Skip to main content

Retinitis Pigmentosa and Allied Diseases

Albert and Jakobiec's Principles and Practice of Ophthalmology
  • 106 Accesses

Abstract

Retinitis pigmentosa (RP) is a syndromic diagnosis used to describe a large group of genetically heterogeneous inherited retinal degenerations (IRDs) characterized by a bilateral, slowly progressive pigmentary retinopathy typically associated with nyctalopia, midperipheral and peripheral progressive visual field defects, and eventual loss of central vision. The condition can be isolated to the retina or be associated with systemic abnormalities (i.e., sensorineural hearing loss, neurologic and metabolic defects) in the context of specific syndromes. In this chapter, RP and allied conditions are discussed with regard to clinical presentation, clinical findings, inheritance and genetic basis, and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Pruett RC. Retinitis pigmentosa: clinical observations and correlations. Trans Am Ophthalmol Soc. 1983;81:693–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Donders FC. Beitrage zur patlhologischen Anatomie des Auiges. 2. Pigmnentbildung in der Netzhauit. Arch Ophthalmol. 1857;3:139–65.

    Google Scholar 

  3. Liebreich R. Abktunift aus Eheni unter Blutsverwandten als Grund von Retinitis pigmentosa. Deutsch Klin. 1861;13:53–5.

    Google Scholar 

  4. Fahim AT, Daiger SP, Weleber RG. Nonsyndromic retinitis pigmentosa overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle: University of Washington; 1993.

    Google Scholar 

  5. Dryja TP, Berson EL. Retinitis pigmentosa and allied diseases. Implications of genetic heterogeneity. Invest Ophthalmol Vis Sci. 1995;36(7):1197–200.

    CAS  PubMed  Google Scholar 

  6. Massof RW, Finkelstein D. Two forms of autosomal dominant primary retinitis pigmentosa. Doc Ophthalmol. 1981;51(4):289–346.

    Article  CAS  PubMed  Google Scholar 

  7. Gonin J. Le scotome annulaire dans la degenerescence pigmentaire de la retine. Ann d’Ocul. 1901;125:101–30.

    Google Scholar 

  8. Grover S, Fishman GA, Brown J Jr. Patterns of visual field progression in patients with retinitis pigmentosa. Ophthalmology. 1998;105(6):1069–75.

    Article  CAS  PubMed  Google Scholar 

  9. Foxman S, Heckenlively J, Bateman J, Wirtschafter J. Classification of congenital and early onset retinitis pigmentosa. Arch Ophthalmol. 1985;103:1502–6.

    Article  CAS  PubMed  Google Scholar 

  10. Matsui R, McGuigan Iii DB, Gruzensky ML, Aleman TS, Schwartz SB, Sumaroka A, et al. SPATA7: evolving phenotype from cone-rod dystrophy to retinitis pigmentosa. Ophthalmic Genet. 2016;37(3):333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boughman J, Conneally P, Nance W. Population genetic studies of retinitis pigmentosa. Am J Hum Genet. 1980;32:223–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH. Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol. 1984;97:357–65.

    Article  CAS  PubMed  Google Scholar 

  13. Alexander KR, Derlacki DJ, Fishman GA. Coherence and the judgment of spatial displacements in retinitis pigmentosa. Vis Res. 1999;39(13):2267–74.

    Article  CAS  PubMed  Google Scholar 

  14. Alexander KR, Derlacki DJ, Fishman GA. Visual acuity vs letter contrast sensitivity in retinitis pigmentosa. Vis Res. 1995;35(10):1495–9.

    Article  CAS  PubMed  Google Scholar 

  15. Alexander KR, Derlacki DJ, Xie W, Fishman GA, Szlyk JP. Discrimination of spatial displacements by patients with retinitis pigmentosa. Vis Res. 1998;38(8):1171–81.

    Article  CAS  PubMed  Google Scholar 

  16. Alexander KR, Hutman LP, Fishman GA. Abnormal foveal spectral sensitivity in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1987;28(4):725–30.

    CAS  PubMed  Google Scholar 

  17. Alexander KR, Hutman LP, Fishman GA. Dark-adapted foveal thresholds and visual acuity in retinitis pigmentosa. Arch Ophthalmol. 1986;104(3):390–4.

    Article  CAS  PubMed  Google Scholar 

  18. Sieving PA, Fishman GA. Refractive errors of retinitis pigmentosa patients. Br J Ophthalmol. 1978;62(3):163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berson EL, Rosner B, Simonoff E. Risk factors for genetic typing and detection in retinitis pigmentosa. Am J Ophthalmol. 1980;89(6):763–75.

    Article  CAS  PubMed  Google Scholar 

  20. Hendriks M, Verhoeven VJM, Buitendijk GHS, Polling JR, Meester-Smoor MA, Hofman A, et al. Development of refractive errors-what can we learn from inherited retinal dystrophies? Am J Ophthalmol. 2017;182:81–9.

    Article  PubMed  Google Scholar 

  21. Heckenlively J. The frequency of posterior subcapsular cataract in the hereditary retinal degenerations. Am J Ophthalmol. 1982;93(6):733–8.

    Article  CAS  PubMed  Google Scholar 

  22. Fishman GA, Anderson RJ, Lourenco P. Prevalence of posterior subcapsular lens opacities in patients with retinitis pigmentosa. Br J Ophthalmol. 1985;69(4):263–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newsome DA, Michels RG. Detection of lymphocytes in the vitreous gel of patients with retinitis pigmentosa. Am J Ophthalmol. 1988;105(6):596–602.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, et al. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120(1):100–5.

    Article  PubMed  Google Scholar 

  25. Pruett RC. Retinitis pigmentosa. A biomicroscopical study of vitreous abnormalities. Arch Ophthalmol. 1975;93(8):603–8.

    Article  CAS  PubMed  Google Scholar 

  26. Pruett RC, Albert DM. Vitreous degeneration in myopia and retinitis pigmentosa. Bull Soc Belge Ophtalmol. 1987;223(Pt 1):211–28.

    PubMed  Google Scholar 

  27. Hajali M, Fishman GA, Anderson RJ. The prevalence of cystoid macular oedema in retinitis pigmentosa patients determined by optical coherence tomography. Br J Ophthalmol. 2008;92(8):1065–8.

    Article  CAS  PubMed  Google Scholar 

  28. Hajali M, Fishman GA. The prevalence of cystoid macular oedema on optical coherence tomography in retinitis pigmentosa patients without cystic changes on fundus examination. Eye (Lond). 2009;23(4):915–9.

    Article  CAS  Google Scholar 

  29. Walia S, Fishman GA, Hajali M. Prevalence of cystic macular lesions in patients with Usher II syndrome. Eye (Lond). 2009;23(5):1206–9.

    Article  CAS  Google Scholar 

  30. Strong S, Liew G, Michaelides M. Retinitis pigmentosa-associated cystoid macular oedema: pathogenesis and avenues of intervention. Br J Ophthalmol. 2017;101(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  31. Huckfeldt RM, Comander J. Management of cystoid macular edema in retinitis pigmentosa. Semin Ophthalmol. 2017;32(1):43–51.

    Article  PubMed  Google Scholar 

  32. Strong SA, Hirji N, Quartilho A, Kalitzeos A, Michaelides M. Retrospective cohort study exploring whether an association exists between spatial distribution of cystoid spaces in cystoid macular oedema secondary to retinitis pigmentosa and response to treatment with carbonic anhydrase inhibitors. Br J Ophthalmol. 2019;103(2):233–7.

    Article  PubMed  Google Scholar 

  33. Marano F, Deutman AF, Leys A, Aandekerk AL. Hereditary retinal dystrophies and choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2000;238(9):760–4.

    Article  CAS  PubMed  Google Scholar 

  34. Battaglia Parodi M, Iacono P, Bandello F. Antivascular endothelial growth factor in hereditary dystrophies. Dev Ophthalmol. 2010;46:107–10.

    Article  PubMed  Google Scholar 

  35. Khan JA, Ide CH, Strickland MP. Coats’-type retinitis pigmentosa. Surv Ophthalmol. 1988;32(5):317–32.

    Article  CAS  PubMed  Google Scholar 

  36. den Hollander AI, Heckenlively JR, van den Born LI, de Kok YJ, van der Velde-Visser SD, Kellner U, et al. Leber congenital amaurosis and retinitis pigmentosa with coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am J Hum Genet. 2001;69(1):198–203.

    Article  PubMed Central  Google Scholar 

  37. Shields CL, Kaliki S, Al-Dahmash S, Rojanaporn D, Shukla SY, Reilly B, et al. Retinal vasoproliferative tumors: comparative clinical features of primary vs secondary tumors in 334 cases. JAMA Ophthalmol. 2013;131(3):328–34.

    Article  PubMed  Google Scholar 

  38. Patil L, Lotery AJ. Coat’s-like exudation in rhodopsin retinitis pigmentosa: successful treatment with an intravitreal dexamethasone implant. Eye. 2014;28(4):449–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goodman G, Gunkel RD. Familial electroretinographic and adaptometric studies in retinitis pigmentosa. Am J Ophthalmol. 1958;46(3 Part 2):142–72; discussion 72–8

    Article  CAS  PubMed  Google Scholar 

  40. Gouras P, Carr RE. Electrophysiological studies in early retinitis pigmentosa. Arch Ophthalmol. 1964;72:104–10.

    Article  CAS  PubMed  Google Scholar 

  41. Berson EL, Gouras P, Gunkel RD. Rod responses in retinitis pigmentosa, dominantly inherited. Arch Ophthalmol. 1968;80(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  42. Berson EL, Gouras P, Gunkel RD, Myrianthopoulos NC. Dominant retinitis pigmentosa with reduced penetrance. Arch Ophthalmol. 1969;81(2):226–34.

    Article  CAS  PubMed  Google Scholar 

  43. Berson EL. Retinitis pigmentosa and allied diseases: applications of electroretinographic testing. Int Ophthalmol. 1981;4(1–2):7–22.

    Article  CAS  PubMed  Google Scholar 

  44. Berson EL, Gouras P, Hoff M. Temporal aspects of the electroretinogram. Arch Ophthalmol. 1969;81(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  45. Birch DG, Hood DC, Nusinowitz S, Pepperberg DR. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. Invest Ophthalmol Vis Sci. 1995;36:1603–14.

    CAS  PubMed  Google Scholar 

  46. Birch DG, Sandberg MA. Dependence of cone b-wave implicit time on rod amplitude in retinitis pigmentosa. Vis Res. 1987;27(7):1105–12.

    Article  CAS  PubMed  Google Scholar 

  47. Sandberg MA, Berson EL, Effron M. Rod-cone interaction in the distal human retina. Science. 1981;212(4496):829–31.

    Article  CAS  PubMed  Google Scholar 

  48. Frishman LJ, Sieving PA, Steinberg RH. Contributions to the electroretinogram of currents originating in proximal retina. Vis Neurosci. 1988;1(3):307–15.

    Article  CAS  PubMed  Google Scholar 

  49. Aleman TS, Soumittra N, Cideciyan AV, Sumaroka AM, Ramprasad VL, Herrera W, et al. CERKL mutations cause an autosomal recessive cone-rod dystrophy with inner retinopathy. Invest Ophthalmol Vis Sci. 2009;50(12):5944–54.

    Article  PubMed  Google Scholar 

  50. Audo I, Robson AG, Holder GE, Moore AT. The negative ERG: clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv Ophthalmol. 2008;53(1):16–40.

    Article  PubMed  Google Scholar 

  51. Milam AH, Li ZY, Cideciyan AV, Jacobson SG. Clinicopathologic effects of the Q64ter rhodopsin mutation in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1996;37(5):753–65.

    CAS  PubMed  Google Scholar 

  52. Renner AB, Kellner U, Cropp E, Foerster MH. Dysfunction of transmission in the inner retina: incidence and clinical causes of negative electroretinogram. Graefes Arch Clin Exp Ophthalmol. 2006;244(11):1467–73.

    Article  PubMed  Google Scholar 

  53. Weleber RG, Watzke RC, Shults WT, Trzupek KM, Heckenlively JR, Egan RA, et al. Clinical and electrophysiologic characterization of paraneoplastic and autoimmune retinopathies associated with antienolase antibodies. Am J Ophthalmol. 2005;139(5):780–94.

    Article  CAS  PubMed  Google Scholar 

  54. Birch DG. Retinal degeneration in retinitis pigmentosa and neuronal ceroid lipofuscinosis: an overview. Mol Genet Metab. 1999;66(4):356–66.

    Article  CAS  PubMed  Google Scholar 

  55. Weleber RG, Gupta N, Trzupek KM, Wepner MS, Kurz DE, Milam AH. Electroretinographic and clinicopathologic correlations of retinal dysfunction in infantile neuronal ceroid lipofuscinosis (infantile Batten disease). Mol Genet Metab. 2004;83(1–2):128–37.

    Article  CAS  PubMed  Google Scholar 

  56. Weleber RG. The dystrophic retina in multisystem disorders: the electroretinogram in neuronal ceroid lipofuscinoses. Eye (Lond). 1998;12(Pt 3b):580–90.

    Article  Google Scholar 

  57. Aleman TS, Lam BL, Cideciyan AV, Sumaroka A, Windsor EA, Roman AJ, et al. Genetic heterogeneity in autosomal dominant retinitis pigmentosa with low-frequency damped electroretinographic wavelets. Eye (Lond). 2009;23(1):230–3.

    Article  CAS  Google Scholar 

  58. Azari AA, Aleman TS, Cideciyan AV, Schwartz SB, Windsor EAM, Sumaroka A, et al. Retinal disease expression in Bardet-Biedl syndrome-1 (BBS1) is a spectrum from maculopathy to retina-wide degeneration. Invest Ophthalmol Vis Sci. 2006;47(11):5004–10.

    Article  PubMed  Google Scholar 

  59. Lam BL, Liu M, Hamasaki DI. Low-frequency damped electroretinographic wavelets in young asymptomatic patients with dominant retinitis pigmentosa: a new electroretinographic finding. Ophthalmology. 1999;106(6):1109–13.

    Article  CAS  PubMed  Google Scholar 

  60. Aleman T, LaVail M, Montemayor R, Ying G-S, Maguire M, Laties A, et al. Augmented rod bipolar cell function in partial receptor loss: an ERG study in P23H rhodopsin transgenic and normal rats. Vis Res. 2001;41:2779–97.

    Article  CAS  PubMed  Google Scholar 

  61. Collison FT, Fishman GA, Nagasaki T, Zernant J, McAnany JJ, Park JC, et al. Characteristic ocular features in cases of autosomal recessive PROM1 cone-rod dystrophy. Invest Ophthalmol Vis Sci. 2019;60(6):2347–56.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Berson EL, Simonoff EA. Dominant retinitis pigmentosa with reduced penetrance. Further studies of the electroretinogram. Arch Ophthalmol. 1979;97(7):1286–91.

    Article  CAS  PubMed  Google Scholar 

  63. Berson EL. Electroretinographic findings in retinitis pigmentosa. Jpn J Ophthalmol. 1987;31(3):327–48.

    CAS  PubMed  Google Scholar 

  64. Berson EL. Retinitis pigmentosa. The Friedenwald lecture. Invest Ophthalmol Vis Sci. 1993;34(5):1659–76.

    CAS  PubMed  Google Scholar 

  65. Berson EL, Sandberg MA, Rosner B, Birch DG, Hanson AH. Natural course of retinitis pigmentosa over a 3-year interval. Am J Ophthalmol. 1985;99:240–51.

    Article  CAS  PubMed  Google Scholar 

  66. Andreasson SO, Sandberg MA, Berson EL. Narrow-band filtering for monitoring low-amplitude cone electroretinograms in retinitis pigmentosa. Am J Ophthalmol. 1988;105(5):500–3.

    Article  CAS  PubMed  Google Scholar 

  67. Berson EL. Long-term visual prognoses in patients with retinitis pigmentosa: the Ludwig von Sallmann lecture. Exp Eye Res. 2007;85(1):7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Birch DG, Anderson JL. Rod visual fields in cone-rod degeneration. Comparisons to retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1990;31(11):2288–99.

    CAS  PubMed  Google Scholar 

  69. Birch DG, Anderson JL, Fish GE. Yearly rates of rod and cone functional loss in retinitis pigmentosa and cone-rod dystrophy. Ophthalmology. 1999;106(2):258–68.

