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci. 2013;54(3):1698–704.

    Article  PubMed  Google Scholar 

  45. Castleman LS, Motzkin SM, Alicandri FP, Bonawit VL. Biocompatibility of nitinol alloy as an implant material. J Biomed Mater Res. 1976;10(5):695–731.

    Article  CAS  PubMed  Google Scholar 

  46. Henderson E, Nash DH, Dempster WM. On the experimental testing of fine Nitinol wires for medical devices. J Mech Behav Biomed Mater. 2011;4(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  47. Haider W, Munroe N, Pulletikurthi C, Singh Gill PK, Amruthaluri S. A comparative biocompatibility analysis of ternary nitinol alloys. J Mater Eng Perform. 2009;18(5–6):760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shabalovskaya SA. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Biomed Mater Eng. 2002;12(1):69–109.

    CAS  PubMed  Google Scholar 

  49. Assad M, Chernyshov A, Leroux MA, Rivard CH. A new porous titanium-nickel alloy: part 1. Cytotoxicity and genotoxicity evaluation. Biomed Mater Eng. 2002;12(3):225–37.

    CAS  PubMed  Google Scholar 

  50. Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, van Horn JR. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials. 1997;18(16):1115–20.

    Article  CAS  PubMed  Google Scholar 

  51. Achneck HE, Jamiolkowski RM, Jantzen AE, Haseltine JM, Lane WO, Huang JK, et al. The biocompatibility of titanium cardiovascular devices seeded with autologous blood-derived endothelial progenitor cells: EPC-seeded antithrombotic Ti implants. Biomaterials. 2011;32(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  52. Verheye S, De Meyer G, Salu K, Knaapen M, Kockx M. Histopathologic evaluation of a novel-design nitinol stent: the Biflex stent. Int J Cardiovasc Intervent. 2004;6(1):13–9.

    Article  PubMed  Google Scholar 

  53. Roosli C, Schmid P, Huber AM. Biocompatibility of nitinol stapes prosthesis. Otol Neurotol. 2011;32(2):265–70.

    Article  PubMed  Google Scholar 

  54. Lavy J, Khalil S. Five-year hearing results with the shape memory nitinol stapes prosthesis. Laryngoscope. 2014;124(11):2591–3.

    Article  PubMed  Google Scholar 

  55. Shayan M, Chun Y. An overview of thin film nitinol endovascular devices. Acta Biomater. 2015;21:20–34.

    Article  CAS  PubMed  Google Scholar 

  56. Aiyer A, Russell NA, Pelletier MH, Myerson M, Walsh WR. The impact of nitinol staples on the compressive forces, contact area, and mechanical properties in comparison to a claw plate and crossed screws for the first tarsometatarsal arthrodesis. Foot Ankle Spec. 2016;9(3):232–40.

    Article  PubMed  Google Scholar 

  57. Beeley NR, Stewart JM, Tano R, Lawin LR, Chappa RA, Qiu G, et al. Development, implantation, in vivo elution, and retrieval of a biocompatible, sustained release subretinal drug delivery system. J Biomed Mater Res A. 2006;76(4):690–8.

    Article  PubMed  CAS  Google Scholar 

  58. Olson JL, Velez-Montoya R, Erlanger M. Ocular biocompatibility of nitinol intraocular clips. Invest Ophthalmol Vis Sci. 2012;53:354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gandolfi SA, Ungaro N, Ghirardini S, Tardini MG, Mora P. Comparison of surgical outcomes between canaloplasty and Schlemm’s canal scaffold at 24 months’ follow-up. J Ophthalmol. 2016;2016:3410469.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fea AM, Rekas M, Au L. Evaluation of a Schlemm canal scaffold microstent combined with phacoemulsification in routine clinical practice: two-year multicenter study. J Cataract Refract Surg. 2017;43(7):886–91.

    Article  PubMed  Google Scholar 

  61. Al-Mugheiry TS, Cate H, Clark A, Broadway DC. Microinvasive glaucoma stent (MIGS) surgery with concomitant phakoemulsification cataract extraction: outcomes and the learning curve. J Glaucoma. 2017;26(7):646–51.

    Article  PubMed  Google Scholar 

  62. Pfeiffer N, Garcia-Feijoo J, Martinez-de-la-Casa JM, Larrosa JM, Fea A, Lemij H, et al. A randomized trial of a Schlemm’s canal microstent with phacoemulsification for reducing intraocular pressure in open-angle glaucoma. Ophthalmology. 2015;122(7):1283–93.

    Article  PubMed  Google Scholar 

  63. Camras LJ, Yuan F, Fan S, Samuelson TW, Ahmed IK, Schieber AT, et al. A novel Schlemm’s canal scaffold increases outflow facility in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci. 2012;53(10):6115–21.