    Article  CAS  PubMed  Google Scholar 

  70. Grover S, Fishman GA, Anderson RJ, Alexander KR, Derlacki DJ. Rate of visual field loss in retinitis pigmentosa. Ophthalmology. 1997;104(3):460–5.

    Article  CAS  PubMed  Google Scholar 

  71. Sandberg MA, Rosner B, Weigel-DiFranco C, McGee TL, Dryja TP, Berson EL. Disease course in patients with autosomal recessive retinitis pigmentosa due to the USH2A gene. Invest Ophthalmol Vis Sci. 2008;49(12):5532.

    Article  PubMed  Google Scholar 

  72. Massof RW, Finkelstein D. Vision threshold profiles in sector retinitis pigmentosa. Arch Ophthalmol. 1979;97(10):1899–904.

    Article  CAS  PubMed  Google Scholar 

  73. Sandberg MA, Weigel-DiFranco C, Rosner B, Berson EL. The relationship between visual field size and electroretinogram amplitude in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1996;37(8):1693–8.

    CAS  PubMed  Google Scholar 

  74. Massof RW, Finkelstein D. Rod sensitivity relative to cone sensitivity in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1979;18(3):263–72.

    CAS  PubMed  Google Scholar 

  75. Massof RW, Finkelstein D, Starr SJ, Kenyon KR, Fleischman JA, Maumenee IH. Bilateral symmetry of vision disorders in typical retinitis pigmentosa. Br J Ophthalmol. 1979;63(2):90–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Massof RW, Johnson MA, Finkelstein D. Peripheral absolute threshold spectral sensitivity in retinitis pigmentosa. Br J Ophthalmol. 1981;65(2):112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Massof RW, Wu L, Finkelstein D, Perry C, Starr SJ, Johnson MA. Properties of electroretinographic intensity-response functions in retinitis pigmentosa. Doc Ophthalmol. 1984;57(3):279–96.

    Article  CAS  PubMed  Google Scholar 

  78. Kemp CM, Jacobson SG, Faulkner DJ. Two types of visual dysfunction in autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1988;29(8):1235–41.

    CAS  PubMed  Google Scholar 

  79. Massof RW, Dagnelie G, Benzschawel T, Palmer RW, Finkel Stein D. First order dynamics of visual field loss in retinitis pigmentosa. Clin Vis Sci. 1990;5(1):1–26.

    Google Scholar 

  80. Grover S, Fishman GA, Anderson RJ, Lindeman M. A longitudinal study of visual function in carriers of X-linked recessive retinitis pigmentosa. Ophthalmology. 2000;107(2):386–96.

    Article  CAS  PubMed  Google Scholar 

  81. Sandberg MA, Rosner B, Weigel-DiFranco C, Dryja TP, Berson EL. Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. Invest Ophthalmol Vis Sci. 2007;48(3):1298–304.

    Article  PubMed  Google Scholar 

  82. Birch DG, Bennett LD, Duncan JL, Weleber RG, Pennesi ME. Long-term follow-up of patients with retinitis pigmentosa receiving intraocular ciliary neurotrophic factor implants. Am J Ophthalmol. 2016;170:10–4.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Birch DG, Bernstein PS, Iannacone A, Pennesi ME, Lam BL, Heckenlively J, et al. Effect of oral valproic acid vs placebo for vision loss in patients with autosomal dominant retinitis pigmentosa: a randomized phase 2 multicenter placebo-controlled clinical trial. JAMA Ophthalmol. 2018;136(8):849–56.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Birch DG, Fish GE. Rod ERGs in children with hereditary retinal degeneration. J Pediatr Ophthalmol Strabismus. 1986;23(5):227–32.

    Article  CAS  PubMed  Google Scholar 

  85. Birch DG, Herman WK, deFaller JM, Disbrow DT, Birch EE. The relationship between rod perimetric thresholds and full-field rod ERGs in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1987;28(6):954–65.

    CAS  PubMed  Google Scholar 

  86. Birch DG, Hood DC, Locke KG, Hoffman DR, Tzekov RT. Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors: normal aging, progression with disease, and test-retest variability. Arch Ophthalmol. 2002;120(8):1045–51.

    Article  PubMed  Google Scholar 

  87. Cideciyan AV, Jacobson SG. An alternative phototransduction model for human rod and cone ERG a-waves: normal parameters and variation with age. Vis Res. 1996;36:2609–21.

    Article  CAS  PubMed  Google Scholar 

  88. Huang Y, Cideciyan AV, Papastergiou GI, Banin E, Semple-Rowland SL, Milam AH, et al. Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest Ophthalmol Vis Sci. 1998;39(12):2405–16.

    CAS  PubMed  Google Scholar 

  89. Banin E, Cideciyan AV, Aleman TS, Petters RM, Wong F, Milam AH, et al. Retinal rod photoreceptor-specific gene mutation perturbs cone pathway development. Neuron. 1999;23(3):549–57.

    Article  CAS  PubMed  Google Scholar 

  90. Cideciyan A, Aleman T, Bennett J, Banin E, editors. Comparative study of mammalian phototransduction in vivo: a prelude to preclinical treatment trials in retinal degenerations: Vision Science and Its Applications Optical Society of America; 1999.

    Google Scholar 

  91. Fishman GA, Jacobson SG, Alexander KR, Cideciyan AV, Birch DG, Weleber RG, et al. Outcome measures and their application in clinical trials for retinal degenerative diseases: outline, review, and perspective. Retina. 2005;25(6):772–7.

    Article  PubMed  Google Scholar 

  92. Aleman TS, Cideciyan AV, Sumaroka A, Schwartz SB, Roman AJ, Windsor EA, et al. Inner retinal abnormalities in X-linked retinitis pigmentosa with RPGR mutations. Invest Ophthalmol Vis Sci. 2007;48(10):4759–65.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Aleman TS, Cideciyan AV, Sumaroka A, Windsor EAM, Herrera W, White DA, et al. Retinal laminar architecture in human retinitis pigmentosa caused by rhodopsin gene mutations. Invest Ophthalmol Vis Sci. 2008;49(4):1580–90.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cideciyan AV, Swider M, Aleman TS, Roman MI, Sumaroka A, Schwartz SB, et al. Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations. J Opt Soc Am A Opt Image Sci Vis. 2007;24(5):1457–67.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res. 2010;29(5):398–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cideciyan AV, Swider M, Aleman TS, Feuer WJ, Schwartz SB, Russell RC, et al. Macular function in macular degenerations: repeatability of microperimetry as a potential outcome measure for ABCA4-associated retinopathy trials. Invest Ophthalmol Vis Sci. 2012;53(2):841–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cideciyan AV, Swider M, Jacobson SG. Autofluorescence imaging with near-infrared excitation:normalization by reflectance to reduce signal from choroidal fluorophores. Invest Ophthalmol Vis Sci. 2015;56(5):3393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Charng J, Lu M, et al. Outcome measures for clinical trials of Leber congenital amaurosis caused by the intronic mutation in the CEP290 gene. Invest Ophthalmol Vis Sci. 2017;58(5):2609–22.

    Article  CAS  PubMed  Google Scholar 

  99. Aleman TS, Uyhazi KE, Serrano LW, Vasireddy V, Bowman SJ, Ammar MJ, et al. RDH12 mutations cause a severe retinal degeneration with relatively spared rod function. Invest Ophthalmol Vis Sci. 2018;59(12):5225–36.

    Article  CAS  PubMed  Google Scholar 

  100. Sieving PA, Niffenegger JH, Berson EL. Electroretinographic findings in selected pedigrees with choroideremia. Am J Ophthalmol. 1986;101(3):361–7.

    Article  CAS  PubMed  Google Scholar 

  101. Birch DG, Locke KG, Felius J, Klein M, Wheaton DK, Hoffman DR, et al. Rates of decline in regions of the visual field defined by frequency-domain optical coherence tomography in patients with RPGR-mediated X-linked retinitis pigmentosa. Ophthalmology. 2015;122(4):833–9.

    Article  PubMed  Google Scholar 

  102. Lazow MA, Hood DC, Ramachandran R, Burke TR, Wang YZ, Greenstein VC, et al. Transition zones between healthy and diseased retina in choroideremia (CHM) and Stargardt disease (STGD) as compared to retinitis pigmentosa (RP). Invest Ophthalmol Vis Sci. 2011;52(13):9581–90.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jacobson SG, Sumaroka A, Aleman TS, Cideciyan AV, Danciger M, Farber DB. Evidence for retinal remodelling in retinitis pigmentosa caused by PDE6B mutation. Br J Ophthalmol. 2007;91(5):699–701.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jones BW, Watt CB, Marc RE. Retinal remodelling. Clin Exp Optom. 2005;88(5):282–91.

    Article  PubMed  Google Scholar 

  105. Trichonas G, Traboulsi EI, Ehlers JP. Correlation of ultra-widefield fundus autofluorescence patterns with the underlying genotype in retinal dystrophies and retinitis pigmentosa. Ophthalmic Genet. 2017;38(4):320–4.

    Article  PubMed  Google Scholar 

  106. Trichonas G, Traboulsi EI, Ehlers JP. Ultra-widefield fundus autofluorescence patterns in retinitis pigmentosa and other retinal dystrophies. Ophthalmic Genet. 2017;38(1):98–100.

    Article  PubMed  Google Scholar 

  107. Andersen KM, Sauer L, Gensure RH, Hammer M, Bernstein PS. Characterization of retinitis pigmentosa using fluorescence lifetime imaging ophthalmoscopy (FLIO). Transl Vis Sci Technol. 2018;7(3):20.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Fakin A, Sustar M, Brecelj J, Bonnet C, Petit C, Zupan A, et al. Double hyperautofluorescent rings in patients with USH2A-retinopathy. Genes (Basel). 2019;10(12):956.

    Article  CAS  Google Scholar 

  109. Robson AG, Michaelides M, Luong VA, Holder GE, Bird AC, Webster AR, et al. Functional correlates of fundus autofluorescence abnormalities in patients with RPGR or RIMS1 mutations causing cone or cone rod dystrophy. Br J Ophthalmol. 2008;92(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  110. Robson AG, Michaelides M, Saihan Z, Bird AC, Webster AR, Moore AT, et al. Functional characteristics of patients with retinal dystrophy that manifest abnormal parafoveal annuli of high density fundus autofluorescence; a review and update. Doc Ophthalmol. 2008;116(2):79–89.

    Article  PubMed  Google Scholar 

  111. Sengillo JD, Lee W, Nagasaki T, Schuerch K, Yannuzzi LA, Freund KB, et al. A distinct phenotype of eyes shut homolog (EYS)-retinitis pigmentosa is associated with variants near the C-terminus. Am J Ophthalmol. 2018;190:99–112.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tee JJL, Kalitzeos A, Webster AR, Peto T, Michaelides M. Quantitative analysis of hyperautofluorescent rings to characterize the natural history and progression in Rpgr-associated retinopathy. Retina. 2018;38(12):2401–14.

    Article  PubMed  Google Scholar 

  113. Bietto GB. Su alcune torme atipiche o rare di degenerazione retinica (degenerazione tappetoretiniche e quadri morbosi similari). Boll Oculist. 1937;16:1159–244.

    Google Scholar 

  114. Haase WH, K.A. Uber familiare bilaterale sektorenformige retinopathia pigmentosa. Klin Monatsbl Augenheilkd. 1965;147:365–75.

    CAS  PubMed  Google Scholar 

  115. Fledelius H, Simonsen SE. A family with bilateral symmetrical sectoral pigmentary retinal lesion. Acta Ophthalmol. 1970;48(1):14–22.

    Article  CAS  Google Scholar 

  116. Sugita T, Kondo M, Piao C-H, Ito Y, Terasaki H. Correlation between macular volume and focal macular electroretinogram in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2008;49(8):3551.

    Article  PubMed  Google Scholar 

  117. Hood DC, Lin CE, Lazow MA, Locke KG, Zhang X, Birch DG. Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2009;50(5):2328.

    Article  PubMed  Google Scholar 

  118. Lima LH, Cella W, Greenstein VC, Wang N-K, Busuioc M, Smith RT, et al. Structural assessment of hyperautofluorescent ring in patients with retinitis pigmentosa. Retina. 2009;29(7):1025–31.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bird AC. Clinical investigation of retinitis pigmentosa. Aust N Z J Ophthalmol. 1988;16(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  120. Jacobson S, Cideciyan A, Iannaccone A, Weleber R, Fishman G, Maguire A, et al. Disease expression of RP1 mutations causing autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2000;41(7):1898–908.

    CAS  PubMed  Google Scholar 

  121. Holopigian K, Seiple W, Greenstein VC, Hood DC, Carr RE. Local cone and rod system function in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2001;42(3):779–88.

    CAS  PubMed  Google Scholar 

  122. Apushkin MA, Fishman GA, Alexander KR, Shahidi M. Retinal thickness and visual thresholds measured in patients with retinitis pigmentosa. Retina. 2007;27(3):349–57.

    Article  PubMed  Google Scholar 

  123. Jacobson SG, Roman AJ, Aleman TS, Sumaroka A, Herrera W, Windsor EAM, et al. Normal central retinal function and structure preserved in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2010;51(2):1079–85.

    Article  PubMed  Google Scholar 

  124. Branson SV, McClintic JI, Stamper TH, Haldeman-Englert CR, John VJ. Sector retinitis pigmentosa associated with novel compound heterozygous mutations of CDH23. Ophthalmic Surg Lasers Imaging Retina. 2016;47(2):183–6.

    Article  PubMed  Google Scholar 

  125. Cideciyan AV, Hood DC, Huang Y, Banin E, Li ZY, Stone EM, et al. Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Proc Natl Acad Sci U S A. 1998;95(12):7103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jacobson SG, McGuigan DB 3rd, Sumaroka A, Roman AJ, Gruzensky ML, Sheplock R, et al. Complexity of the class B phenotype in autosomal dominant retinitis pigmentosa due to rhodopsin mutations. Invest Ophthalmol Vis Sci. 2016;57(11):4847–58.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Milam AH, De Castro EB, Smith JE, Tang W-X, John SK, Gorin MB, et al. Concentric retinitis pigmentosa: clinicopathologic correlations. Exp Eye Res. 2001;73(4):493–508.

    Article  CAS  PubMed  Google Scholar 

  128. Pinckers A, Greydanus J, Deutman AF, Duinkerke-Eerola KU. Atypical sector pigmentary dystrophy. Int Ophthalmol. 1986;9(2–3):143–9.

    Article  CAS  PubMed  Google Scholar 

  129. To KW, Adamian M, Jakobiec FA, Berson EL. Clinical and histopathologic findings in clumped pigmentary retinal degeneration. Arch Ophthalmol. 1996;114(8):950–5.

    Article  PubMed  Google Scholar 

  130. Davidson AE, Millar ID, Urquhart JE, Burgess-Mullan R, Shweikh Y, Parry N, et al. Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet. 2009;85(5):581–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yardley J, Leroy BP, Hart-Holden N, Lafaut BA, Loeys B, Messiaen LM, et al. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci. 2004;45(10):3683–9.

    Article  PubMed  Google Scholar 

  132. Pearlman JT, Saxton J, Hoffman G. Unilateral retinitis pigmentosa sine pigmento. Br J Ophthalmol. 1976;60(5):354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Errera MH, Robson AG, Wong T, Hykin PG, Pal B, Sagoo MS, et al. Unilateral pigmentary retinopathy: a retrospective case series. Acta Ophthalmol. 2019;97(4):e601–e17.

    Article  PubMed  Google Scholar 

  134. Takahashi VKL, Takiuti JT, Jauregui R, Mahajan VB, Tsang SH. Rates of bone spicule pigment appearance in patients with retinitis pigmentosa sine pigmento. Am J Ophthalmol. 2018;195:176–80.

    Article  PubMed  Google Scholar 

  135. Sandberg MA, Gaudio AR, Berson EL. Disease course of patients with pericentral retinitis pigmentosa. Am J Ophthalmol. 2005;140(1):100–6.

    Article  PubMed  Google Scholar 

  136. Francois J, De Rouck A. ERG and EOG in pericentral pigmentary retinopathy. Vis Res. 1971;11(10):1216.

    Article  CAS  PubMed  Google Scholar 

  137. Francois J, De Rouck A, Cambie E, De Laey JJ. Visual functions in pericentral and central pigmentary retinopathy. Ophthalmologica. 1972;165(1):38–61.