    Article  PubMed  Google Scholar 

  64. Johnstone MA, Saheb H, Ahmed II, Samuelson TW, Schieber AT, Toris CB. Effects of a Schlemm canal scaffold on collector channel ostia in human anterior segments. Exp Eye Res. 2014;119:70–6.

    Article  CAS  PubMed  Google Scholar 

  65. Grierson I, Saheb H, Kahook MY, Johnstone MA, Ahmed II, Schieber AT, et al. A novel Schlemm’s canal scaffold: histologic observations. J Glaucoma. 2015;24(6):460–8.

    Article  PubMed  Google Scholar 

  66. Hays CL, Gulati V, Fan S, Samuelson TW, Ahmed II, Toris CB. Improvement in outflow facility by two novel microinvasive glaucoma surgery implants. Invest Ophthalmol Vis Sci. 2014;55(3):1893–900.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fea AM, Consolandi G, Pignata G, Cannizzo PM, Lavia C, Billia F, et al. A comparison of endothelial cell loss in combined cataract and MIGS (hydrus) procedure to phacoemulsification alone: 6-month results. J Ophthalmol. 2015;2015:769289.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Samuelson TW, Chang DF, Marquis R, Flowers B, Lim KS, Ahmed IIK, et al. A schlemm canal microstent for intraocular pressure reduction in primary open-angle glaucoma and cataract: the HORIZON study. Ophthalmology. 2019;126(1):29–37.

    Article  PubMed  Google Scholar 

  69. Durr GM, Ahmed IIK. Endothelial cell loss and MIGS: What we know and don’t know. Glaucoma Today. 2018. http://glaucomatoday.com/2018/10/endothelial-cell-loss-and-migs-what-we-know-and-dont-know/. Accessed 19 May 2020.

  70. Eyewire. Ivantis announces 3-year results from FDA clinical trial demonstrating long-term reduction of severe major surgeries for glaucoma patients. Eyewire. 2019. https://eyewire.news/articles/ivantis-announces-3-year-results-from-fda-clinical-trial-demonstrating-long-term-reduction-of-severe-major-surgeries-for-glaucoma-patients/. Accessed 19 May 2020.

  71. Rosenquist R, Epstein D, Melamed S, Johnson M, Grant WM. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res. 1989;8(12):1233–40.

    Article  CAS  PubMed  Google Scholar 

  72. Barkan O. Present status of goniotomy. Am J Ophthalmol. 1953;36(4):445–53.

    Article  CAS  PubMed  Google Scholar 

  73. Mendicino ME, Lynch MG, Drack A, Beck AD, Harbin T, Pollard Z, et al. Long-term surgical and visual outcomes in primary congenital glaucoma: 360 degrees trabeculotomy versus goniotomy. J AAPOS. 2000;4(4):205–10.

    Article  CAS  PubMed  Google Scholar 

  74. Luntz MH, Livingston DG. Trabeculotomy ab externo and trabeculectomy in congenital and adult-onset glaucoma. Am J Ophthalmol. 1977;83(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  75. McMenamin PG, Lee WR, Aitken DA. Age-related changes in the human outflow apparatus. Ophthalmology. 1986;93(2):194–209.

    Article  CAS  PubMed  Google Scholar 

  76. Hirano K, Kobayashi M, Kobayashi K, Hoshino T, Awaya S. Age-related changes of microfibrils in the cornea and trabecular meshwork of the human eye. Jpn J Ophthalmol. 1991;35(2):166–74.

    CAS  PubMed  Google Scholar 

  77. Ting JLM, Rudnisky CJ, Damji KF. Prospective randomized controlled trial of phaco-trabectome versus phaco-trabeculectomy in patients with open angle glaucoma. Can J Ophthalmol. 2018;53(6):588–94.

    Article  PubMed  Google Scholar 

  78. Minckler D, Baerveldt G, Ramirez MA, Mosaed S, Wilson R, Shaarawy T, et al. Clinical results with the Trabectome, a novel surgical device for treatment of open-angle glaucoma. Trans Am Ophthalmol Soc. 2006;104:40–50.

    PubMed  PubMed Central  Google Scholar 

  79. Minckler D, Mosaed S, Dustin L, Ms BF. Trabectome (trabeculectomy-internal approach): additional experience and extended follow-up. Trans Am Ophthalmol Soc. 2008;106:149–59; discussion 59–60.

    PubMed  PubMed Central  Google Scholar 

  80. Francis BA, Minckler D, Dustin L, Kawji S, Yeh J, Sit A, et al. Combined cataract extraction and trabeculotomy by the internal approach for coexisting cataract and open-angle glaucoma: initial results. J Cataract Refract Surg. 2008;34(7):1096–103.

    Article  PubMed  Google Scholar 

  81. Jea SY, Francis BA, Vakili G, Filippopoulos T, Rhee DJ. Ab interno trabeculectomy versus trabeculectomy for open-angle glaucoma. Ophthalmology. 2012;119(1):36–42.

    Article  PubMed  Google Scholar 

  82. Ahuja Y, Ma Khin Pyi S, Malihi M, Hodge DO, Sit AJ. Clinical results of Ab interno trabeculotomy using the trabectome for open-angle glaucoma: the Mayo Clinic series in Rochester, Minnesota. Am J Ophthalmol. 2013;156(5):927–35.e2.

    Article  PubMed  Google Scholar 

  83. Bussel II, Kaplowitz K, Schuman JS, Loewen NA. Outcomes of ab interno trabeculectomy with the trabectome after failed trabeculectomy. Br J Ophthalmol. 2015;99(2):258–62.

    Article  PubMed  Google Scholar 

  84. Kaplowitz K, Bussel II, Honkanen R, Schuman JS, Loewen NA. Review and meta-analysis of ab-interno trabeculectomy outcomes. Br J Ophthalmol. 2016;100(5):594–600.

    Article  PubMed  Google Scholar 

  85. Ahuja Y, Malihi M, Sit AJ. Delayed-onset symptomatic hyphema after ab interno trabeculotomy surgery. Am J Ophthalmol. 2012;154(3):476–80.e2.

    Article  PubMed  Google Scholar 

  86. Kassam F, Stechschulte AC, Stiles MC, Buhrmann R, Damji KF. Delayed spontaneous hyphemas after Ab interno trabeculectomy surgery for glaucoma. J Glaucoma. 2014;23(9):660–1.

    Article  PubMed  Google Scholar 

  87. Parekh AS, Weinreb RN, Dorairaj SK. Delayed-onset symptomatic hyphema after ab interno trabeculotomy surgery. Am J Ophthalmol. 2013;155(4):778–9.

    Article  PubMed  Google Scholar 

  88. Francis BA, See RF, Rao NA, Minckler DS, Baerveldt G. Ab interno trabeculectomy: development of a novel device (Trabectome) and surgery for open-angle glaucoma. J Glaucoma. 2006;15(1):68–73.

    Article  PubMed  Google Scholar 

  89. Klamann MK, Gonnermann J, Maier AK, Bertelmann E, Joussen AM, Torun N. Influence of Selective Laser Trabeculoplasty (SLT) on combined clear cornea phacoemulsification and Trabectome outcomes. Graefes Arch Clin Exp Ophthalmol. 2014;252(4):627–31.

    Article  PubMed  Google Scholar 

  90. Bussel II, Kaplowitz K, Schuman JS, Loewen NA. Outcomes of Ab interno trabeculectomy with the trabectome by degree of angle opening. Br J Ophthalmol. 2015;99(7):914–9.

    Article  CAS  PubMed  Google Scholar 

  91. Parikh HA, Bussel II, Schuman JS, Brown EN, Loewen NA. Coarsened exact matching of phaco-trabectome to trabectome in phakic patients: lack of additional pressure reduction from phacoemulsification. PLoS One. 2016;11(2):e0149384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ting JL, Damji KF, Stiles MC. Ab interno trabeculectomy: outcomes in exfoliation versus primary open-angle glaucoma. J Cataract Refract Surg. 2012;38(2):315–23.

    Article  PubMed  Google Scholar 

  93. Jordan JF, Wecker T, van Oterendorp C, Anton A, Reinhard T, Boehringer D, et al. Trabectome surgery for primary and secondary open angle glaucomas. Graefes Arch Clin Exp Ophthalmol. 2013;251(12):2753–60.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gonnermann J, Bertelmann E, Pahlitzsch M, Maier-Wenzel AB, Torun N, Klamann MK. Contralateral eye comparison study in MICS & MIGS: Trabectome(R) vs. iStent inject(R). Graefes Arch Clin Exp Ophthalmol. 2017;255(2):359–65.

    Article  PubMed  Google Scholar 

  95. Kurji K, Rudnisky CJ, Rayat JS, Arora S, Sandhu S, Damji KF, et al. Phaco-trabectome versus phaco-iStent in patients with open-angle glaucoma. Can J Ophthalmol. 2017;52(1):99–106.

    Article  PubMed  Google Scholar 

  96. Puliafito CA, Steinert RF, Deutsch TF, Hillenkamp F, Dehm EJ, Adler CM. Excimer laser ablation of the cornea and lens. Exp Stud Ophthalmol. 1985;92(6):741–8.