    Article  CAS  PubMed  Google Scholar 

  138. Szamier RB, Berson EL. Histopathologic study of an unusual form of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1982;22(5):559–70.

    CAS  PubMed  Google Scholar 

  139. Hayasaka S, Fukuda K, Tsuchiya M, Mizuno K. Pericentral pigmentary retinal degeneration. Jpn J Ophthalmol. 1985;29(2):161–9.

    CAS  PubMed  Google Scholar 

  140. Hayasaka S, Ugomori S, Kanamori M, Setogawa T. Pericentral retinal degeneration deteriorates during pregnancies. Ophthalmologica. 1990;200(2):72–6.

    Article  CAS  PubMed  Google Scholar 

  141. Grondahl J. Pericentral retinal dystrophy. Acta Ophthalmol. 1987;65(3):344–51.

    Article  CAS  Google Scholar 

  142. Traboulsi EI, O’Neill JF, Maumenee IH. Autosomal recessive pericentral pigmentary retinopathy. Am J Ophthalmol. 1988;106(5):551–6.

    Article  CAS  PubMed  Google Scholar 

  143. Bass SJ, Noble KG. Autosomal dominant pericentral retinochoroidal atrophy. Retina. 2006;26(1):71–9.

    Article  PubMed  Google Scholar 

  144. Noble KG. Peripapillary (pericentral) pigmentary retinal degeneration. Am J Ophthalmol. 1989;108(6):686–90.

    Article  CAS  PubMed  Google Scholar 

  145. Durlu YK, Burumcek E, Devranoglu K, Mudun AB, Karacorlu S, Arslan MO. Associated ocular findings in pericentral pigmentary retinopathy. Acta Ophthalmol Scand. 1997;75(1):101–3.

    Article  CAS  PubMed  Google Scholar 

  146. Comander J, Weigel-DiFranco C, Maher M, Place E, Wan A, Harper S, et al. The genetic basis of pericentral retinitis pigmentosa-a form of mild retinitis pigmentosa. Genes (Basel). 2017;8(10):256.

    Article  CAS  Google Scholar 

  147. Selmer KK, Grondahl J, Riise R, Brandal K, Braaten O, Bragadottir R, et al. Autosomal dominant pericentral retinal dystrophy caused by a novel missense mutation in the TOPORS gene. Acta Ophthalmol. 2010;88(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  148. Matsui R, Cideciyan AV, Schwartz SB, Sumaroka A, Roman AJ, Swider M, et al. Molecular heterogeneity within the clinical diagnosis of pericentral retinal degeneration. Invest Ophthalmol Vis Sci. 2015;56(10):6007.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292(4):497–523.

    Article  CAS  PubMed  Google Scholar 

  150. Lenis TL, Klufas MA, Randhawa S, Sharma M, Sarraf D. Posterior polar annular choroidal dystrophy: a case series. Retin Cases Brief Rep. 2017;11(Suppl 1):S24–S7.

    Article  PubMed  Google Scholar 

  151. Del Valle-Nava F, Sanchez-Ramos J, Hernandez-Vazquez A, Gonzalez-Saldivar G, Ramirez-Estudillo A. Posterior polar annular choroidal dystrophy association with cystoid macular edema. Clin Case Rep. 2019;7(2):389–90.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Forte R, Aptel F, Feldmann A, Chiquet C. Multimodal imaging of posterior polar annular choroidal dystrophy. Retin Cases Brief Rep. 2018;12(1):29–32.

    Article  PubMed  Google Scholar 

  153. Ghodasra DH, Besirli C. Posterior polar annular choroidal dystrophy. JAMA Ophthalmol. 2015;133(12):e152148.

    Article  PubMed  Google Scholar 

  154. Stokkermans TJ, Trichonas G. Chloroquine and hydroxychloroquine toxicity. Treasure Island: StatPearls; 2019.

    Google Scholar 

  155. Bellmann C, Neveu MM, Scholl HP, Hogg CR, Rath PP, Jenkins S, et al. Localized retinal electrophysiological and fundus autofluorescence imaging abnormalities in maternal inherited diabetes and deafness. Invest Ophthalmol Vis Sci. 2004;45(7):2355–60.

    Article  PubMed  Google Scholar 

  156. Choi JY, Sandberg MA, Berson EL. Natural course of ocular function in pigmented paravenous retinochoroidal atrophy. Am J Ophthalmol. 2006;141(4):763–5.

    Article  PubMed  Google Scholar 

  157. Mukhopadhyay R, Holder GE, Moore AT, Webster AR. Unilateral retinitis pigmentosa occurring in an individual with a germline mutation in the RP1 gene. Arch Ophthalmol. 2011;129(7):954–6.

    Article  CAS  PubMed  Google Scholar 

  158. Cideciyan AV, Jacobson SG. Image analysis of the tapetal-like reflex in carriers of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1994;35(11):3812–24.

    CAS  PubMed  Google Scholar 

  159. Falls HF, Cotterman CW. Chorioretinal degeneration. A sex-linked form in which heterozygous women exhibit a tapetal-like retinal reflex. Arch Ophthalmol. 1948;40(6):685–703.

    Article  Google Scholar 

  160. Acton JH, Greenberg JP, Greenstein VC, Marsiglia M, Tabacaru M, Theodore Smith R, et al. Evaluation of multimodal imaging in carriers of X-linked retinitis pigmentosa. Exp Eye Res. 2013;113:41–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Weleber RG, Butler NS, Murphey WH, Sheffield VC, Stone EM. X-linked retinitis pigmentosa associated with a 2-base pair insertion in codon 99 of the RP3 gene RPGR. Arch Ophthalmol. 1997;115(11):1429–35.

    Article  CAS  PubMed  Google Scholar 

  162. Berendschot TT, DeLint PJ, van Norren D. Origin of tapetal-like reflexes in carriers of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1996;37(13):2716–23.

    CAS  PubMed  Google Scholar 

  163. Berson EL, Rosen JB, Simonoff EA. Electroretinographic testing as an aid in detection of carriers of X-chromosome-linked retinitis pigmentosa. Am J Ophthalmol. 1979;87(4):460–8.

    Article  CAS  PubMed  Google Scholar 

  164. Fishman GA, Weinberg AB, McMahon TT. X-linked recessive retinitis pigmentosa. Clinical characteristics of carriers. Arch Ophthalmol. 1986;104(9):1329–35.

    Article  CAS  PubMed  Google Scholar 

  165. Kalitzeos A, Samra R, Kasilian M, Tee JJL, Strampe M, Langlo C, et al. Cellular imaging of the Tapetal-like reflex in carriers of Rpgr-associated retinopathy. Retina. 2019;39(3):570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Alexander KR, Barnes CS, Fishman GA. ON-pathway dysfunction and timing properties of the flicker ERG in carriers of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2003;44(9):4017–25.

    Article  PubMed  Google Scholar 

  167. Jacobson SG, Yagasaki K, Feuer WJ, Roman AJ. Interocular asymmetry of visual function in heterozygotes of X-linked retinitis pigmentosa. Exp Eye Res. 1989;48(5):679–91.

    Article  CAS  PubMed  Google Scholar 

  168. Genead MA, Fishman GA, Lindeman M. Structural and functional characteristics in carriers of X-linked retinitis pigmentosa with a tapetal-like reflex. Retina. 2010;30(10):1726–33.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Shifera AS, Kay CN. Early-onset X-linked retinitis pigmentosa in a heterozygous female harboring an intronic donor splice site mutation in the retinitis pigmentosa GTPase regulator gene. Ophthalmic Genet. 2015;36(3):251–6.

    Article  PubMed  CAS  Google Scholar 

  170. Leber T. Uber retinitis pigmentosa and Angeborne amaurose. Albrecht von Graefes Arch Klin Ophthalmol. 1869;15:1–25.

    Article  Google Scholar 

  171. Heher K, Traboulsi E, Maumenee I. The natural history of Leber’s congenital amaurosis. Ophthalmology. 1992;99:241–5.

    Article  CAS  PubMed  Google Scholar 

  172. den Hollander AI, Lopez I, Yzer S, Zonneveld MN, Janssen IM, Strom TM, et al. Identification of novel mutations in patients with Leber congenital amaurosis and juvenile RP by genome-wide homozygosity mapping with SNP microarrays. Invest Ophthalmol Vis Sci. 2007;48(12):5690–8.

    Article  Google Scholar 

  173. Kaplan J. Leber congenital amaurosis: from darkness to spotlight. Ophthalmic Genet. 2008;29(3):92–8.

    Article  PubMed  Google Scholar 

  174. den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008;27(4):391–419.

    Article  CAS  Google Scholar 

  175. Kumaran N, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. Br J Ophthalmol. 2017;101(9):1147–54.

    Article  PubMed  Google Scholar 

  176. Pasadhika S, Fishman GA, Stone EM, Lindeman M, Zelkha R, Lopez I, et al. Differential macular morphology in patients with RPE65-, CEP290-, GUCY2D-, and AIPL1-related Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2010;51(5):2608–14.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Hebrard M, Manes G, Bocquet B, Meunier I, Coustes-Chazalette D, Herald E, et al. Combining gene mapping and phenotype assessment for fast mutation finding in non-consanguineous autosomal recessive retinitis pigmentosa families. Eur J Hum Genet. 2011;19(12):1256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Walia S, Fishman GA, Jacobson SG, Aleman TS, Koenekoop RK, Traboulsi EI, et al. Visual acuity in patients with Leber’s congenital amaurosis and early childhood-onset retinitis pigmentosa. Ophthalmology. 2010;117(6):1190–8.

    Article  PubMed  Google Scholar 

  179. Weleber RG. Infantile and childhood retinal blindness: a molecular perspective (the Franceschetti lecture). Ophthalmic Genet. 2002;23(2):71–97.

    Article  PubMed  Google Scholar 

  180. Aboshiha J, Dubis AM, van der Spuy J, Nishiguchi KM, Cheeseman EW, Ayuso C, et al. Preserved outer retina in AIPL1 Leber’s congenital amaurosis: implications for gene therapy. Ophthalmology. 2015;122(4):862–4.

    Article  PubMed  Google Scholar 

  181. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Roman AJ, Swider M, et al. Human retinal disease from AIPL1 gene mutations: foveal cone loss with minimal macular photoreceptors and rod function remaining. Invest Ophthalmol Vis Sci. 2011;52(1):70–9.

    Article  CAS  PubMed  Google Scholar 

  182. Chiang P-W, Wang J, Chen Y, Fu Q, Zhong J, Chen Y, et al. Exome sequencing identifies NMNAT1 mutations as a cause of Leber congenital amaurosis. Nat Genet. 2012;44(9):972–4.

    Article  CAS  PubMed  Google Scholar 

  183. Falk MJ, Zhang Q, Nakamaru-Ogiso E, Kannabiran C, Fonseca-Kelly Z, Chakarova C, et al. NMNAT1 mutations cause Leber congenital amaurosis. Nat Genet. 2012;44(9):1040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Koenekoop RK, Wang H, Majewski J, Wang X, Lopez I, Ren H, et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet. 2012;44(9):1035–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Perrault I, Hanein S, Zanlonghi X, Serre V, Nicouleau M, Defoort-Delhemmes S, et al. Mutations in nmnat1 cause Leber congenital amaurosis with early-onset severe macular and optic atrophy. Nat Genet. 2012;44(9):975–7.

    Article  CAS  PubMed  Google Scholar 

  186. Kaplan J, Perrault I, Hanein S, Dollfus H, Rozet J-M. Mutations in NMNAT1 cause Leber congenital amaurosis with severe macular and optic atrophy. Med Sci (Paris). 2013;29(1):26–7.

    Article  Google Scholar 

  187. Vincent A, AlAli A, MacDonald H, VandenHoven C, Héon E. Specific retinal phenotype in early IQCB1-related disease. Eye. 2017;32:646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Cideciyan AV, Aleman TS, Jacobson SG, Khanna H, Sumaroka A, Aguirre GK, et al. Centrosomal-ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of Leber congenital amaurosis. Hum Mutat. 2007;28(11):1074–83.

    Article  CAS  PubMed  Google Scholar 

  189. Cideciyan AV, Rachel RA, Aleman TS, Swider M, Schwartz SB, Sumaroka A, et al. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy. Hum Mol Genet. 2011;20(7):1411–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Aleman TS, Cideciyan AV, Aguirre GK, Huang WC, Mullins CL, Roman AJ, et al. Human CRB1-associated retinal degeneration: comparison with the rd8 Crb1-mutant mouse model. Invest Ophthalmol Vis Sci. 2011;52:6898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Jacobson SG, Cideciyan AV, Aleman TS, Pianta MJ, Sumaroka A, Schwartz SB, et al. Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. Hum Mol Genet. 2003;12(9):1073–8.

    Article  CAS  PubMed  Google Scholar 

  192. Perrault I, Rozet J, Calvas P, Gerber S, Camuzat A, Dollfus H, et al. Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet. 1996;14(4):461–4.

    Article  CAS  PubMed  Google Scholar 

  193. Morimura H, Fishman GA, Grover S, Fulton A, Berson E, Dryja T. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. PNAS. 1998;95:3088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Perrault I, Delphin N, Hanein S, Gerber S, Dufier JL, Roche O, et al. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat. 2007;28(4):416.

    Article  PubMed  Google Scholar 

  195. Collison FT, Park JC, Fishman GA, McAnany JJ, Stone EM. Full-field pupillary light responses, luminance thresholds, and light discomfort thresholds in CEP290 Leber congenital Amaurosis patients. Invest Ophthalmol Vis Sci. 2015;56(12):7130–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sheck L, WIL D, Moradi P, Robson AG, Kumaran N, Liasis AC, et al. Leber congenital amaurosis associated with mutations in CEP290, clinical phenotype, and natural history in preparation for trials of novel therapies. Ophthalmology. 2018;125(6):894–903.

    Article  PubMed  Google Scholar 

  197. Sumaroka A, Garafalo AV, Semenov EP, Sheplock R, Krishnan AK, Roman AJ, et al. Treatment potential for macular cone vision in Leber congenital amaurosis due to CEP290 or NPHP5 mutations: predictions from artificial intelligence. Invest Ophthalmol Vis Sci. 2019;60(7):2551–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Cideciyan AV, Jacobson SG, Drack AV, Ho AC, Charng J, Garafalo AV, et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med. 2019;25(2):225–8.

    Article  CAS  PubMed  Google Scholar 

  199. Booij JC, Florijn RJ, ten Brink JB, Loves W, Meire F, van Schooneveld MJ, et al. Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. J Med Genet. 2005;42(11):e67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Sharon D, Wimberg H, Kinarty Y, Koch K-W. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D. Prog Retin Eye Res. 2018;63:69–91.

    Article  CAS  PubMed  Google Scholar 

  201. Jacobson S, Aleman T, Cideciyan A, Sumaroka A, Schwartz S, Windsor E, et al. Identifying photoreceptors in blind eyes due to RPE65 mutations: prerequisite for human gene therapy success. Proc Natl Acad Sci. 2005;102:6177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Schwartz SB, Roman AJ, et al. Leber’s congenital amaurosis caused by an RPGRIP1 mutation shows treatment potential. Ophthalmology. 2007;114:895.

    Article  PubMed  Google Scholar 

  203. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Schwartz SB, Windsor EA, et al. RDH12 and RPE65, visual cycle genes causing Leber congenital amaurosis, differ in disease expression. Invest Ophthalmol Vis Sci. 2007;48(1):332–8.

    Article  PubMed  Google Scholar 

  204. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Windsor EA, Schwartz SB, et al. Photoreceptor layer topography in children with Leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci. 2008;49(10):4573–7.

    Article  PubMed  Google Scholar 

  205. Maguire AM, Bennett J, Aleman EM, Leroy BP, Aleman TS. Clinical perspective: treating RPE65-associated retinal dystrophy. Mol Ther. 2020. https://doi.org/10.1016/j.ymthe.2020.11.029. Online ahead of print.

  206. Deng Y, Huang H, Wang Y, Liu Z, Li N, Chen Y, et al. A novel missense NMNAT1 mutation identified in a consanguineous family with Leber congenital amaurosis by targeted next generation sequencing. Gene. 2015;569(1):104–8.

    Article  CAS  PubMed  Google Scholar 

  207. Eblimit A, Zaneveld SA, Liu W, Thomas K, Wang K, Li Y, et al. NMNAT1 E257K variant, associated with Leber congenital amaurosis (LCA9), causes a mild retinal degeneration phenotype. Exp Eye Res. 2018;173:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Finding of Rare Disease Genes Canada C, Koenekoop RK, Wang H, Majewski J, Wang X, Lopez I, et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet. 2012;44(9):1035–9.