    CAS  Google Scholar 

  97. Durr G, Töteberg-Harms M, Lewis R, Fea A, Marolo P, Ahmed IIK. Current review of Excimer laser Trabeculostomy. Eye Vis. 2020;7(1):24.

    Article  Google Scholar 

  98. Richter GM, Coleman AL. Minimally invasive glaucoma surgery: current status and future prospects. Clin Ophthalmol. 2016;10:189–206.

    PubMed  PubMed Central  Google Scholar 

  99. Huang S, Yu M, Feng G, Zhang P, Qiu C. Histopathological study of trabeculum after excimer laser trabeculectomy ab interno. Yan Ke Xue Bao. 2001;17(1):11–5.

    CAS  PubMed  Google Scholar 

  100. Babighian S, Caretti L, Tavolato M, Cian R, Galan A. Excimer laser trabeculotomy vs 180 degrees selective laser trabeculoplasty in primary open-angle glaucoma. A 2-year randomized, controlled trial. Eye (Lond). 2010;24(4):632–8.

    Article  CAS  PubMed  Google Scholar 

  101. Wilmsmeyer S, Philippin H, Funk J. Excimer laser trabeculotomy: a new, minimally invasive procedure for patients with glaucoma. Graefes Arch Clin Exp Ophthalmol. 2006;244(6):670–6.

    Article  PubMed  Google Scholar 

  102. Babighian S, Rapizzi E, Galan A. Efficacy and safety of ab interno excimer laser trabeculotomy in primary open-angle glaucoma: two years of follow-up. Ophthalmologica. 2006;220(5):285–90.

    Article  PubMed  Google Scholar 

  103. Töteberg-Harms M, Ciechanowski PP, Hirn C, Funk J. One-year results after combined cataract surgery and excimer laser trabeculotomy for elevated intraocular pressure. Ophthalmologe. 2011;108(8):733–8.

    Article  PubMed  Google Scholar 

  104. Töteberg-Harms M, Hanson JV, Funk J. Cataract surgery combined with excimer laser trabeculotomy to lower intraocular pressure: effectiveness dependent on preoperative IOP. BMC Ophthalmol. 2013;13:24.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Töteberg-Harms M, Wachtl J, Schweier C, Funk J, Kniestedt C. Long-term efficacy of combined phacoemulsification plus trabeculectomy versus phacoemulsification plus excimer laser trabeculotomy. Klin Monbl Augenheilkd. 2017;234(4):457–63.

    Article  PubMed  Google Scholar 

  106. Jozic L, Magner J, Funk J, Töteberg-Harms M. Success of combined cataract extraction plus excimer laser trabeculotomy exceeds that of combined ab interno trabeculectomy with the trabectome or cataract extraction alone. Int Ophthalmol. 2020;40(3):529–37.

    Article  PubMed  Google Scholar 

  107. Francis BA, Akil H, Bert BB. Ab interno Schlemm’s canal surgery. Dev Ophthalmol. 2017;59:127–46.

    Article  PubMed  Google Scholar 

  108. Seibold LK, Soohoo JR, Ammar DA, Kahook MY. Preclinical investigation of ab interno trabeculectomy using a novel dual-blade device. Am J Ophthalmol. 2013;155(3):524–9.e2.

    Article  PubMed  Google Scholar 

  109. Khouri AS, Wong SH. Ab interno trabeculectomy with a dual blade: surgical technique for childhood glaucoma. J Glaucoma. 2017;26(8):749–51.

    Article  PubMed  Google Scholar 

  110. Ten Hulzen RD, Johnson DH. Effect of fixation pressure on juxtacanalicular tissue and Schlemm’s canal. Invest Ophthalmol Vis Sci. 1996;37(1):114–24.

    PubMed  Google Scholar 

  111. Greenwood MD, Seibold LK, Radcliffe NM, Dorairaj SK, Aref AA, Roman JJ, et al. Goniotomy with a single-use dual blade: short-term results. J Cataract Refract Surg. 2017;43(9):1197–201.

    Article  PubMed  Google Scholar 

  112. Dorairaj SK, Kahook MY, Williamson BK, Seibold LK, ElMallah MK, Singh IP. A multicenter retrospective comparison of goniotomy versus trabecular bypass device implantation in glaucoma patients undergoing cataract extraction. Clin Ophthalmol. 2018;12:791–7.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Salinas L, Chaudhary A, Berdahl JP, Lazcano-Gomez GS, Williamson BK, Dorairaj SK, et al. Goniotomy using the Kahook Dual Blade in severe and refractory glaucoma: 6-month outcomes. J Glaucoma. 2018;27(10):849–55.

    Article  PubMed  Google Scholar 

  114. Berdahl JP, Gallardo MJ, ElMallah MK, Williamson BK, Kahook MY, Mahootchi A, et al. Six-month outcomes of goniotomy performed with the Kahook Dual Blade as a stand-alone glaucoma procedure. Adv Ther. 2018;35(11):2093–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sieck E, Epstein R, Kennedy J, SooHoo J, Pantcheva M, Patnaik J, et al. Outcomes of Kahook Dual Blade goniotomy with and without phacoemulsification cataract extraction. Ophthalmol Glaucoma. 2018;1:75–81.

    Article  PubMed  Google Scholar 

  116. Dorairaj SK, Seibold LK, Radcliffe NM, Aref AA, Jimenez-Roman J, Lazcano-Gomez GS, et al. 12-month outcomes of goniotomy performed using the Kahook Dual Blade combined with cataract surgery in eyes with medically treated glaucoma. Adv Ther. 2018;35(9):1460–9.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Le C, Kazaryan S, Hubbell M, Zurakowski D, Ayyala RS. Surgical outcomes of phacoemulsification followed by iStent implantation versus goniotomy with the Kahook Dual Blade in Patients With Mild Primary Open-angle Glaucoma With a Minimum of 12-Month Follow-up. J Glaucoma. 2019;28(5):411–4.

    Article  PubMed  Google Scholar 

  118. Grover DS, Godfrey DG, Smith O, Feuer WJ, Montes de Oca I, Fellman RL. Gonioscopy-assisted transluminal trabeculotomy, Ab interno trabeculotomy: technique report and preliminary results. Ophthalmology. 2014;121(4):855–61.

    Article  PubMed  Google Scholar 

  119. Sato T, Hirata A, Mizoguchi T. Prospective, noncomparative, nonrandomized case study of short-term outcomes of 360° suture trabeculotomy ab interno in patients with open-angle glaucoma. Clin Ophthalmol. 2015;9:63–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Grover DS, Smith O, Fellman RL, Godfrey DG, Butler MR, Montes de Oca I, et al. Gonioscopy assisted transluminal trabeculotomy: an Ab interno circumferential trabeculotomy for the treatment of primary congenital glaucoma and juvenile open angle glaucoma. Br J Ophthalmol. 2015;99(8):1092–6.

    Article  PubMed  Google Scholar 

  121. Grover DS, Flynn WJ, Bashford KP, Lewis RA, Duh YJ, Nangia RS, et al. Performance and safety of a new Ab interno gelatin stent in refractory glaucoma at 12 months. Am J Ophthalmol. 2017;183:25–36.

    Article  PubMed  Google Scholar 

  122. Rahmatnejad K, Pruzan NL, Amanullah S, Shaukat BA, Resende AF, Waisbourd M, et al. Surgical outcomes of gonioscopy-assisted transluminal trabeculotomy (GATT) in patients with open-angle glaucoma. J Glaucoma. 2017;26(12):1137–43.

    Article  PubMed  Google Scholar 

  123. Baykara M, Poroy C, Erseven C. Surgical outcomes of combined gonioscopy-assisted transluminal trabeculotomy and cataract surgery. Indian J Ophthalmol. 2019;67(4):505–8.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Grover DS, Godfrey DG, Smith O, Shi W, Feuer WJ, Fellman RL. Outcomes of gonioscopy-assisted transluminal trabeculotomy (GATT) in eyes with prior incisional glaucoma surgery. J Glaucoma. 2017;26(1):41–5.

    Article  PubMed  Google Scholar 

  125. Sato T, Kawaji T, Hirata A, Mizoguchi T. 360-degree suture trabeculotomy Ab interno to treat open-angle glaucoma: 2-year outcomes. Clin Ophthalmol. 2018;12:915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Grant WM. Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol. 1963;69:783–801.

    Article  CAS  PubMed  Google Scholar 

  127. Maepea O, Bill A. Pressures in the juxtacanalicular tissue and Schlemm’s canal in monkeys. Exp Eye Res. 1992;54(6):879–83.

    Article  CAS  PubMed  Google Scholar 

  128. Bill A, Svedbergh B. Scanning electron microscopic studies of the trabecular meshwork and the canal of Schlemm – an attempt to localize the main resistance to outflow of aqueous humor in man. Acta Ophthalmol (Copenh). 1972;50(3):295–320.

    Article  CAS  PubMed  Google Scholar 

  129. Allingham RR, de Kater AW, Ethier CR. Schlemm’s canal and primary open angle glaucoma: correlation between Schlemm’s canal dimensions and outflow facility. Exp Eye Res. 1996;62(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  130. Smit BA, Johnstone MA. Effects of viscoelastic injection into Schlemm’s canal in primate and human eyes: potential relevance to viscocanalostomy. Ophthalmology. 2002;109(4):786–92.