    Article  CAS  Google Scholar 

  209. Han IC, Critser DB, Stone EM. Swept-source OCT of a macular Coloboma in NMNAT1-Leber congenital amaurosis. Ophthalmol Retina. 2018;2(10):1040.

    Article  PubMed  Google Scholar 

  210. Kumaran N, Robson AG, Michaelides M. A novel case series of Nmnat1-associated early-onset retinal dystrophy: extending the phenotypic spectrum. Retin Cases Brief Rep. 2018.

    Google Scholar 

  211. Nash BM, Symes R, Goel H, Dinger ME, Bennetts B, Grigg JR, et al. NMNAT1 variants cause cone and cone-rod dystrophy. Eur J Hum Genet. 2018;26(3):428–33.

    Article  CAS  PubMed  Google Scholar 

  212. Pennesi ME, Stover NB, Stone EM, Chiang P-W, Weleber RG. Residual electroretinograms in young Leber congenital amaurosis patients with mutations of AIPL1. Invest Ophthalmol Vis Sci. 2011;52(11):8166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Tan MH, Smith AJ, Pawlyk B, Xu X, Liu X, Bainbridge JB, et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet. 2009;18(12):2099–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ahmad A, Daud S, Kakar N, Nurnberg G, Nurnberg P, Babar ME, et al. Identification of a novel LCA5 mutation in a Pakistani family with Leber congenital amaurosis and cataracts. Mol Vis. 2011;17:1940–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Corton M, Avila-Fernandez A, Vallespín E, López-Molina MI, Almoguera B, Martín-Garrido E, et al. Involvement of LCA5 in Leber congenital amaurosis and retinitis pigmentosa in the Spanish population. Ophthalmology. 2014;121(1):399–407.

    Article  PubMed  Google Scholar 

  216. den Hollander AI, Koenekoop RK, Mohamed MD, Arts HH, Boldt K, Towns KV, et al. Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis. Nat Genet. 2007;39(7):889–95.

    Article  CAS  Google Scholar 

  217. Mackay DS, Borman AD, Sui R, van den Born LI, Berson EL, Ocaka LA, et al. Screening of a large cohort of Leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations. Hum Mutat. 2013;34(11):1537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Song JY, Aravand P, Nikonov S, Leo L, Lyubarsky A, Bennicelli JL, et al. Amelioration of neurosensory structure and function in animal and cellular models of a congenital blindness. Mol Ther. 2018;26(6):1581–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Bedoukian EC, Zhu X, Serrano LW, Scoles D, Aleman TS. Nmnat1-associated cone-rod dystrophy: evidence for a spectrum of Foveal Maldevelopment. Retin Cases Brief Rep. 2020.

    Google Scholar 

  220. Berson EL, Gouras P, Gunkel RD. Progressive cone-rod degeneration. Arch Ophthalmol. 1968;80(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  221. Gill JS, Georgiou M, Kalitzeos A, Moore AT, Michaelides M. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. Br J Ophthalmol. 2019;103(5):711–20.

    Article  Google Scholar 

  222. Yagasaki K, Jacobson SG. Cone-rod dystrophy. Phenotypic diversity by retinal function testing. Arch Ophthalmol. 1989;107(5):701–8.

    Article  CAS  PubMed  Google Scholar 

  223. Szlyk JP, Fishman GA, Alexander KR, Peachey NS, Derlacki DJ. Clinical subtypes of cone-rod dystrophy. Arch Ophthalmol. 1993;111(6):781–8.

    Article  CAS  PubMed  Google Scholar 

  224. Thiadens AA, Phan TM, Zekveld-Vroon RC, Leroy BP, van den Born LI, Hoyng CB, et al. Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy. Ophthalmology. 2012;119(4):819–26.

    Article  PubMed  Google Scholar 

  225. Hamel CP. Cone rod dystrophies. Orphanet J Rare Dis. 2007;2:7.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Aleman T, Uyhazi K, Serrano L, Vasireddy V, Bowman S, Ammar M, et al. RDH12 mutations cause a severe retinal degeneration with relatively spared extramacular rod function. submitted.

    Google Scholar 

  227. Ferrucci S, Anderson SF, Townsend JC. Retinitis pigmentosa inversa. Optom Vis Sci. 1998;75(8):560–70.

    Article  CAS  PubMed  Google Scholar 

  228. Usher CH. On the inheritance of retinitis pigmentosa, with notes of cases. R Lond Ophthalmol Hosp Rep. 1914;19:130–236.

    Google Scholar 

  229. Usher CH. The Bowman lecture: on a few hereditary eye affections. Trans Ophthal Soc UK. 1935;55:164–245.

    Google Scholar 

  230. Gettelfinger JD, Dahl JP. Syndromic hearing loss: a brief review of common presentations and genetics. J Pediatr Genet. 2018;7(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Kimberling WJ, Hildebrand MS, Shearer AE, Jensen ML, Halder JA, Trzupek K, et al. Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet Med. 2010;12(8):512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Cosgrove D, Zallocchi M. Usher protein functions in hair cells and photoreceptors. Int J Biochem Cell Biol. 2014;46:80–9.

    Article  CAS  PubMed  Google Scholar 

  233. Hunter DG, Fishman GA, Mehta RS, Kretzer FL. Abnormal sperm and photoreceptor axonemes in Usher’s syndrome. Arch Ophthalmol. 1986;104(3):385–9.

    Article  CAS  PubMed  Google Scholar 

  234. Berson EL, Adamian M. Ultrastructural findings in an autopsy eye from a patient with Usher’s syndrome type II. Am J Ophthalmol. 1992;114(6):748–57.

    Article  CAS  PubMed  Google Scholar 

  235. Gibbs D, Kitamoto J, Williams DS. Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc Natl Acad Sci U S A. 2003;100(11):6481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Williams DS. Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy. Vis Res. 2008;48(3):433–41.

    Article  CAS  PubMed  Google Scholar 

  237. Williams DS, Aleman TS, Lillo C, Lopes VS, Hughes LC, Stone EM, et al. Harmonin in the murine retina and the retinal phenotypes of Ush1c-mutant mice and human USH1C. Invest Ophthalmol Vis Sci. 2009;50(8):3881–9.

    Article  PubMed  Google Scholar 

  238. Phillips JB, Blanco-Sanchez B, Lentz JJ, Tallafuss A, Khanobdee K, Sampath S, et al. Harmonin (Ush1c) is required in zebrafish Muller glial cells for photoreceptor synaptic development and function. Dis Model Mech. 2011;4(6):786–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Bujakowska KM, Consugar M, Place E, Harper S, Lena J, Taub DG, et al. Targeted exon sequencing in Usher syndrome type I. Invest Ophthalmol Vis Sci. 2014;55(12):8488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Fishman G, Vasquez V, Fishman M, Berger D. Visual loss and foveal lesions in Usher’s syndrome. Br J Ophthalmol. 1979;63(7):484–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Fishman GA, Anderson RJ, Lam BL, Derlacki DJ. Prevalence of foveal lesions in type 1 and type 2 Usher’s syndrome. Arch Ophthalmol. 1995;113(6):770–3.

    Article  CAS  PubMed  Google Scholar 

  242. Fishman GA, Kumar A, Joseph ME, Torok N, Anderson RJ. Usher’s syndrome. Ophthalmic and neuro-otologic findings suggesting genetic heterogeneity. Arch Ophthalmol. 1983;101(9):1367–74.

    Article  CAS  PubMed  Google Scholar 

  243. Sankila EM, Pakarinen L, Kaariainen H, Aittomaki K, Karjalainen S, Sistonen P, et al. Assignment of an Usher syndrome type III (USH3) gene to chromosome 3q. Hum Mol Genet. 1995;4(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  244. Gerber S, Bonneau D, Gilbert B, Munnich A, Dufier JL, Rozet JM, et al. USH1A: chronicle of a slow death. Am J Hum Genet. 2006;78(2):357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Khateb S, Zelinger L, Mizrahi-Meissonnier L, Ayuso C, Koenekoop RK, Laxer U, et al. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. J Med Genet. 2014;51(7):460–9.

    Article  CAS  PubMed  Google Scholar 

  246. Namburi P, Ratnapriya R, Khateb S, Lazar Csilla H, Kinarty Y, Obolensky A, et al. Bi-allelic truncating mutations in CEP78, encoding centrosomal protein 78, cause cone-rod degeneration with sensorineural hearing loss. Am J Hum Genet. 2016;99(3):777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Fu Q, Xu M, Chen X, Sheng X, Yuan Z, Liu Y, et al. CEP78 is mutated in a distinct type of Usher syndrome. J Med Genet. 2017;54(3):190–5.

    Article  CAS  PubMed  Google Scholar 

  248. Khateb S, Kowalewski B, Bedoni N, Damme M, Pollack N, Saada A, et al. A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genet Med. 2018;20(9):1004–12.

    Article  CAS  PubMed  Google Scholar 

  249. Peter VG, Quinodoz M, Sadio S, Held S, Rodrigues M, Soares M, et al. New clinical and molecular evidence linking mutations in ARSG to Usher syndrome type IV. Hum Mutat. 2021;42(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  250. Fillman RD, Leguire LE, Rogers GL, Bremer DL, Fellows RR. Screening for vision problems, including Usher’s syndrome, among hearing impaired students. Am Ann Deaf. 1987;132(3):194–8.

    Article  CAS  PubMed  Google Scholar 

  251. Young NM, Mets MB, Hain TC. Early diagnosis of Usher syndrome in infants and children. Am J Otol. 1996;17(1):30–4.

    CAS  PubMed  Google Scholar 

  252. Mets MB, Young NM, Pass A, Lasky JB. Early diagnosis of Usher syndrome in children. Trans Am Ophthalmol Soc. 2000;98:237–42; discussion 43–5

    CAS  PubMed  PubMed Central  Google Scholar 

  253. West SK, Hindocha M, Hogg CR, Holder GE, Moore AT, Reddy MA. Electroretinogram assessment of children with sensorineural hearing loss: implications for screening. J AAPOS. 2015;19(5):450–4.

    Article  PubMed  Google Scholar 

  254. Pennings RJ, Topsakal V, Astuto L, de Brouwer AP, Wagenaar M, Huygen PL, et al. Variable clinical features in patients with CDH23 mutations (USH1D-DFNB12). Otol Neurotol. 2004;25(5):699–706.

    Article  PubMed  Google Scholar 

  255. Schultz JM, Bhatti R, Madeo AC, Turriff A, Muskett JA, Zalewski CK, et al. Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes. J Med Genet. 2011;48(11):767–75.

    Article  CAS  PubMed  Google Scholar 

  256. Schwartz SB, Aleman TS, Cideciyan AV, Windsor EA, Sumaroka A, Roman AJ, et al. Disease expression in Usher syndrome caused by VLGR1 gene mutation (USH2C) and comparison with USH2A phenotype. Invest Ophthalmol Vis Sci. 2005;46(2):734–43.

    Article  PubMed  Google Scholar 

  257. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Roman AJ, Gardner LM, et al. Usher syndromes due to MYO7A, PCDH15, USH2A or GPR98 mutations share retinal disease mechanism. Hum Mol Genet. 2008;17(15):2405–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Herrera W, Aleman TS, Cideciyan AV, Roman AJ, Banin E, Ben-Yosef T, et al. Retinal disease in Usher syndrome III caused by mutations in the clarin-1 gene. Invest Ophthalmol Vis Sci. 2008;49(6):2651–60.

    Article  PubMed  Google Scholar 

  259. Jacobson SG, Aleman TS, Sumaroka A, Cideciyan AV, Roman AJ, Windsor EAM, et al. Disease boundaries in the retina of patients with Usher syndrome caused by MYO7A gene mutations. Invest Ophthalmol Vis Sci. 2009;50(4):1886.

    Article  PubMed  Google Scholar 

  260. Jacobson SG, Cideciyan AV, Gibbs D, Sumaroka A, Roman AJ, Aleman TS, et al. Retinal disease course in Usher syndrome 1B due to MYO7A mutations. Invest Ophthalmol Vis Sci. 2011;52(11):7924–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Berson E, et al. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111:761–72.

    Article  CAS  PubMed  Google Scholar 

  262. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, et al. Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol. 2004;122(9):1306–14.

    Article  CAS  PubMed  Google Scholar 

  263. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, et al. Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol. 2004;122(9):1297–305.

    Article  CAS  PubMed  Google Scholar 

  264. Williams DS, Chadha A, Hazim R, Gibbs D. Gene therapy approaches for prevention of retinal degeneration in Usher syndrome. Gene Ther. 2017;24(2):68–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Lopes VS, Boye SE, Louie CM, Boye S, Dyka F, Chiodo V, et al. Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus. Gene Ther. 2013;20:824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Laurence JZ, Moon RC. Four cases of ‘retinitis pigmentosa’, occurring in the same family, and accompanied by general imperfections of development. Ophthalmic Rev (Old Series). 1866;2:32–41.

    Google Scholar 

  267. Hutchinson J. Slowly progressive paraplegia and disease of the choroids with defective intellect and arrested sexual development in several brothers and a sister. Arch Surg (Lond). 1900;11:118–22.

    Google Scholar 

  268. Bardet G. Sur un syndrome d’obésité congénitale avec polydactylie et rétinite pigmentaire (contribution à l’étude des formes cliniques de l’obésité hypophysaire). Université de Paris, Thesis no 470, Legrand. 1920.

    Google Scholar 

  269. Biedl A. Ein Geschwisterpaar mit adiposo-genitaler Dystrophie. Dtsch Med Wochenschr. 1922;48:1630.

    Google Scholar 

  270. Mockel A, Perdomo Y, Stutzmann F, Letsch J, Marion V, Dollfus H. Retinal dystrophy in Bardet–Biedl syndrome and related syndromic ciliopathies. Prog Retin Eye Res. 2011;30(4):258–74.

    Article  CAS  PubMed  Google Scholar 

  271. Schachat AP, Maumenee IH. Bardet-Biedl syndrome and related disorders. Arch Ophthalmol. 1982;100(2):285–8.

    Article  CAS  PubMed  Google Scholar 

  272. Campo RV, Aaberg TM. Ocular and systemic manifestations of the Bardet-Biedl syndrome. Am J Ophthalmol. 1982;94(6):750–6.

    Article  CAS  PubMed  Google Scholar 

  273. Chen J, Smaoui N, Hammer MB, Jiao X, Riazuddin SA, Harper S, et al. Molecular analysis of Bardet-Biedl syndrome families: report of 21 novel mutations in 10 genes. Invest Ophthalmol Vis Sci. 2011;52(8):5317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Daniels AB, Sandberg MA, Chen J, Weigel-DiFranco C, Fielding Hejtmancic J, Berson EL. Genotype-phenotype correlations in Bardet-Biedl syndrome. Arch Ophthalmol. 2012;130(7):901–7.

    Article  PubMed  Google Scholar 

  275. Rizzo JF 3rd, Berson EL, Lessell S. Retinal and neurologic findings in the Laurence-Moon-Bardet-Biedl phenotype. Ophthalmology. 1986;93(11):1452–6.

    Article  PubMed  Google Scholar 

  276. O’Neil E, Serrano L, Scoles D, Cunningham KE, Han G, Chiang J, et al. Detailed retinal phenotype of Boucher-Neuhauser syndrome associated with mutations in PNPLA6 mimicking choroideremia. Ophthalmic Genet. 2019;40(3):267–75.

    Article  PubMed  CAS  Google Scholar 

  277. Leys MJ, Schreiner LA, Hansen RM, Mayer DL, Fulton AB. Visual acuities and dark-adapted thresholds of children with Bardet-Biedl syndrome. Am J Ophthalmol. 1988;106(5):561–9.

    Article  CAS  PubMed  Google Scholar 

  278. Fulton AB, Hansen RM, Glynn RJ. Natural course of visual functions in the Bardet-Biedl syndrome. Arch Ophthalmol. 1993;111(11):1500–6.

    Article  CAS  PubMed  Google Scholar 

  279. Riise R, Andreasson S, Borgastrom MK, Wright AF, Tommerup N, Rosenberg T, et al. Intrafamilial variation of the phenotype in Bardet-Biedl syndrome. Br J Ophthalmol. 1997;81(5):378–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Scheidecker S, Hull S, Perdomo Y, Studer F, Pelletier V, Muller J, et al. Predominantly cone-system dysfunction as rare form of retinal degeneration in patients with molecularly confirmed Bardet-Biedl syndrome. Am J Ophthalmol. 2015;160(2):364–72. e1

    Article  PubMed  Google Scholar 

  281. Heon E, Kim G, Qin S, Garrison JE, Tavares E, Vincent A, et al. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21). Hum Mol Genet. 2016;25(11):2283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Suspitsin EN, Imyanitov EN. Bardet-Biedl syndrome. Mol Syndromol. 2016;7(2):62–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Kagan KO, Dufke A, Gembruch U. Renal cystic disease and associated ciliopathies. Curr Opin Obstet Gynecol. 2017;29(2):85–94.

    Article  PubMed  Google Scholar 

  284. Tsang SH, Aycinena ARP, Sharma T. Ciliopathy: Bardet-Biedl syndrome. Adv Exp Med Biol. 2018;1085:171–4.

    Article  PubMed  Google Scholar 

  285. Krill AE, Folk E, Rosenthal IM. Electroretinography in the Laurence-Moon-Biedl syndrome. An aid in diagnosis of the atypical case. Am J Dis Child. 1961;102:205–9.

    Article  CAS  PubMed  Google Scholar 

  286. Jacobson SG, Borruat FX, Apathy PP. Patterns of rod and cone dysfunction in Bardet-Biedl syndrome. Am J Ophthalmol. 1990;109(6):676–88.

    Article  CAS  PubMed  Google Scholar 

  287. Heon E, Westall C, Carmi R, Elbedour K, Panton C, Mackeen L, et al. Ocular phenotypes of three genetic variants of Bardet-Biedl syndrome. Am J Med Genet A. 2005;132A(3):283–7.

    Article  PubMed  Google Scholar 

  288. Abu-Safieh L, Al-Anazi S, Al-Abdi L, Hashem M, Alkuraya H, Alamr M, et al. In search of triallelism in Bardet-Biedl syndrome. Eur J Hum Genet. 2012;20(4):420–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, Hoskins BE, et al. Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science. 2001;293(5538):2256–9.

    Article  CAS  PubMed  Google Scholar 

  290. Beales PL, Badano JL, Ross AJ, Ansley SJ, Hoskins BE, Kirsten B, et al. Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome. Am J Hum Genet. 2003;72(5):1187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Badano JL, Leitch CC, Ansley SJ, May-Simera H, Lawson S, Lewis RA, et al. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature. 2006;439(7074):326–30.

    Article  CAS  PubMed  Google Scholar 

  292. Simons DL, Boye SL, Hauswirth WW, Wu SM. Gene therapy prevents photoreceptor death and preserves retinal function in a Bardet-Biedl syndrome mouse model. Proc Natl Acad Sci U S A. 2011;108(15):6276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Seo S, Mullins RF, Dumitrescu AV, Bhattarai S, Gratie D, Wang K, et al. Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Invest Ophthalmol Vis Sci. 2013;54(9):6118–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Sharon D. Shared mutations in NR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Arch Ophthalmol. 2003;121(9):1316.

    Article  CAS  PubMed  Google Scholar 

  295. Schorderet DF, Escher P. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP). Hum Mutat. 2009;30(11):1475–85.

    Article  CAS  PubMed  Google Scholar 

  296. Jacobson SG, Marmor MF, Kemp CM, Knighton RW. SWS (blue) cone hypersensitivity in a newly identified retinal degeneration. Invest Ophthalmol Vis Sci. 1990;31(5):827–38.

    CAS  PubMed  Google Scholar 

  297. Marmor MF, Jacobson SG, Foerster MH, Kellner U, Weleber RG. Diagnostic clinical findings of a new syndrome with night blindness, maculopathy, and enhanced S cone sensitivity. Am J Ophthalmol. 1990;110(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  298. Jacobson SG, Roman AJ, Roman MI, Gass JD, Parker JA. Relatively enhanced S cone function in the Goldmann-Favre syndrome. Am J Ophthalmol. 1991;111(4):446–53.

    Article  CAS  PubMed  Google Scholar 

  299. Roman AJ, Jacobson SG. S cone-driven but not S cone-type electroretinograms in the enhanced S cone syndrome. Exp Eye Res. 1991;53(5):685–90.

    Article  CAS  PubMed  Google Scholar 

  300. Audo I, Michaelides M, Robson AG, Hawlina M, Vaclavik V, Sandbach JM, et al. Phenotypic variation in enhanced S-cone syndrome. Invest Ophthalmol Vis Sci. 2008;49(5):2082.

    Article  PubMed  Google Scholar 

  301. Milam AH, Rose L, Cideciyan AV, Barakat MR, Tang WX, Gupta N, et al. The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci U S A. 2002;99(1):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Greenstein VC, Zaidi Q, Hood DC, Spehar B, Cideciyan AV, Jacobson SG. The enhanced S cone syndrome: an analysis of receptoral and post-receptoral changes. Vis Res. 1996;36(22):3711–22.

    Article  CAS  PubMed  Google Scholar 

  303. Udar N, Small K, Chalukya M, Silva-Garcia R, Marmor M. Developmental or degenerative – NR2E3 gene mutations in two patients with enhanced S cone syndrome. Mol Vis. 2011;17:519–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Hull S, Arno G, Sergouniotis PI, Tiffin P, Borman AD, Chandra A, et al. Clinical and molecular characterization of enhanced S-cone syndrome in children. JAMA Ophthalmol. 2014;132(11):1341.

    Article  PubMed  Google Scholar 

  305. Ripamonti C, Aboshiha J, Henning GB, Sergouniotis PI, Michaelides M, Moore AT, et al. Vision in observers with enhanced S-cone syndrome: an excess of S-cones but connected mainly to conventional S-cone pathways. Invest Ophthalmol Vis Sci. 2014;55(2):963.

    Article  PubMed  Google Scholar 

  306. Collison FT, Park JC, Fishman GA, Stone EM, McAnany JJ. Two-color pupillometry in enhanced S-cone syndrome caused by NR2E3 mutations. Doc Ophthalmol. 2016;132(3):157–66.

    Article  PubMed  PubMed Central  Google Scholar 

  307. Coppieters F, Leroy BP, Beysen D, Hellemans J, De Bosscher K, Haegeman G, et al. Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am J Hum Genet. 2007;81(1):147–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Garafalo AV, Calzetti G, Cideciyan AV, Roman AJ, Saxena S, Sumaroka A, et al. Cone vision changes in the enhanced S-cone syndrome caused by NR2E3 gene mutations. Invest Ophthalmol Vis Sci. 2018;59(8):3209.

    Article  CAS  PubMed  Google Scholar 

  309. Ammar MJ, Scavelli KT, Uyhazi KE, Bedoukian EC, Serrano LW, Edelstein ID, et al. Enhanced S-cone syndrome: visual function, cross-sectional imaging, and cellular structure with adaptive optics ophthalmoscopy. Retin Cases Brief Rep. 2019. https://doi.org/10.1097/ICB.0000000000000891. Epub ahead of print.

  310. Swaroop A, Xu JZ, Pawar H, Jackson A, Skolnick C, Agarwal N. A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proc Natl Acad Sci U S A. 1992;89(1):266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM, Searby C, et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet. 2000;24:127–31.

    Article  CAS  PubMed  Google Scholar 

  312. Cheng H, Aleman TS, Cideciyan AV, Khanna R, Jacobson SG, Swaroop A. In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development. Hum Mol Genet. 2006;15(17):2588–602.

    Article  CAS  PubMed  Google Scholar 

  313. Kanda A, Swaroop A. A comprehensive analysis of sequence variants and putative disease-causing mutations in photoreceptor-specific nuclear receptor NR2E3. Mol Vis. 2009;15:2174–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  314. Hoshino A, Ratnapriya R, Brooks MJ, Chaitankar V, Wilken MS, Zhang C, et al. Molecular anatomy of the developing human retina. Dev Cell. 2017;43(6):763–79.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Nishiguchi KM, Friedman JS, Sandberg MA, Swaroop A, Berson EL, Dryja TP. Recessive NRL mutations in patients with clumped pigmentary retinal degeneration and relative preservation of blue cone function. Proc Natl Acad Sci U S A. 2004;101(51):17819–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Newman H, Blumen SC, Braverman I, Hanna R, Tiosano B, Perlman I, et al. Homozygosity for a recessive loss-of-function mutation of the NRL gene is associated with a variant of enhanced S-cone syndrome. Invest Ophthalmol Vis Sci. 2016;57(13):5361.

    Article  CAS  PubMed  Google Scholar 

  317. Vaclavik V, Chakarova C, Bhattacharya SS, Robson AG, Holder GE, Bird AC, et al. Bilateral giant macular schisis in a patient with enhanced S-cone syndrome from a family showing pseudo-dominant inheritance. Br J Ophthalmol. 2008;92(2):299–300.

    Article  CAS  PubMed  Google Scholar 

  318. Park SP, Hong IH, Tsang SH, Lee W, Horowitz J, Yzer S, et al. Disruption of the human cone photoreceptor mosaic from a defect in NR2E3 transcription factor function in young adults. Graefes Arch Clin Exp Ophthalmol. 2013;251(10):2299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Pachydaki SI, Klaver CC, Barbazetto IA, Roy MS, Gouras P, Allikmets R, et al. Phenotypic features of patients with NR2E3 mutations. Arch Ophthalmol. 2009;127(1):71–5.

    Article  PubMed  Google Scholar 

  320. Sohn EH, Chen FK, Rubin GS, Moore AT, Webster AR, MacLaren RE. Macular function assessed by microperimetry in patients with enhanced S-cone syndrome. Ophthalmology. 2010;117(6):1199–206.e1.

    Article  PubMed  Google Scholar 

  321. Pachydaki SI, Bhatnagar PA, Barbazetto IA, Klaver CC, Freund BK, Yannuzzi LA. Long-term follow-up in enhanced s-cone syndrome. Retin Cases Brief Rep. 2009;3(2):118–20.

    Article  PubMed  Google Scholar 

  322. Bandah D, Merin S, Ashhab M, Banin E, Sharon D. The spectrum of retinal diseases caused by NR2E3 mutations in Israeli and Palestinian patients. Arch Ophthalmol. 2009;127(3):297–302.

    Article  CAS  PubMed  Google Scholar 

  323. Fishman GA, Jampol LM, Goldberg MF. Diagnostic features of the Favre-Goldmann syndrome. Br J Ophthalmol. 1976;60(5):345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Yzer S, Barbazetto I, Allikmets R, van Schooneveld MJ, Bergen A, Tsang SH, et al. Expanded clinical spectrum of enhanced S-cone syndrome. JAMA Ophthalmol. 2013;131(10):1324–30.

    Article  PubMed  PubMed Central  Google Scholar 

  325. Hood DC, Cideciyan AV, Roman AJ, Jacobson SG. Enhanced S cone syndrome: evidence for an abnormally large number of S cones. Vis Res. 1995;35(10):1473–81.

    Article  CAS  PubMed  Google Scholar 

  326. Fishman GA, Peachey NS. Rod-cone dystrophy associated with a rod system electroretinogram obtained under photopic conditions. Ophthalmology. 1989;96(6):913–8.

    Article  CAS  PubMed  Google Scholar 

  327. Jacobson SG, Sumaroka A, Aleman TS, Cideciyan AV, Schwartz SB, Roman AJ, et al. Nuclear receptor NR2E3 gene mutations distort human retinal laminar architecture and cause an unusual degeneration. Hum Mol Genet. 2004;13(17):1893–902.

    Article  CAS  PubMed  Google Scholar 

  328. Roman AJ, Powers CA, Semenov EP, Sheplock R, Aksianiuk V, Russell RC, et al. Short-wavelength sensitive cone (S-cone) testing as an outcome measure for NR2E3 clinical treatment trials. Int J Mol Sci. 2019;20(10):2497.

    Article  CAS  PubMed Central  Google Scholar 

  329. Kurstjens JH. Choroideremia and gyrate atrophy of the choroid and retina. Doc Ophthalmol. 1965;19(1):1–122.

    Article  Google Scholar 

  330. McCulloch C. Choroideremia: a clinical and pathologic review. Trans Am Ophthalmol Soc. 1969;67:142–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  331. MacDonald IM, Russell L, Chan C-C. Choroideremia: new findings from ocular pathology and review of recent literature. Surv Ophthalmol. 2009;54(3):401–7.

    Article  PubMed  PubMed Central  Google Scholar 

  332. Karna J. Choroideremia. A clinical and genetic study of 84 Finnish patients and 126 female carriers. Copenhagen. Arch Ophthalmol Suppl. 1986;176:1–68.

    CAS  Google Scholar 

  333. McCulloch C, McCulloch R. A hereditary and clinical study of choroideremia. Trans Am Acad Ophthalmol Otolaryngol. 1948;52:160–90.

    CAS  PubMed  Google Scholar 

  334. Hayakawa M, Fujiki K, Hotta Y, Ito R, Ohki J, Ono J, et al. Visual impairment and REP-1 gene mutations in Japanese choroideremia patients. Ophthalmic Genet. 1999;20(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  335. Duncan JL, Aleman TS, Gardner LM, De Castro E, Marks DA, Emmons JM, et al. Macular pigment and lutein supplementation in choroideremia. Exp Eye Res. 2002;74(3):371–81.

    Article  CAS  PubMed  Google Scholar 

  336. Jacobson SG, Cideciyan AV, Sumaroka A, Aleman TS, Schwartz SB, Windsor EA, et al. Remodeling of the human retina in choroideremia: rab escort protein 1 (REP-1) mutations. Invest Ophthalmol Vis Sci. 2006;47(9):4113–20.

    Article  PubMed  Google Scholar 

  337. Aleman T, Morgan J, Serrano L, Han H, Fuerst N, Charlson E, et al. Natural history of the central structural abnormalities in choroideremia: a prospective cross-sectional study. Ophthalmology. 2017;124:359–73.

    Article  PubMed  Google Scholar 

  338. Roberts MF, Fishman GA, Roberts DK, Heckenlively JR, Weleber RG, Anderson RJ, et al. Retrospective, longitudinal, and cross sectional study of visual acuity impairment in choroideraemia. Br J Ophthalmol. 2002;86(6):658–62.

    Article  PubMed  PubMed Central  Google Scholar 

  339. Heon E, Alabduljalil T, McGuigan ID, Cideciyan AV, Li S, Chen S, et al. Visual function and central retinal structure in choroideremia. Invest Ophthalmol Vis Sci. 2016;57(9):OCT377–87.

    Article  PubMed  Google Scholar 

  340. Nabholz N, Lorenzini M-C, Bocquet B, Lacroux A, Faugère V, Roux A-F, et al. Clinical evaluation and cone alterations in choroideremia. Ophthalmology. 2016;123(8):1830–2.

    Article  PubMed  Google Scholar 

  341. Coussa RG, Traboulsi EI. Choroideremia: a review of general findings and pathogenesis. Ophthalmic Genet. 2012;33(2):57–65.

    Article  CAS  PubMed  Google Scholar 

  342. Seitz IP, Zhour A, Kohl S, Llavona P, Peter T, Wilhelm B, et al. Multimodal assessment of choroideremia patients defines pre-treatment characteristics. Graefes Arch Clin Exp Ophthalmol. 2015;253(12):2143–50.

    Article  PubMed  Google Scholar 

  343. Pameyer JK, Waardenburg PJ, Henkes HE. Choroid eremia. Br J Ophthalmol. 1960;44:724–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. O’Neil E, Uyhazi, KE, Connor, KO, Aleman, IA, Pulido, JS, Rossano, JW, Aleman, TS. Danon disease: a model of photoreceptor degeneration secondary to primary retinal pigment epithelium disease. Retina Cases Brief Rep. 2021.

    Google Scholar 

  345. Bozbeyoglu S, Fishman GA, Stone EM, MacDonald IM, Streb LM. De novo mutation in a choroideremia carrier. Retin Cases Brief Rep. 2007;1(3):182–4.

    Article  PubMed  Google Scholar 

  346. Jauregui R, Park KS, Tanaka AJ, Cho A, Paavo M, Zernant J, et al. Spectrum of disease severity and phenotype in choroideremia carriers. Am J Ophthalmol. 2019;207:77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  347. Simell O, Takki K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet. 1973;1(7811):1031–3.

    Article  CAS  PubMed  Google Scholar 

  348. Valle D, Kaiser-Kupfer MI, Del Valle LA. Gyrate atrophy of the choroid and retina: deficiency of ornithine aminotransferase in transformed lymphocytes. Proc Natl Acad Sci U S A. 1977;74(11):5159–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Trijbels JM, Sengers RC, Bakkeren JA, De Kort AF, Deutman AF. L-ornithine-ketoacid-transaminase deficiency in cultured fibroblasts of a patient with hyperornithinaemia and gyrate atrophy of the choroid and retina. Clin Chim Acta. 1977;79(2):371–7.

    Article  CAS  PubMed  Google Scholar 

  350. Berson EL, Schmidt SY, Rabin AR. Plasma amino-acids in hereditary retinal disease. Ornithine, lysine, and taurine. Br J Ophthalmol. 1976;60(2):142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Takki K, Simell O. Genetic aspects in gyrate atrophy of the choroid and retina with hyperornithinaemia. Br J Ophthalmol. 1974;58(11):907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Potter MJ, Berson EL. Diagnosis and treatment of gyrate atrophy. Int Ophthalmol Clin. 1993;33(2):229–36.

    Article  CAS  PubMed  Google Scholar 

  353. Kaiser-Kupfer MIV, D.L. Clinical, biochemical, and therapeutic aspects of gyrate atrophy. Prog Retin Res. 1987;6:179.

    Article  Google Scholar 

  354. Li A, Jiao X, Munier FL, Schorderet DF, Yao W, Iwata F, et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am J Hum Genet. 2004;74(5):817–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Mataftsi A, Zografos L, Milla E, Secretan M, Munier FL. Bietti’s crystalline corneoretinal dystrophy: a cross-sectional study. Retina. 2004;24(3):416–26.

    Article  PubMed  Google Scholar 

  356. Nakano M, Kelly EJ, Wiek C, Hanenberg H, Rettie AE. CYP4V2 in Bietti’s crystalline dystrophy: ocular localization, metabolism of omega-3-polyunsaturated fatty acids, and functional deficit of the p.H331P variant. Mol Pharmacol. 2012;82(4):679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Garcia-Garcia GP, Martinez-Rubio M, Moya-Moya MA, Perez-Santonja JJ, Escribano J. Current perspectives in Bietti crystalline dystrophy. Clin Ophthalmol. 2019;13:1379–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Fuerst NM, Serrano L, Han G, Morgan JI, Maguire AM, Leroy BP, et al. Detailed functional and structural phenotype of Bietti crystalline dystrophy associated with mutations in CYP4V2 complicated by choroidal neovascularization. Ophthalmic Genet. 2016;37(4):445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Lee J, Jiao X, Hejtmancik JF, Kaiser-Kupfer M, Chader GJ. Identification, isolation, and characterization of a 32-kDa fatty acid-binding protein missing from lymphocytes in humans with Bietti crystalline dystrophy (BCD). Mol Genet Metab. 1998;65(2):143–54.

    Article  CAS  PubMed  Google Scholar 

  360. Kaiser-Kupfer MI, Chan CC, Markello TC, Crawford MA, Caruso RC, Csaky KG, et al. Clinical biochemical and pathologic correlations in Bietti’s crystalline dystrophy. Am J Ophthalmol. 1994;118(5):569–82.

    Article  CAS  PubMed  Google Scholar 

  361. Zhang X, Xu K, Dong B, Peng X, Li Q, Jiang F, et al. Comprehensive screening of CYP4V2 in a cohort of Chinese patients with Bietti crystalline dystrophy. Mol Vis. 2018;24:700–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  362. Atmaca LS, Muftuoglu O, Atmaca-Sonmez P. Peripapillary choroidal neovascularization in Bietti crystalline retinopathy. Eye (Lond). 2007;21(6):839–42.

    Article  CAS  Google Scholar 

  363. Lockhart CM, Smith TB, Yang P, Naidu M, Rettie AE, Nath A, et al. Longitudinal characterisation of function and structure of Bietti crystalline dystrophy: report on a novel homozygous mutation in CYP4V2. Br J Ophthalmol. 2018;102(2):187–94.

    Article  PubMed  Google Scholar 

  364. Oishi A, Oishi M, Miyata M, Hirashima T, Hasegawa T, Numa S, et al. Multimodal imaging for differential diagnosis of Bietti crystalline dystrophy. Ophthalmol Retina. 2018;2(10):1071–7.

    Article  PubMed  Google Scholar 

  365. Miyata M, Hata M, Ooto S, Ogino K, Gotoh N, Morooka S, et al. Choroidal and retinal atrophy of Bietti crystalline dystrophy patients with Cyp4v2 mutations compared to retinitis pigmentosa patients with Eys mutations. Retina. 2017;37(6):1193–202.

    Article  CAS  PubMed  Google Scholar 

  366. Gupta B, Parvizi S, Mohamed MD. Bietti crystalline dystrophy and choroidal neovascularisation. Int Ophthalmol. 2011;31(1):59–61.

    Article  CAS  PubMed  Google Scholar 

  367. Li Q, Li Y, Zhang X, Xu Z, Zhu X, Ma K, et al. Utilization of fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging in the characterization of Bietti crystalline dystrophy in different stages. Retina. 2015;35(10):2074–84.

    Article  PubMed  Google Scholar 

  368. Mamatha G, Umashankar V, Kasinathan N, Krishnan T, Sathyabaarathi R, Karthiyayini T, et al. Molecular screening of the CYP4V2 gene in Bietti crystalline dystrophy that is associated with choroidal neovascularization. Mol Vis. 2011;17:1970–7.

    PubMed  PubMed Central  Google Scholar 

  369. Kobat SG, Gul FC, Yusufoglu E. Bietti crystalline dystrophy and choroidal neovascularization in childhood. Int J Ophthalmol. 2019;12(9):1514–6.

    Article  PubMed  PubMed Central  Google Scholar 

  370. Aleman TS, Han G, Serrano LW, Fuerst NM, Charlson ES, Pearson DJ, et al. Natural history of the central structural abnormalities in choroideremia: a prospective cross-sectional study. Ophthalmology. 2017;124(3):359–73.

    Article  PubMed  Google Scholar 

  371. Lockhart CM, Nakano M, Rettie AE, Kelly EJ. Generation and characterization of a murine model of Bietti crystalline dystrophy. Invest Ophthalmol Vis Sci. 2014;55(9):5572–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Song WK, Clouston P, MacLaren RE. Presence of corneal crystals confirms an unusual presentation of Bietti’s retinal dystrophy. Ophthalmic Genet. 2019;40:1–5.

    Article  CAS  Google Scholar 

  373. Kovach JL, Isildak H, Sarraf D. Crystalline retinopathy: unifying pathogenic pathways of disease. Surv Ophthalmol. 2019;64(1):1–29.

    Article  PubMed  Google Scholar 

  374. Hata M, Ikeda HO, Iwai S, Iida Y, Gotoh N, Asaka I, et al. Reduction of lipid accumulation rescues Bietti’s crystalline dystrophy phenotypes. Proc Natl Acad Sci U S A. 2018;115(15):3936–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Zeitz C, Robson AG, Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog Retin Eye Res. 2015;45:58–110.

    Article  PubMed  Google Scholar 

  376. Schubert G, Bornschein H. Analysis of the human electroretinogram. Ophthalmologica. 1952;123(6):396–413.

    Article  CAS  PubMed  Google Scholar 

  377. Snyder C. Jean Nougaret, the butcher from Provence, and his family. Arch Ophthalmol. 1963;69:676–8.

    Article  CAS  PubMed  Google Scholar 

  378. Carr RE. Congenital stationary nightblindness. Trans Am Ophthalmol Soc. 1974;72:448–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  379. Sandberg MA, Pawlyk BS, Dan J, Arnaud B, Dryja TP, Berson EL. Rod and cone function in the Nougaret form of stationary night blindness. Arch Ophthalmol. 1998;116(7):867–72.

    Article  CAS  PubMed  Google Scholar 

  380. Kabanarou SA, Holder GE, Fitzke FW, Bird AC, Webster AR. Congenital stationary night blindness and a “Schubert-Bornschein” type electrophysiology in a family with dominant inheritance. Br J Ophthalmol. 2004;88(8):1018–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Riggs LA. Electroretinography in cases of night blindness. Am J Ophthalmol. 1954;38(1–2):70–8.

    Article  CAS  PubMed  Google Scholar 

  382. Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol. 1986;104(7):1013–20.

    Article  CAS  PubMed  Google Scholar 

  383. Dryja TP. Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson Memorial Lecture. Am J Ophthalmol. 2000;130(5):547–63.

    Article  CAS  PubMed  Google Scholar 

  384. Krill AE, Martin D. Photopic abnormalities in congenital stationary nightblindness. Investig Ophthalmol. 1971;10(8):625–36.

    CAS  Google Scholar 

  385. Heckenlively JR, Martin DA, Rosenbaum AL. Loss of electroretinographic oscillatory potentials, optic atrophy, and dysplasia in congenital stationary night blindness. Am J Ophthalmol. 1983;96(4):526–34.

    Article  CAS  PubMed  Google Scholar 

  386. Lachapelle P, Little JM, Polomeno RC. The photopic electroretinogram in congenital stationary night blindness with myopia. Invest Ophthalmol Vis Sci. 1983;24(4):442–50.

    CAS  PubMed  Google Scholar 

  387. Alexander KR, Fishman GA, Peachey NS, Marchese AL, Tso MO. ‘On’ response defect in paraneoplastic night blindness with cutaneous malignant melanoma. Invest Ophthalmol Vis Sci. 1992;33(3):477–83.

    CAS  PubMed  Google Scholar 

  388. Tremblay F, Parkinson J. Gradient of deficit in cone responses in the incomplete form of congenital stationary night blindness revealed by multifocal electroretinography. Doc Ophthalmol. 2008;116(1):41–7.

    Article  PubMed  Google Scholar 

  389. Nishiguchi KM, Ikeda Y, Fujita K, Kunikata H, Akiho M, Hashimoto K, et al. Phenotypic features of Oguchi disease and retinitis pigmentosa in patients with S-antigen mutations: a long-term follow-up study. Ophthalmology. 2019;126(11):1557–66.

    Article  PubMed  Google Scholar 

  390. Cideciyan AV, Jacobson SG, Gupta N, Osawa S, Locke KG, Weiss ER, et al. Cone deactivation kinetics and GRK1/GRK7 expression in enhanced S cone syndrome caused by mutations in NR2E3. Invest Ophthalmol Vis Sci. 2003;44(3):1268–74.

    Article  PubMed  Google Scholar 

  391. Cideciyan AV, Zhao X, Nielsen L, Khani SC, Jacobson SG, Palczewski K. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci U S A. 1998;95(1):328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A. A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet. 1995;10(3):360–2.

    Article  CAS  PubMed  Google Scholar 

  393. Yamamoto S, Sippel K, Berson E, Dryja T. Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet. 1997;15(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  394. Azam M, Collin RW, Khan MI, Shah ST, Qureshi N, Ajmal M, et al. A novel mutation in GRK1 causes Oguchi disease in a consanguineous Pakistani family. Mol Vis. 2009;15:1788–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  395. Sonoyama H, Shinoda K, Ishigami C, Tada Y, Ideta H, Ideta R, et al. Oguchi disease masked by retinitis pigmentosa. Doc Ophthalmol. 2011;123(2):127–33.

    Article  PubMed  Google Scholar 

  396. Mooren A. Fünf Lustren ophthalmologischer Wirksamkeit. Wiesbaden: Bergmann; 1882.

    Google Scholar 

  397. Kurozumi I, Ohara M, Yasui T, Matuno C. Case of retinitis punctata albescens in a boy and degeneratio pigmentosa retinae sine pigmento in his sister. Rinsho Ganka. 1963;17:177–80.

    CAS  PubMed  Google Scholar 

  398. Hipp S, Zobor G, Glockle N, Mohr J, Kohl S, Zrenner E, et al. Phenotype variations of retinal dystrophies caused by mutations in the RLBP1 gene. Acta Ophthalmol. 2015;93(4):e281–6.

    Article  CAS  PubMed  Google Scholar 

  399. Burstedt MS, Golovleva I. Central retinal findings in Bothnia dystrophy caused by RLBP1 sequence variation. Arch Ophthalmol. 2010;128(8):989–95.

    Article  CAS  PubMed  Google Scholar 

  400. Maw MA, Kennedy B, Knight A, Bridges R, Roth KE, Mani E, et al. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet. 1997;17:198–200.

    Article  CAS  PubMed  Google Scholar 

  401. Burstedt MS, Sandgren O, Holmgren G, Forsman-Semb K. Bothnia dystrophy caused by mutations in the cellular retinaldehyde-binding protein gene (RLBP1) on chromosome 15q26. Invest Ophthalmol Vis Sci. 1999;40(5):995–1000.

    CAS  PubMed  Google Scholar 

  402. Morimura H, Berson E, Dryja T. Recessive mutations in the RLBP1 gene encoding cellular retinaldehyde-binding protein in a form of retinitis punctata albescens. Invest Ophthalmol Vis Sci. 1999;40:1000–4.

    CAS  PubMed  Google Scholar 

  403. Littink KW, van Genderen MM, van Schooneveld MJ, Visser L, Riemslag FC, Keunen JE, et al. A homozygous frameshift mutation in LRAT causes retinitis punctata albescens. Ophthalmology. 2012;119(9):1899–906.

    Article  PubMed  Google Scholar 

  404. Lauber H. Die sogenannte Retinitis punctata albescens. Klin Monatsbl Augenheilkd. 1910;48:133–48.

    Google Scholar 

  405. Carr RE, Margolis S, Siegel IM. Fluorescein angiography and vitamin A and oxalate levels in fundus albipunctatus. Am J Ophthalmol. 1976;82(4):549–58.

    Article  CAS  PubMed  Google Scholar 

  406. Sergouniotis PI, Sohn EH, Li Z, McBain VA, Wright GA, Moore AT, et al. Phenotypic variability in RDH5 retinopathy (Fundus Albipunctatus). Ophthalmology. 2011;118(8):1661–70.

    Article  PubMed  Google Scholar 

  407. Franceschetti A, Chome-Bercioux N. Fundus albipunctatus with hemeralopia of 49 years’ duration. Ophthalmologica. 1951;121(4):185–93.

    Article  CAS  PubMed  Google Scholar 

  408. Huber O, Franceschetti A, Dieterle P. Differential diagnosis of fundus albipunctatus with congenital hemeralopia from Oguchi’s disease. Ophthalmologica. 1957;133(4–5):283–7.

    Article  CAS  PubMed  Google Scholar 

  409. Bonnet JL, Ravault MP. Stationary retinitis punctata albescens (fundus albipunctatus cum hemeralopia). Bull Soc Ophtalmol Fr. 1965;65(5):467–9.

    CAS  PubMed  Google Scholar 

  410. Cideciyan AV, Haeseleer F, Fariss RN, Aleman TS, Jang GF, Verlinde C, et al. Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man. Vis Neurosci. 2000;17(5):667–78.

    Article  PubMed  PubMed Central  Google Scholar 

  411. Marmor MF. Long-term follow-up of the physiologic abnormalities and fundus changes in fundus albipunctatus. Ophthalmology. 1990;97(3):380–4.

    Article  CAS  PubMed  Google Scholar 

  412. Niwa Y, Kondo M, Ueno S, Nakamura M, Terasaki H, Miyake Y. Cone and rod dysfunction in fundus albipunctatus with RDH5 mutation: an electrophysiological study. Invest Ophthalmol Vis Sci. 2005;46(4):1480–5.

    Article  PubMed  Google Scholar 

  413. Yamamoto H, Simon A, Eriksson U, Harris E, Berson E, Dryja T. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nat Genet. 1999;22:188–91.

    Article  CAS  PubMed  Google Scholar 

  414. Naz S, Ali S, Riazuddin SA, Farooq T, Butt NH, Zafar AU, et al. Mutations in RLBP1 associated with fundus albipunctatus in consanguineous Pakistani families. Br J Ophthalmol. 2011;95(7):1019–24.

    Article  PubMed  Google Scholar 

  415. Schatz P, Preising M, Lorenz B, Sander B, Larsen M, Rosenberg T. Fundus albipunctatus associated with compound heterozygous mutations in RPE65. Ophthalmology. 2011;118(5):888–94.

    Article  PubMed  Google Scholar 

  416. Khan KN, Mahroo OA, Khan RS, Mohamed MD, McKibbin M, Bird A, et al. Differentiating drusen: drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res. 2016;53:70–106.

    Article  CAS  PubMed  Google Scholar 

  417. Grant CA, Berson EL. Treatable forms of retinitis pigmentosa associated with systemic neurological disorders. Int Ophthalmol Clin. 2001;41(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  418. Kearns TP. External ophthalmoplegia, pigmentary degeneration of the retina, and cardiomyopathy: a newly recognized syndrome. Trans Am Ophthalmol Soc. 1965;63:559–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  419. Herzberg NH, van Schooneveld MJ, Bleeker-Wagemakers EM, Zwart R, Cremers FP, van der Knaap MS, et al. Kearns-Sayre syndrome with a phenocopy of choroideremia instead of pigmentary retinopathy. Neurology. 1993;43(1):218–21.

    Article  CAS  PubMed  Google Scholar 

  420. Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A. 1989;86(20):7952–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Daruich A, Matet A, Borruat FX. Macular dystrophy associated with the mitochondrial DNA A3243G mutation: pericentral pigment deposits or atrophy? Report of two cases and review of the literature. BMC Ophthalmol. 2014;14:77.

    Article  PubMed  PubMed Central  Google Scholar 

  422. Rummelt V, Folberg R, Ionasescu V, Yi H, Moore KC. Ocular pathology of MELAS syndrome with mitochondrial DNA nucleotide 3243 point mutation. Ophthalmology. 1993;100(12):1757–66.

    Article  CAS  PubMed  Google Scholar 

  423. Schulz A, Kohlschutter A, Mink J, Simonati A, Williams R. NCL diseases – clinical perspectives. Biochim Biophys Acta. 2013;1832(11):1801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol. 2019;15(3):161–78.

    Article  PubMed  PubMed Central  Google Scholar 

  425. Aleman TS, Cideciyan AV, Volpe NJ, Stevanin G, Brice A, Jacobson SG. Spinocerebellar ataxia type 7 (SCA7) shows a cone-rod dystrophy phenotype. Exp Eye Res. 2002;74(6):737–45.

    Article  CAS  PubMed  Google Scholar 

  426. Martin JJ. Spinocerebellar ataxia type 7. Handb Clin Neurol. 2012;103:475–91.

    Article  PubMed  Google Scholar 

  427. Traboulsi EI, Maumenee IH, Green WR, Freimer ML, Moser H. Olivopontocerebellar atrophy with retinal degeneration. A clinical and ocular histopathologic study. Arch Ophthalmol. 1988;106(6):801–6.

    Article  CAS  PubMed  Google Scholar 

  428. Pula JH, Gomez CM, Kattah JC. Ophthalmologic features of the common spinocerebellar ataxias. Curr Opin Ophthalmol. 2010;21(6):447–53.

    Article  PubMed  Google Scholar 

  429. To KW, Adamian M, Jakobiec FA, Berson EL. Olivopontocerebellar atrophy with retinal degeneration. An electroretinographic and histopathologic investigation. Ophthalmology. 1993;100(1):15–23.

    Article  PubMed  Google Scholar 

  430. Niu C, Prakash TP, Kim A, Quach JL, Huryn LA, Yang Y, et al. Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Sci Transl Med. 2018;10(465):eaap8677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  431. Azevedo PB, Rocha AG, Keim LMN, Lavinsky D, Furtado GV, de Mattos EP, et al. Ophthalmological and neurologic manifestations in pre-clinical and clinical phases of spinocerebellar Ataxia type 7. Cerebellum. 2019;18(3):388–96.

    Article  CAS  PubMed  Google Scholar 

  432. Ramachandran PS, Bhattarai S, Singh P, Boudreau RL, Thompson S, Laspada AR, et al. RNA interference-based therapy for spinocerebellar ataxia type 7 retinal degeneration. PLoS One. 2014;9(4):e95362.

    Article  PubMed  PubMed Central  Google Scholar 

  433. Collin GB, Marshall JD, Ikeda A, So WV, Russell-Eggitt I, Maffei P, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat Genet. 2002;31(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  434. Hearn T, Renforth GL, Spalluto C, Hanley NA, Piper K, Brickwood S, et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome. Nat Genet. 2002;31(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  435. Alstrom CH, Hallgren B, Nilsson LB, Asander H. Retinal degeneration combined with obesity, diabetes mellitus and neurogenous deafness: a specific syndrome (not hitherto described) distinct from the Laurence-Moon-Bardet-Biedl syndrome: a clinical, endocrinological and genetic examination based on a large pedigree. Acta Psychiatr Neurol Scand Suppl. 1959;129:1–35.

    CAS  PubMed  Google Scholar 

  436. Millay RH, Weleber RG, Heckenlively JR. Ophthalmologic and systemic manifestations of Alstrom’s disease. Am J Ophthalmol. 1986;102(4):482–90.

    Article  CAS  PubMed  Google Scholar 

  437. Aldrees A, Abdelkader E, Al-Habboubi H, Alrwebah H, Rahbeeni Z, Schatz P. Non-syndromic retinal dystrophy associated with homozygous mutations in the ALMS1 gene. Ophthalmic Genet. 2019;40(1):77–9.

    Article  PubMed  Google Scholar 

  438. Cockayne EA. Dwarfism with retinal atrophy and deafness. Arch Dis Child. 1936;11(61):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Pearce WG. Ocular and genetic features of Cockayne’s syndrome. Can J Ophthalmol. 1972;7(4):435–44.

    CAS  PubMed  Google Scholar 

  440. Calmels N, Botta E, Jia N, Fawcett H, Nardo T, Nakazawa Y, et al. Functional and clinical relevance of novel mutations in a large cohort of patients with Cockayne syndrome. J Med Genet. 2018;55(5):329–43.

    Article  CAS  PubMed  Google Scholar 

  441. Weleber RG, Tongue AC, Kennaway NG, Budden SS, Buist NR. Ophthalmic manifestations of infantile phytanic acid storage disease. Arch Ophthalmol. 1984;102(9):1317–21.

    Article  CAS  PubMed  Google Scholar 

  442. Berson EL. Nutrition and retinal degenerations. Int Ophthalmol Clin. 2000;40(4):93–111.

    Article  CAS  PubMed  Google Scholar 

  443. Refsum S. Heredopathia atactica polyneuritiformis phytanic-acid storage disease, Refsum’s disease: a biochemically well-defined disease with a specific dietary treatment. Arch Neurol. 1981;38(10):605–6.

    Article  CAS  PubMed  Google Scholar 

  444. Klenk E, Kahlke W. Über das Vorkommen der 3,7,11,15-tetramethylhexadecansäure (Phytansäure) in den Cholesterinestern und anderen Lipoidfraktionen der Organe bei einem Krankheitsfall unbekannter Genese: Verdacht auf Heredopathia atactica polyneuritiformis (Refsum syndrome). Hoppe Seylers Z Physiol Chem. 1963;333:133–9.

    Article  CAS  PubMed  Google Scholar 

  445. Eldjarn L, Stokke O, Try K. Alpha-oxidation of branched chain fatty acids in man and its failure in patients with Refsum’s disease showing phytanic acid accumulation. Scand J Clin Lab Invest. 1966;18(6):694–5.

    Article  CAS  PubMed  Google Scholar 

  446. Ruether K, Baldwin E, Casteels M, Feher MD, Horn M, Kuranoff S, et al. Adult Refsum disease: a form of tapetoretinal dystrophy accessible to therapy. Surv Ophthalmol. 2010;55(6):531–8.

    Article  PubMed  Google Scholar 

  447. Bassen FA, Kornzweig AL. Malformation of the erythrocytes in a case of atypical retinitis pigmentosa. Blood. 1950;5(4):381–7.

    Article  CAS  PubMed  Google Scholar 

  448. Singer K, Fisher B, Perlstein MA. Acanthrocytosis; a genetic erythrocytic malformation. Blood. 1952;7(6):577–91.

    Article  CAS  PubMed  Google Scholar 

  449. Jampel RS, Falls HF. Atypical retinitis pigmentosa, acanthrocytosis, and heredodegenerative neuromuscular disease. AMA Arch Ophthalmol. 1958;59(6):818–20.

    Article  CAS  PubMed  Google Scholar 

  450. Gouras P, Carr RE, Gunkel RD. Retinitis pigmentosa in abetalipoproteinemia: effects of vitamin A. Investig Ophthalmol. 1971;10(10):784–93.

    CAS  Google Scholar 

  451. Carr RE. Abetalipoproteinemia and the eye. Birth Defects Orig Artic Ser. 1976;12(3):385–408.

    CAS  PubMed  Google Scholar 

  452. Cogan DG, Rodrigues M, Chu FC, Schaefer EJ. Ocular abnormalities in abetalipoproteinemia. A clinicopathologic correlation. Ophthalmology. 1984;91(8):991–8.

    Article  CAS  PubMed  Google Scholar 

  453. Lee J, Hegele RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis. 2014;37(3):333–9.

    Article  CAS  PubMed  Google Scholar 

  454. Narcisi TM, Shoulders CC, Chester SA, Read J, Brett DJ, Harrison GB, et al. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia. Am J Hum Genet. 1995;57(6):1298–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  455. Aers XP, Leroy BP, Defesche JC, Shadid S. Abetalipoproteinemia from previously unreported gene mutations. Ann Intern Med. 2019;170(3):211–3.

    Article  PubMed  Google Scholar 

  456. Aleman TS, Garrity ST, Brucker AJ. Retinal structure in vitamin A deficiency as explored with multimodal imaging. Doc Ophthalmol. 2013;127(3):239–43.

    Article  PubMed  Google Scholar 

  457. Wong AM, Heon E. Helicoid peripapillary chorioretinal degeneration in abetalipoproteinemia. Arch Ophthalmol. 1998;116(2):250–1.

    CAS  PubMed  Google Scholar 

  458. Alshareef RA, Bansal AS, Chiang A, Kaiser RS. Macular atrophy in a case of abetalipoproteinemia as only ocular clinical feature. Can J Ophthalmol. 2015;50(3):e43–6.

    Article  PubMed  Google Scholar 

  459. Fossdal R, Jonasson F, Kristjansdottir GT, Kong A, Stefansson H, Gosh S, et al. A novel TEAD1 mutation is the causative allele in Sveinsson’s chorioretinal atrophy (helicoid peripapillary chorioretinal degeneration). Hum Mol Genet. 2004;13(9):975–81.

    Article  CAS  PubMed  Google Scholar 

  460. Bishara S, Merin S, Cooper M, Azizi E, Delpre G, Deckelbaum RJ. Combined vitamin A and E therapy prevents retinal electrophysiological deterioration in abetalipoproteinaemia. Br J Ophthalmol. 1982;66(12):767–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Cavalier L, Ouahchi K, Kayden HJ, Di Donato S, Reutenauer L, Mandel JL, et al. Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet. 1998;62(2):301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  462. Aparicio JM, Belanger-Quintana A, Suarez L, Mayo D, Benitez J, Diaz M, et al. Ataxia with isolated vitamin E deficiency: case report and review of the literature. J Pediatr Gastroenterol Nutr. 2001;33(2):206–10.

    Article  CAS  PubMed  Google Scholar 

  463. Iwasa K, Shima K, Komai K, Nishida Y, Yokota T, Yamada M. Retinitis pigmentosa and macular degeneration in a patient with ataxia with isolated vitamin E deficiency with a novel c.717 del C mutation in the TTPA gene. J Neurol Sci. 2014;345(1–2):228–30.

    Article  CAS  PubMed  Google Scholar 

  464. Pang J, Kiyosawa M, Seko Y, Yokota T, Harino S, Suzuki J. Clinicopathological report of retinitis pigmentosa with vitamin E deficiency caused by mutation of the alpha-tocopherol transfer protein gene. Jpn J Ophthalmol. 2001;45(6):672–6.

    Article  CAS  PubMed  Google Scholar 

  465. Yokota T, Uchihara T, Kumagai J, Shiojiri T, Pang JJ, Arita M, et al. Postmortem study of ataxia with retinitis pigmentosa by mutation of the alpha-tocopherol transfer protein gene. J Neurol Neurosurg Psychiatry. 2000;68(4):521–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  466. Thirkill CE, FitzGerald P, Sergott RC, Roth AM, Tyler NK, Keltner JL. Cancer-associated retinopathy (CAR syndrome) with antibodies reacting with retinal, optic-nerve, and cancer cells. N Engl J Med. 1989;321(23):1589–94.

    Article  CAS  PubMed  Google Scholar 

  467. Thirkill CE. Cancer-induced retinal hypersensitivity. Br J Biomed Sci. 1996;53(3):227–34.

    CAS  PubMed  Google Scholar 

  468. Mizener JB, Kimura AE, Adamus G, Thirkill CE, Goeken JA, Kardon RH. Autoimmune retinopathy in the absence of cancer. Am J Ophthalmol. 1997;123(5):607–18.

    Article  CAS  PubMed  Google Scholar 

  469. Heckenlively JR, Ferreyra HA. Autoimmune retinopathy: a review and summary. Semin Immunopathol. 2008;30(2):127–34.

    Article  PubMed  Google Scholar 

  470. Adamus G. Autoantibody targets and their cancer relationship in the pathogenicity of paraneoplastic retinopathy. Autoimmun Rev. 2009;8(5):410–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  471. Grewal DS, Fishman GA, Jampol LM. Autoimmune retinopathy and antiretinal antibodies: a review. Retina. 2014;34(5):827–45.

    Article  CAS  PubMed  Google Scholar 

  472. Heckenlively JR, Lundy SK. Autoimmune retinopathy: an immunologic cellular-driven disorder. In: Ash JD, Anderson RE, LaVail MM, Bowes Rickman C, Hollyfield JG, Grimm C, editors. Retinal degenerative diseases, vol. 1074. Cham: Springer International Publishing; 2018. p. 193–201.

    Chapter  Google Scholar 

  473. Aleman TS, Sandhu HS, Serrano LW, Traband A, Lau MK, Adamus G, et al. Acute zonal cone photoreceptor outer segment loss. JAMA Ophthalmol. 2017;135(5):487–90.

    Article  PubMed  PubMed Central  Google Scholar 

  474. Michaelides M, Stover NB, Francis PJ, Weleber RG. Retinal toxicity associated with hydroxychloroquine and chloroquine: risk factors, screening, and progression despite cessation of therapy. Arch Ophthalmol. 2011;129(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  475. Marmor MF, Kellner U, Lai TYY, Melles RB, Mieler WF. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology. 2016;123(6):1386–94.

    Article  PubMed  Google Scholar 

  476. Nair AA, Marmor MF. ERG and other discriminators between advanced hydroxychloroquine retinopathy and retinitis pigmentosa. Doc Ophthalmol. 2017;134(3):175–83.

    Article  PubMed  Google Scholar 

  477. Roman AJ, Cideciyan AV, Schwartz SB, Olivares MB, Heon E, Jacobson SG. Intervisit variability of visual parameters in Leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci. 2013;54(2):1378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  478. Yagasaki K, Jacobson SG, Apáthy PP, Knighton RW. Rod and cone psychophysics and electroretinography: methods for comparison in retinal degenerations. Doc Ophthalmol. 1988;69(2):119–30.

    Article  CAS  PubMed  Google Scholar 

  479. McGuigan DB 3rd, Roman AJ, Cideciyan AV, Matsui R, Gruzensky ML, Sheplock R, et al. Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa: filling a need to accommodate multicenter clinical trials. Invest Ophthalmol Vis Sci. 2016;57(7):3118–28.

    Article  PubMed  CAS  Google Scholar 

  480. Alexander KR, Fishman GA. Prolonged rod dark adaptation in retinitis pigmentosa. Br J Ophthalmol. 1984;68(8):561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Bennett LD, Metz G, Klein M, Locke KG, Khwaja A, Birch DG. Regional variations and intra-/intersession repeatability for scotopic sensitivity in normal controls and patients with inherited retinal degenerations. Invest Ophthalmol Vis Sci. 2019;60(4):1122–31.

    Article  PubMed  PubMed Central  Google Scholar 

  482. Peters AY, Locke KG, Birch DG. Comparison of the Goldmann-Weekers dark adaptometer and LKC technologies scotopic sensitivity tester-1. Doc Ophthalmol. 2000;101(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  483. Cideciyan AV, Jacobson SG, Aleman TS, Gu D, Pearce-Kelling SE, Sumaroka A, et al. In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa. Proc Natl Acad Sci U S A. 2005;102(14):5233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  484. Tomasso L, Benatti L, Carnevali A, Mazzaferro A, Baldin G, Querques L, et al. Photobleaching by Spectralis fixation target. JAMA Ophthalmol. 2016;134(9):1060–2.

    Article  PubMed  Google Scholar 

  485. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130(1):1–12.

    Article  PubMed  Google Scholar 

  486. Jacobson SG, Cideciyan AV, Kemp CM, Sheffield VC, Stone EM. Photoreceptor function in heterozygotes with insertion or deletion mutations in the RDS gene. Invest Ophthalmol Vis Sci. 1996;37(8):1662–74.

    CAS  PubMed  Google Scholar 

  487. Birch DG, Fish GE. Rod ERGs in retinitis pigmentosa and cone-rod degeneration. Invest Ophthalmol Vis Sci. 1987;28(1):140–50.

    CAS  PubMed  Google Scholar 

  488. Bonafede L, Ficicioglu CH, Serrano L, Han G, Morgan JI, Mills MD, et al. Cobalamin C deficiency shows a rapidly progressing maculopathy with severe photoreceptor and ganglion cell loss. Invest Ophthalmol Vis Sci. 2015;56(13):7875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Wang S-j, C-z Y, Y-m L, Zhao Y-Y. Late-onset cobalamin C deficiency Chinese sibling patients with neuropsychiatric presentations: Metabolic Brain Disease; 2018.

    Book  Google Scholar 

  490. Cox SN, Hay E, Bird AC. Treatment of chronic macular edema with acetazolamide. Arch Ophthalmol. 1988;106(9):1190–5.

    Article  CAS  PubMed  Google Scholar 

  491. Fishman GA, Gilbert LD, Anderson RJ, Marmor MF, Weleber RG, Viana MA. Effect of methazolamide on chronic macular edema in patients with retinitis pigmentosa. Ophthalmology. 1994;101(4):687–93.

    Article  CAS  PubMed  Google Scholar 

  492. Grover S, Apushkin MA, Fishman GA. Topical dorzolamide for the treatment of cystoid macular edema in patients with retinitis pigmentosa. Am J Ophthalmol. 2006;141(5):850–8.

    Article  CAS  PubMed  Google Scholar 

  493. Park S, Lim LT, Gavin MP. Topical steroidal and nonsteroidal antiinflammatory drugs for the treatment of cystoid macular edema in retinitis pigmentosa. Retin Cases Brief Rep. 2013;7(2):134–6.

    Article  PubMed  Google Scholar 

  494. Strong SA, Peto T, Bunce C, Xing W, Georgiou M, Esposti SD, et al. Prospective exploratory study to assess the safety and efficacy of aflibercept in cystoid macular oedema associated with retinitis pigmentosa. Br J Ophthalmol. 2020;104(9):1203.

    PubMed  Google Scholar 

  495. Naash ML, Peachey NS, Li ZY, Gryczan CC, Goto Y, Blanks J, et al. Light-induced acceleration of photoreceptor degeneration in transgenic mice expressing mutant rhodopsin. Invest Ophthalmol Vis Sci. 1996;37(5):775–82.

    CAS  PubMed  Google Scholar 

  496. Paskowitz DM, LaVail MM, Duncan JL. Light and inherited retinal degeneration. Br J Ophthalmol. 2006;90(8):1060–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  497. Ueda K, Kim HJ, Zhao J, Sparrow JR. Bisretinoid photodegradation is likely not a good thing. Adv Exp Med Biol. 2018;1074:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  498. Grimm C, Reme CE. Light damage models of retinal degeneration. Methods Mol Biol. 2019;1834:167–78.

    Article  CAS  PubMed  Google Scholar 

  499. Berson EL. Light deprivation and retinitis pigmentosa. Vis Res. 1980;20(12):1179–84.

    Article  CAS  PubMed  Google Scholar 

  500. Cideciyan AV, Swider M, Aleman TS, Sumaroka A, Schwartz SB, Roman MI, et al. ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. Invest Ophthalmol Vis Sci. 2005;46(12):4739–46.

    Article  PubMed  Google Scholar 

  501. Duncker T, Tabacaru MR, Lee W, Tsang SH, Sparrow JR, Greenstein VC. Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2013;54(1):585–91.

    Article  PubMed  PubMed Central  Google Scholar 

  502. Clark AJ, Yang P, Khaderi KR, Moshfeghi AA. Ocular tolerance of contemporary electronic display devices. Ophthalmic Surg Lasers Imaging Retina. 2018;49(5):346–54.

    Article  PubMed  Google Scholar 

  503. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFrano C, et al. Vitamin A supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111(11):1456–9.

    Article  CAS  PubMed  Google Scholar 

  504. Hathcock JN, Hattan DG, Jenkins MY, McDonald JT, Sundaresan PR, Wilkening VL. Evaluation of vitamin A toxicity. Am J Clin Nutr. 1990;52(2):183–202.

    Article  CAS  PubMed  Google Scholar 

  505. Geubel AP, De Galocsy C, Alves N, Rahier J, Dive C. Liver damage caused by therapeutic vitamin A administration: estimate of dose-related toxicity in 41 cases. Gastroenterology. 1991;100(6):1701–9.

    Article  CAS  PubMed  Google Scholar 

  506. Berson EL, Weigel-DiFranco C, Rosner B, Gaudio AR, Sandberg MA. Association of vitamin A supplementation with disease course in children with retinitis pigmentosa. JAMA Ophthalmol. 2018;136(5):490–5.

    Article  PubMed  PubMed Central  Google Scholar 

  507. Massof RW, Finkelstein D. Supplemental vitamin A retards loss of ERG amplitude in retinitis pigmentosa. Arch Ophthalmol. 1993;111(6):751–4.

    Article  CAS  PubMed  Google Scholar 

  508. Sibulesky L, Hayes KC, Pronczuk A, Weigel-DiFranco C, Rosner B, Berson EL. Safety of <7500 RE (<25000 IU) vitamin A daily in adults with retinitis pigmentosa. Am J Clin Nutr. 1999;69(4):656–63.

    Article  CAS  PubMed  Google Scholar 

  509. Michaelsson K, Lithell H, Vessby B, Melhus H. Serum retinol levels and the risk of fracture. N Engl J Med. 2003;348(4):287–94.

    Article  CAS  PubMed  Google Scholar 

  510. Hoffman DR, Hughbanks-Wheaton DK, Spencer R, Fish GE, Pearson NS, Wang YZ, et al. Docosahexaenoic acid slows visual field progression in X-linked retinitis pigmentosa: ancillary outcomes of the DHAX trial. Invest Ophthalmol Vis Sci. 2015;56(11):6646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  511. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Willett WC. Omega-3 intake and visual acuity in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol. 2012;130(6):707–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  512. Hughbanks-Wheaton DK, Birch DG, Fish GE, Spencer R, Pearson NS, Takacs A, et al. Safety assessment of docosahexaenoic acid in X-linked retinitis pigmentosa: the 4-year DHAX trial. Invest Ophthalmol Vis Sci. 2014;55(8):4958–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  513. Berson EL, Rosner B, Sandberg MA, Weigel-Difranco C, Willett WC. Omega-3 intake in patients with retinitis pigmentosa receiving vitamin A-reply. JAMA Ophthalmol. 2013;131(2):267–8.

    Article  PubMed  Google Scholar 

  514. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Brockhurst RJ, Hayes KC, et al. Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol. 2010;128(4):403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  515. Aleman TS, Duncan JL, Bieber ML, de Castro E, Marks DA, Gardner LM, et al. Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome. Invest Ophthalmol Vis Sci. 2001;42(8):1873–81.

    CAS  PubMed  Google Scholar 

  516. Sandberg MA, Johnson EJ, Berson EL. The relationship of macular pigment optical density to serum lutein in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2010;51(2):1086–91.

    Article  PubMed  PubMed Central  Google Scholar 

  517. Aleman TS, Cideciyan AV, Windsor EA, Schwartz SB, Swider M, Chico JD, et al. Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations. Invest Ophthalmol Vis Sci. 2007;48(3):1319–29.

    Article  PubMed  Google Scholar 

  518. Lee SY, Usui S, Zafar AB, Oveson BC, Jo YJ, Lu L, et al. N-acetylcysteine promotes long term survival of cones in a model of retinitis pigmentosa. J Cell Physiol. 2010;226:1843.

    Article  CAS  Google Scholar 

  519. Schimel AM, Abraham L, Cox D, Sene A, Kraus C, Dace DS, et al. N-acetylcysteine amide (NACA) prevents retinal degeneration by up-regulating reduced glutathione production and reversing lipid peroxidation. Am J Pathol. 2011;178(5):2032–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  520. Campochiaro PA, Iftikhar M, Hafiz G, Akhlaq A, Tsai G, Wehling D, et al. Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase 1 trial. J Clin Invest. 2019;130:1527.

    Article  Google Scholar 

  521. Coughlan J, Manduchi R. A mobile phone wayfinding system for visually impaired users. Assist Technol Res Ser. 2009;25:849.

    CAS  PubMed  PubMed Central  Google Scholar 

  522. Hartong DT, Jorritsma FF, Neve JJ, Melis-Dankers BJ, Kooijman AC. Improved mobility and independence of night-blind people using night-vision goggles. Invest Ophthalmol Vis Sci. 2004;45(6):1725–31.

    Article  PubMed  Google Scholar 

  523. Hicks SL, Wilson I, Muhammed L, Worsfold J, Downes SM, Kennard C. A depth-based head-mounted visual display to aid navigation in partially sighted individuals. PLoS One. 2013;8(7):e67695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  524. Kinateder M, Gualtieri J, Dunn MJ, Jarosz W, Yang XD, Cooper EA. Using an augmented reality device as a distance-based vision aid-promise and limitations. Optom Vis Sci. 2018;95(9):727–37.

    Article  PubMed  PubMed Central  Google Scholar 

  525. Angelopoulos AN, Ameri H, Mitra D, Humayun M. Enhanced depth navigation through augmented reality depth mapping in patients with low vision. Sci Rep. 2019;9(1):11230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  526. Birch DG, Locke KG, Wen Y, Locke KI, Hoffman DR, Hood DC. Spectral-domain optical coherence tomography measures of outer segment layer progression in patients with X-linked retinitis pigmentosa. JAMA Ophthalmol. 2013;131(9):1143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  527. Cai CX, Locke KG, Ramachandran R, Birch DG, Hood DC. A comparison of progressive loss of the ellipsoid zone (EZ) band in autosomal dominant and x-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2014;55(11):7417–22.

    Article  PubMed  PubMed Central  Google Scholar 

  528. Hariri AH, Zhang HY, Ho A, Francis P, Weleber RG, Birch DG, et al. Quantification of ellipsoid zone changes in retinitis pigmentosa using en face spectral domain-optical coherence tomography. JAMA Ophthalmol. 2016;134(6):628–35.

    Article  PubMed  PubMed Central  Google Scholar 

  529. Jauregui R, Park KS, Duong JK, Mahajan VB, Tsang SH. Quantitative progression of retinitis pigmentosa by optical coherence tomography angiography. Sci Rep. 2018;8(1):13130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  530. Chiba A, Miura G, Baba T, Yamamoto S. Determination of length of Interdigitation zone by optical coherence tomography and retinal sensitivity by Microperimetry and their relationship to progression of retinitis pigmentosa. Biomed Res Int. 2019;2019:1217270.

    Article  PubMed  PubMed Central  Google Scholar 

  531. Iftikhar M, Usmani B, Sanyal A, Kherani S, Sodhi S, Bagheri S, et al. Progression of retinitis pigmentosa on multimodal imaging: the PREP-1 study. Clin Exp Ophthalmol. 2019;47(5):605–13.

    PubMed  Google Scholar 

  532. Thompson DA, Ali RR, Banin E, Branham KE, Flannery JG, Gamm DM, et al. Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano symposium. Invest Ophthalmol Vis Sci. 2015;56(2):918–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  533. Vazquez-Dominguez I, Garanto A, Collin RWJ. Molecular therapies for inherited retinal diseases-current standing, opportunities and challenges. Genes (Basel). 2019;10(9):654.

    Article  CAS  Google Scholar 

  534. Sacchetti M, Mantelli F, Merlo D, Lambiase A. Systematic review of randomized clinical trials on safety and efficacy of pharmacological and nonpharmacological treatments for retinitis pigmentosa. J Ophthalmol. 2015;2015:737053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  535. Aleman T, Cideciyan A, Bennett J, Cheung A, Glover E, Furushima M, et al., editors. Natural history of retinal function and structure in the Rpe65−/− murine model of Leber Congenital Amaurosis: ARVO; 2003.

    Google Scholar 

  536. Aleman TS, Jacobson SG, Chico JD, Scott ML, Cheung AY, Windsor EA, et al. Impairment of the transient pupillary light reflex in Rpe65(−/−) mice and humans with Leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2004;45(4):1259–71.

    Article  PubMed  Google Scholar 

  537. Kumaran N, Michaelides M, Smith AJ, Ali RR, Bainbridge JWB. Retinal gene therapy. Br Med Bull. 2018;126:13.

    Article  CAS  PubMed  Google Scholar 

  538. Cideciyan AV, Jacobson SG. Leber congenital amaurosis (LCA): potential for improvement of vision. Invest Ophthalmol Vis Sci. 2019;60(5):1680–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  539. Hauswirth WW, LaVail MM, Flannery JG, Lewin AS. Ribozyme gene therapy for autosomal dominant retinal disease. Clin Chem Lab Med. 2000;38(2):147–53.

    Article  CAS  PubMed  Google Scholar 

  540. O’Reilly M, Palfi A, Chadderton N, Millington-Ward S, Ader M, Cronin T, et al. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet. 2007;81(1):127–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  541. Sanjurjo-Soriano C, Kalatzis V. Guiding lights in genome editing for inherited retinal disorders: implications for gene and cell therapy. Neural Plast. 2018;2018:5056279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  542. Chalmel F, Leveillard T, Jaillard C, Lardenois A, Berdugo N, Morel E, et al. Rod-derived cone viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential. BMC Mol Biol. 2007;8:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  543. Dalkara D, Duebel J, Sahel JA. Gene therapy for the eye focus on mutation-independent approaches. Curr Opin Neurol. 2015;28(1):51–60.

    Article  CAS  PubMed  Google Scholar 

  544. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A. 2006;103(10):3896–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  545. Duebel J, Marazova K, Sahel JA. Optogenetics. Curr Opin Ophthalmol. 2015;26(3):226–32.

    Article  PubMed  PubMed Central  Google Scholar 

  546. de Juan E, Del Cerro M, Dagnelie G, Humayun M, del Cerro C, DiLoreto D, et al. Neural retinal transplantation: a phase I clinical trial. Invest Ophthalmol Vis Sci. 1997;38(4):S261.

    Google Scholar 

  547. Humayun M, de Juan EJ, del Cerro M, Dagnelie G, Radner W, Sadda S, et al. Human neural retinal transplantation. Invest Ophthalmol Vis Sci. 2000;41:3100–6.

    CAS  PubMed  Google Scholar 

  548. Ho AC, Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Handa J, et al. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology. 2015;122(8):1547–54.

    Article  PubMed  Google Scholar 

  549. Geruschat DR, Richards TP, Arditi A, da Cruz L, Dagnelie G, Dorn JD, et al. An analysis of observer-rated functional vision in patients implanted with the Argus II retinal prosthesis system at three years. Clin Exp Optom. 2016;99(3):227–32.

    Article  PubMed  PubMed Central  Google Scholar 

  550. Haq W, Dietter J, Bolz S, Zrenner E. Feasibility study for a glutamate driven subretinal prosthesis: local subretinal application of glutamate on blind retina evoke network-mediated responses in different types of ganglion cells. J Neural Eng. 2018;15(4):045004.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas S. Aleman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aleman, T.S. (2021). Retinitis Pigmentosa and Allied Diseases. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Retinitis Pigmentosa and Allied Diseases
    Published:
    25 September 2021

    DOI: https://doi.org/10.1007/978-3-319-90495-5_1-2

  2. Original

    Retinitis Pigmentosa and Allied Diseases
    Published:
    04 August 2021

    DOI: https://doi.org/10.1007/978-3-319-90495-5_1-1