    Article  PubMed  Google Scholar 

  131. Gallardo MJ, Supnet RA, Ahmed IIK. Circumferential viscodilation of Schlemm’s canal for open-angle glaucoma: ab-interno vs ab-externo canaloplasty with tensioning suture. Clin Ophthalmol. 2018;12:2493–8.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gallardo MJ, Supnet RA, Ahmed IIK. Viscodilation of Schlemm’s canal for the reduction of IOP via an ab-interno approach. Clin Ophthalmol. 2018;12:2149–55.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Korber N. Canaloplasty Ab interno – a minimally invasive alternative. Klin Monbl Augenheilkd. 2017;234(8):991–5.

    Article  CAS  PubMed  Google Scholar 

  134. Körber N. Ab interno canaloplasty for the treatment of glaucoma: a case series study. Spektrum Augenheilkd. 2018;32:223–7.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Khaimi MA. Canaloplasty: a minimally invasive and maximally effective glaucoma treatment. J Ophthalmol. 2015;2015:485065.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Brown RH, Tsegaw S, Dhamdhere K, Lynch MG. Viscodilation of Schlemm canal and trabeculotomy combined with cataract surgery for reducing intraocular pressure in open-angle glaucoma. J Cataract Refract Surg. 2020;46(4):644–5.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Brown R, Dhamdhere K. Ab-interno trabeculectomy combined with viscodilation of Schlemm’s canal for reducing intraocular pressure in patients with mild to severe open-angle glaucoma. ASCRS 2019, Paper 56726.

    Google Scholar 

  138. Grabska-Liberek I, Majszyk-Ionescu J, Duda P, et al. OMNI in open-angle glaucoma treatment: an 18-month follow-up. ESCRS 2019, Presented Poster Session: Glaucoma II. https://www.escrs.org/paris2019/programme/poster-village-details.asp?id=33863&day=0. Accessed 19 May 2020.

  139. Lewis RA, von Wolff K, Tetz M, Koerber N, Kearney JR, Shingleton BJ, et al. Canaloplasty: circumferential viscodilation and tensioning of Schlemm canal using a flexible microcatheter for the treatment of open-angle glaucoma in adults: two-year interim clinical study results. J Cataract Refract Surg. 2009;35(5):814–24.

    Article  PubMed  Google Scholar 

  140. Sarkisian SR, Mathews B, Ding K, Patel A, Nicek Z. 360° ab-interno trabeculotomy in refractory primary open-angle glaucoma. Clin Ophthalmol. 2019;13:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Voykov B, Szurman P, Dimopoulos S, Ziemssen F, Alnahrawy O. Micro-invasive suture trabeculotomy after canaloplasty: preliminary results. Clin Exp Ophthalmol. 2015;43(5):409–14.

    Article  PubMed  Google Scholar 

  142. Seuthe AM, Januschowski K, Szurman P. Micro-invasive 360-degree suture trabeculotomy after successful canaloplasty – one year results. Graefes Arch Clin Exp Ophthalmol. 2016;254(1):155–9.

    Article  PubMed  Google Scholar 

  143. Becker B, Neufeld AH. Pressure dependence of uveoscleral outflow. J Glaucoma. 2002;11(6):545.

    PubMed  Google Scholar 

  144. Bill A. Some aspects of aqueous humour drainage. Eye (Lond). 1993;7(Pt 1):14–9.

    Article  PubMed  Google Scholar 

  145. Alm A, Nilsson SF. Uveoscleral outflow – a review. Exp Eye Res. 2009;88(4):760–8.

    Article  CAS  PubMed  Google Scholar 

  146. Gills JP Jr, Paterson CA, Paterson ME. Action of cyclodialysis utilizing an implant studied by manometry in a human eye. Exp Eye Res. 1967;6(2):75–8.

    Article  PubMed  Google Scholar 

  147. Skaat A, Sagiv O, Kinori M, Ben Simon GJ, Goldenfeld M, Melamed S. Gold micro-shunt implants versus Ahmed glaucoma valve: long-term outcomes of a prospective randomized clinical trial. J Glaucoma. 2016;25(2):155–61.

    Article  PubMed  Google Scholar 

  148. Pourjavan S, Collignon N, De Groot V. STARflo™ Glaucoma Implant: 12 month clinical results. Acta Ophthalmol. 2013;91:0–0.

    Google Scholar 

  149. Alcon announces voluntary global market withdrawal of CyPass Micro-Stent for surgical glaucoma. Fort Worth: Novartis AG; 2018. https://www.alcon.com/news/media-releases/alcon-announces-voluntary-global-market-withdrawal-cypass-micro-stent-surgical. Accessed 19 May 2020.

  150. Myers JS, Masood I, Hornbeak DM, Belda JI, Auffarth G, Junemann A, et al. Prospective evaluation of two iStent((R)) trabecular stents, one iStent Supra((R)) suprachoroidal stent, and postoperative prostaglandin in refractory glaucoma: 4-year outcomes. Adv Ther. 2018;35(3):395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Grierson I MD, Rippy MK, Marshall AJ, Collignon N, Bianco J, et al. European Society of cataract and refractive surgery annual meeting, Vienna, Austria; September 22–26, 2018.

    Google Scholar 

  152. Fili S, Wölfelschneider P, Kohlhaas M. The STARflo glaucoma implant: preliminary 12 months results. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):773–81.

    Article  CAS  PubMed  Google Scholar 

  153. István C, Péter V, Mária B. Starflo glaucoma implant: early experience in Hungary. Rom J Ophthalmol. 2016;60(1):14–7.

    PubMed Central  Google Scholar 

  154. König S, Hirneiß CW. STARflo-a suprachoroidal drainage implant in glaucoma surgery. Ophthalmologe. 2018;115(8):670–5.

    Article  PubMed  Google Scholar 

  155. Sheybani A, Reitsamer H, Ahmed II. Fluid dynamics of a novel micro-fistula implant for the surgical treatment of glaucoma. Invest Ophthalmol Vis Sci. 2015;56(8):4789–95.

    Article  CAS  PubMed  Google Scholar 

  156. Yu DY. Biological microfistula implantation for the surgical management of glaucoma. Unpublished data, November 2005.

    Google Scholar 

  157. Yu DY, Morgan WH, Sun X, Su EN, Cringle SJ, Yu PK, et al. The critical role of the conjunctiva in glaucoma filtration surgery. Prog Retin Eye Res. 2009;28(5):303–28.

    Article  CAS  PubMed  Google Scholar 

  158. Yu DY. Surgical procedure for microfistula tube implantation. Unpublished data, March 2009.

    Google Scholar 

  159. Sheybani A, Dick HB, Ahmed II. Early clinical results of a novel Ab interno gel stent for the surgical treatment of open-angle glaucoma. J Glaucoma. 2016;25(7):e691–6.

    Article  PubMed  Google Scholar 

  160. Schlenker MB, Gulamhusein H, Conrad-Hengerer I, Somers A, Lenzhofer M, Stalmans I, et al. Efficacy, safety, and risk factors for failure of standalone Ab interno gelatin microstent implantation versus standalone trabeculectomy. Ophthalmology. 2017;124(11):1579–88.

    Article  PubMed  Google Scholar 

  161. Widder RA, Dietlein TS, Dinslage S, Kuhnrich P, Rennings C, Rossler G. The XEN45 Gel Stent as a minimally invasive procedure in glaucoma surgery: success rates, risk profile, and rates of re-surgery after 261 surgeries. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):765–71.

    Article  PubMed  Google Scholar 

  162. Yu JTS, Au L. Conjunctival bleb compression as a treatment for hypotony post XEN45 implant in uveitic glaucoma. Eur J Ophthalmol. 2019. https://doi.org/10.1177/1120672119836339.

  163. Sng CC, Wang J, Hau S, Htoon HM, Barton K. XEN-45 collagen implant for the treatment of uveitic glaucoma. Clin Exp Ophthalmol. 2018;46(4):339–45.

    Article  PubMed  Google Scholar 

  164. Vera VI, Horvath C. XEN gel stent: the solution designed by AqueSys®. In: Samples JR, Ahmed IIK, editors. Surgical innovations in glaucoma. New York: Springer; 2014. p. 2014.

    Google Scholar 

  165. De Gregorio A, Pedrotti E, Russo L, Morselli S. Minimally invasive combined glaucoma and cataract surgery: clinical results of the smallest ab interno gel stent. Int Ophthalmol. 2018;38(3):1129–34.

    Article  PubMed  Google Scholar 

  166. Hengerer FH, Kohnen T, Mueller M, Conrad-Hengerer I. Ab interno gel implant for the treatment of glaucoma patients with or without prior glaucoma surgery: 1-year results. J Glaucoma. 2017;26(12):1130–6.

    Article  PubMed  Google Scholar 

  167. Heidinger A, Schwab C, Lindner E, Riedl R, Mossböck G. A retrospective study of 199 Xen45 stent implantations from 2014 to 2016. J Glaucoma. 2019;28(1):75–9.

    Article  PubMed  Google Scholar 

  168. Galal A, Bilgic A, Eltanamly R, Osman A. XEN glaucoma implant with mitomycin C 1-year follow-up: result and complications. J Ophthalmol. 2017;2017:5457246.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Tan SZ, Walkden A, Au L. One-year result of XEN45 implant for glaucoma: efficacy, safety, and postoperative management. Eye (Lond). 2018;32(2):324–32.

    Article  PubMed  Google Scholar 

  170. Mansouri K, Guidotti J, Rao HL, Ouabas A, D’Alessandro E, Roy S, et al. Prospective evaluation of standalone XEN gel implant and combined phacoemulsification-XEN gel implant surgery: 1-year results. J Glaucoma. 2018;27(2):140–7.

    Article  PubMed  Google Scholar 

  171. Mansouri K, Gillmann K, Rao HL, Guidotti J, Mermoud A. Prospective evaluation of XEN gel implant in eyes with pseudoexfoliative glaucoma. J Glaucoma. 2018;27(10):869–73.

    Article  PubMed  Google Scholar 

  172. Hohberger B, Welge-Lussen UC, Lammer R. MIGS: therapeutic success of combined Xen Gel Stent implantation with cataract surgery. Graefes Arch Clin Exp Ophthalmol. 2018;256(3):621–5.

    Article  PubMed  Google Scholar 

  173. Reitsamer H, Sng C, Vera V, Lenzhofer M, Barton K, Stalmans I. Two-year results of a multicenter study of the ab interno gelatin implant in medically uncontrolled primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2019;257(5):983–96.

    Article  CAS  PubMed  Google Scholar 

  174. Lewis RA. Ab interno approach to the subconjunctival space using a collagen glaucoma stent. J Cataract Refract Surg. 2014;40(8):1301–6.

    Article  PubMed  Google Scholar 

  175. Sheybani A, Lenzhofer M, Hohensinn M, Reitsamer H, Ahmed II. Phacoemulsification combined with a new ab interno gel stent to treat open-angle glaucoma: pilot study. J Cataract Refract Surg. 2015;41(9):1905–9.

    Article  PubMed  Google Scholar 

  176. Lenzhofer M, Kersten-Gomez I, Sheybani A, Gulamhusein H, Strohmaier C, Hohensinn M, et al. Four-year results of a minimally invasive transscleral glaucoma gel stent implantation in a prospective multi-centre study. Clin Exp Ophthalmol. 2019;47(5):581–7.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Boden M, Richard R, Schwarz MC, Kangas S, Huibregtse B, Barry JJ. In vitro and in vivo evaluation of the safety and stability of the TAXUS Paclitaxel-Eluting Coronary Stent. J Mater Sci Mater Med. 2009;20(7):1553–62.

    Article  CAS  PubMed  Google Scholar 

  178. Pinchuk L, Riss I, Batlle JF, Kato YP, Martin JB, Arrieta E, et al. The development of a micro-shunt made from poly(styrene-block-isobutylene-block-styrene) to treat glaucoma. J Biomed Mater Res B Appl Biomater. 2017;105(1):211–21.

    Article  CAS  PubMed  Google Scholar 

  179. Riss I, Batlle J, Pinchuk L, Kato YP, Weber BA, Parel JM. One-year results on the safety and efficacy of the InnFocus MicroShunt depending on placement and concentration of mitomycin C. J Fr Ophtalmol. 2015;38(9):855–60.

    Article  CAS  PubMed  Google Scholar 

  180. Pinchuk L, Riss I, Batlle JF, Kato YP, Martin JB, Arrieta E, et al. The use of poly(styrene-block-isobutylene-block-styrene) as a microshunt to treat glaucoma. Regen Biomater. 2016;3:137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schlenker MB, Durr GM, Michaelov E, Ahmed IIK. Intermediate outcomes of a novel standalone Ab externo SIBS microshunt with mitomycin C. Am J Ophthalmol. 2020;215:141–53.

    Article  CAS  PubMed  Google Scholar 

  182. Fantes F, Acosta A, Carraway J, Pinchuk L, Weber B, Davis S, et al. An independent GLP evaluation of a new glaucoma drain, the Midi. Invest Ophthalmol Vis Sci. 2006;47:3547.

    Google Scholar 

  183. Arrieta EA, Aly M, Parrish R, Dubovy S, Pinchuk L, Kato Y, et al. Clinicopathologic correlations of poly-(styrene-b-isobutylene-b-styrene) glaucoma drainage devices of different internal diameters in rabbits. Ophthalmic Surg Lasers Imaging. 2011;42(4):338–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Durr, G.M., Samet, S., Marolo, P., Ahmed, I.I.K. (2021). Minimally Invasive Glaucoma Surgery (MIGS). In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_162-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_162-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics