Skip to main content

Laser Surface Structuring of Polymers and Functionalization

  • Living reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

In this chapter, a comprehensive review of femtosecond laser surface structuring of polymers and their subsequent functionalization is presented. First, the current state of knowledge concerning femtosecond laser-polymer interaction is presented. The relevant nonlinear optical phenomena and photochemical interactions that occur during processing are thus introduced. The discussion follows with an in-depth look at the novel laser-inscribed and laser-induced structures that this technique can currently impart on polymer surfaces. Several textures with hierarchical roughness such as trench arrays and porous networks are highlighted. Finally, the various ways in which these structures can be functionalized in order to target certain applications are described. This discussion includes wettability modification, microfluidic applications, optical applications, as well as biocompatibility enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Afanasiev YV, Chichkov BN, Demchenko NN, Isakov VA, Zavestovskaya IN (2000) Extended two-temperature model of laser ablation of metals. In: High-power laser ablation III, 24–28 April 2000, USA. Proc. SPIE – Int. Soc. Opt. Eng. (USA). SPIE-Int. Soc. Opt. Eng., pp 349–354

    Google Scholar 

  • Ahmmed K, Grambow C, Kietzig A-M (2014) Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines 5(4):1219

    Article  Google Scholar 

  • Ahmmed KMT, Patience C, Kietzig A-M (2016) Internal and external flow over laser-textured superhydrophobic polytetrafluoroethylene (PTFE). ACS Appl Mater Interfaces 8(40):27411–27419

    Article  Google Scholar 

  • Alubaidy M, Venkatakrishnan K, Tan B (2010) Fabrication of a reinforced polymer microstructure using femtosecond laser material processing. J Micromech Microeng 20(5):055012

    Article  Google Scholar 

  • Anisimov SI, Inogamov NA, Oparin AM, Rethfeld B, Yabe T, Ogawa M, Fortov VE (1999) Pulsed laser evaporation: equation-of-state effects. Appl Phys A 69(6):617–620

    Article  ADS  Google Scholar 

  • Ashitkov SI, Agranat MB, Kondratenko PS, Anisimov SI, Fortov VE, Temnov VV, Sokolowski-Tinten K, Rethfeld B, Zhou P, von der Linde D (2002) Ultrafast laser-induced phase transitions in tellurium. J Exp Theor Phys Lett 76(7):461–464

    Article  Google Scholar 

  • Assaf Y, Kietzig A-M (2017) Formation of porous networks on polymeric surfaces by femtosecond laser micromachining. In: Proc. SPIE 10092, San Fracisco, California, USA, p 100920

    Google Scholar 

  • Assaf Y, Kietzig A-M (2018) Optical and chemical effects governing femtosecond laser-induced structure formation on polymer surfaces. Mater Today Commun 14:169–179

    Article  Google Scholar 

  • Baset F, Villafranca A, Guay JM, Bhardwaj R (2013) Femtosecond laser induced porosity in poly-methyl methacrylate. Appl Surf Sci 282:729–734

    Article  ADS  Google Scholar 

  • Baudach S, Bonse J, Kautek W (1999) Ablation experiments on polyimide with femtosecond laser pulses. Appl Phys A 69(1):S395–S398

    Article  ADS  Google Scholar 

  • Baudach S, Bonse J, Krüger J, Kautek W (2000) Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Appl Surf Sci 154–155:555–560

    Article  ADS  Google Scholar 

  • Baudach S, Kruger J, Kautek W (2001) Femtosecond laser processing of soft materials. Rev Laser Eng 29(11):705–709

    Article  Google Scholar 

  • Baum A, Scully PJ, Basanta M, Paul Thomas CL, Fielden PR, Goddard NJ, Perrie W, Chalker PR (2007) Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation. Opt Lett 32(2):190–192

    Article  ADS  Google Scholar 

  • Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed 48(30):5406–5415

    Article  Google Scholar 

  • Bille JF, Engelhardt J, Volpp H-R, Laghouissa A, Motzkus M, Jiang Z, Sahler R (2017) Chemical basis for alteration of an intraocular lens using a femtosecond laser. Biomed Opt Express 8(3):1390–1404

    Article  Google Scholar 

  • Bloembergen N (1974) Laser-induced electric breakdown in solids. IEEE J Quantum Electron 10(3):375–386

    Article  ADS  Google Scholar 

  • Byskov-Nielsen J, Savolainen J-M, Christensen MS, Balling P (2010) Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates. Appl Phys A 101(1):97–101

    Article  ADS  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40(0):546–551

    Article  Google Scholar 

  • Chang HI, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. In: Regenerative medicine and tissue engineering – cells and biomaterials. https://doi.org/10.5772/21983

  • Cheng C, Xu X (2005) Mechanisms of decomposition of metal during femtosecond laser ablation. Phys Rev B 72(16):165415

    Article  ADS  Google Scholar 

  • Cheng J, Liu CS, Shang S, Liu D, Perrie W, Dearden G, Watkins K (2013) A review of ultrafast laser materials micromachining. Opt Laser Technol 46(1):88–102

    Article  ADS  Google Scholar 

  • Day D, Gu M (2005) Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses. Opt Express 13(16):5939–5946

    Article  ADS  Google Scholar 

  • De Marco C, Eaton SM, Suriano R, Turri S, Levi M, Ramponi R, Cerullo G, Osellame R (2010) Surface properties of femtosecond laser ablated PMMA. ACS Appl Mater Interfaces 2(8):2377–2384

    Article  Google Scholar 

  • De Marco C, Eaton SM, Levi M, Cerullo G, Turri S, Osellame R (2011) High-fidelity solvent-resistant replica molding of hydrophobic polymer surfaces produced by femtosecond laser nanofabrication. Langmuir 27(13):8391–8395

    Article  Google Scholar 

  • De Marco C, Suriano R, Levi M, Turri S, Eaton S, Cerullo G, Osellame R (2012) Femtosecond laser fabrication and characterization of microchannels and waveguides in methacrylate-based polymers. Microsyst Technol 18(2):183–190

    Article  Google Scholar 

  • DeShazer LG, Newnam BE, Leung KM (1973) Role of coating defects in laser-induced damage to dielectric thin films. Appl Phys Lett 23(11):607–609

    Article  ADS  Google Scholar 

  • Dyer PE, Oldershaw GA, Sidhu J (1989) CO2 laser ablative etching of polyethylene terephthalate. Appl Phys B 48(6):489–493

    Article  ADS  Google Scholar 

  • Eaton S, Marco CD, Martinez-Vazquez R, Ramponi R, Turri S, Cerullo G, Osellame R (2012) Femtosecond laser microstructuring for polymeric lab-on-chips. J Biophotonics 5(8–9):687–702

    Article  Google Scholar 

  • Fabricius N, Hermes P, von der Linde D, Pospieszczyk A, Stritzker B (1986) Observation of superheating during picosecond laser melting. Solid State Commun 58(4):239–242

    Article  ADS  Google Scholar 

  • Forster M, Kautek W, Faure N, Audouard E, Stoian R (2011) Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses. Phys Chem Chem Phys 13(9):4155–4158

    Article  Google Scholar 

  • Génin FY, Salleo A, Pistor TV, Chase LL (2001) Role of light intensification by cracks in optical breakdown on surfaces. J Opt Soc Am A 18(10):2607–2616

    Article  ADS  Google Scholar 

  • Grehn M, Seuthe T, Höfner M, Griga N, Theiss C, Mermillod-Blondin A, Eberstein M, Eichler H, Bonse J (2014) Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy. Opt Mater Express 4(4):689–700

    Article  ADS  Google Scholar 

  • Guay JM, Villafranca A, Baset F, Popov K, Ramunno L, Bhardwaj VR (2012) Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate. New J Phys 14(8):085010

    Article  Google Scholar 

  • Guo J, Liu L, Liu H, Gan K, Liu X, Song X, Niu D, Chen T (2017) Influence of femtosecond laser on the osteogenetic efficiency of polyetheretherketone and its composite. High Perform Polym 29(9):997–1005

    Article  Google Scholar 

  • Guosheng Z, Fauchet PM, Siegman AE (1982) Growth of spontaneous periodic surface structures on solids during laser illumination. Phys Rev B 26(10):5366–5381

    Article  ADS  Google Scholar 

  • Heitz J, Arenholz E, Bäuerle D, Sauerbrey R, Phillips HM (1994) Femtosecond excimer-laser-induced structure formation on polymers. Appl Phys A 59(3):289–293

    Article  ADS  Google Scholar 

  • Hernandez-Rueda J, Clarijs J, van Oosten D, Krol DM (2017) The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica. Appl Phys Lett 110(16):161109

    Article  ADS  Google Scholar 

  • Hong T-F, Ju W-J, Wu M-C, Tai C-H, Tsai C-H, Fu L-M (2010) Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid Nanofluid 9(6):1125–1133

    Article  Google Scholar 

  • Jee Y, Becker MF, Walser RM (1988) Laser-induced damage on single-crystal metal surfaces. J Opt Soc Am B 5(3):648–659

    Article  ADS  Google Scholar 

  • Jia W, Luo Y, Yu J, Liu B, Hu M, Chai L, Wang C (2015) Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA). Opt Express 23(21):26932–26939

    Article  ADS  Google Scholar 

  • Kim B-M, Feit MD, Rubenchik AM, Joslin EJ, Eichler J, Stoller PC, Silva LBD (2000) Effects of high repetition rate and beam size on hard tissue damage due to subpicosecond laser pulses. Appl Phys Lett 76(26):4001–4003

    Article  ADS  Google Scholar 

  • Koch K, Bhushan B, Jung YC, Barthlott W (2009) Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5(7):1386–1393

    Article  ADS  Google Scholar 

  • Kruger J, Kautek W (2004) Ultrashort pulse laser interaction with dielectrics and polymers. In: Lippert TK (ed) Polymers and light. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 247–290

    Chapter  Google Scholar 

  • Kruger J, Martin S, Madebach H, Urech L, Lippert T, Wokaun A, Kautek W (2005) Femto- and nanosecond laser treatment of doped polymethylmethacrylate. Appl Surf Sci 247(1–4):406–411

    Article  ADS  Google Scholar 

  • Kuper S, Stuke M (1987) Femtosecond uv excimer laser ablation. Appl Phys B 44(4):199–204

    Article  ADS  Google Scholar 

  • Lee BL-P, Jeon H, Wang A, Yan Z, Yu J, Grigoropoulos C, Li S (2012) Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater 8(7):2648–2658

    Article  Google Scholar 

  • Lenzner M, Krüger J, Sartania S, Cheng Z, Spielmann C, Mourou G, Kautek W, Krausz F (1998) Femtosecond optical breakdown in dielectrics. Phys Rev Lett 80(18):4076–4079

    Article  ADS  Google Scholar 

  • Lenzner M, Kruger J, Kautek W, Krausz F (1999) Incubation of laser ablation in fused silica with 5-fs pulses. Appl Phys A 69(4):465–466

    Article  ADS  Google Scholar 

  • Li H, Wen F, Wong YS, Boey FYC, Subbu VS, Leong DT, Ng KW, Ng GKL, Tan LP (2012) Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells. Acta Biomater 8(2):531–539

    Article  Google Scholar 

  • Liang F, Lehr J, Danielczak L, Leask R, Kietzig A-M (2014) Robust non-wetting PTFE surfaces by femtosecond laser machining. Int J Mol Sci 15(8):13681

    Article  Google Scholar 

  • Lim YC, Boukany PE, Farson DF, Lee LJ (2011a) Direct-write femtosecond laser ablation and DNA combing and imprinting for fabrication of a micro/nanofluidic device on an ethylene glycol dimethacrylate polymer. J Micromech Microeng 21(1):015012

    Article  Google Scholar 

  • Lim YC, Johnson J, Fei Z, Wu Y, Farson DF, Lannutti JJ, Choi HW, Lee LJ (2011b) Micropatterning and characterization of electrospun poly(ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 108(1):116–126

    Article  Google Scholar 

  • Lippert T, Nakamura T, Niino H, Yabe A (1997) Laser induced chemical and physical modifications of polymer films: dependence on the irradiation wavelength. Appl Surf Sci 109–110:227–231

    Article  ADS  Google Scholar 

  • Lippert T, Dickinson JT, Langford SC, Furutani H, Fukumura H, Masuhara H, Kunz T, Wokaun A (1998) Photopolymers designed for laser ablation – photochemical ablation mechanism. Appl Surf Sci 127–129:117–121

    Article  ADS  Google Scholar 

  • Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7(5):196–198

    Article  ADS  Google Scholar 

  • Mendonca CR, Orlando S, Cosendey G, Winkler M, Mazur E (2007) Femtosecond laser micromachining in the conjugated polymer MEH-PPV. Appl Surf Sci 254(4):1135–1139

    Article  ADS  Google Scholar 

  • Meunier T, Villafranca AB, Bhardwaj R, Weck A (2012) Mechanism for spherical dome and microvoid formation in polycarbonate using nanojoule femtosecond laser pulses. Opt Lett 37(15):3168–3170

    Article  ADS  Google Scholar 

  • Miotello A, Kelly R (1995) Critical assessment of thermal models for laser sputtering at high fluences. Appl Phys Lett 67(24):3535–3537

    Article  ADS  Google Scholar 

  • Miotello A, Kelly R (1999) Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl Phys A 69(1):S67–S73

    Article  ADS  Google Scholar 

  • Naghilou A, Armbruster O, Kitzler M, Kautek W (2015) Merging spot size and pulse number dependence of femtosecond laser ablation thresholds: modeling and demonstration with high impact polystyrene. J Phys Chem C 119(40):22992–22998

    Article  Google Scholar 

  • Okoshi M, Inoue N (2004) Laser ablation of polymers using 395 nm and 790 nm femtosecond lasers. Appl. Phys. A 79:841

    Google Scholar 

  • Paun IA, Zamfirescu M, Mihailescu M, Luculescu CR, Mustaciosu CC, Dorobantu I, Calenic B, Dinescu M (2015) Laser micro-patterning of biodegradable polymer blends for tissue engineering. J Mater Sci 50(2):923–936

    Article  ADS  Google Scholar 

  • Perez D, Lewis LJ (2003) Molecular-dynamics study of ablation of solids under femtosecond laser pulses. Phys Rev B 67(18):184102

    Article  ADS  Google Scholar 

  • Preuss S, Späth M, Zhang Y, Stuke M (1993) Time resolved dynamics of subpicosecond laser ablation. Appl Phys Lett 62(23):3049–3051

    Article  ADS  Google Scholar 

  • Rämer A, Osmani O, Rethfeld B (2014) Laser damage in silicon: energy absorption, relaxation, and transport. J Appl Phys 116(5):053508

    Article  ADS  Google Scholar 

  • Rebollar E, JRV d A, Pérez-Hernández JA, Ezquerra TA, Moreno P, Castillejo M (2012) Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl Phys Lett 100(4):041106

    Article  ADS  Google Scholar 

  • Rebollar E, Vazquez de Aldana JR, Martin-Fabiani I, Hernandez M, Rueda DR, Ezquerra TA, Domingo C, Moreno P, Castillejo M (2013) Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys Chem Chem Phys 15(27):11287–11298

    Article  Google Scholar 

  • Rethfeld B (2006) Free-electron generation in laser-irradiated dielectrics. Phys Rev B 73(3):035101

    Article  ADS  Google Scholar 

  • Rethfeld B, Sokolowski-Tinten K, von der Linde D, Anisimov SI (2002) Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys Rev B 65(9):092103

    Article  ADS  Google Scholar 

  • Rethfeld B, Sokolowski-Tinten K, von der Linde D, Anisimov SI (2004) Timescales in the response of materials to femtosecond laser excitation. Appl Phys A 79(4):767–769

    Article  ADS  Google Scholar 

  • Riveiro A, Maçon ALB, del Val J, Comesaña R, Pou J (2018) Laser surface texturing of polymers for biomedical applications. Front Phys 6(16):16

    Article  Google Scholar 

  • Rosenfeld A, Lorenz M, Stoian R, Ashkenasi D (1999) Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation. Appl Phys A 69(1):S373–S376

    Article  ADS  Google Scholar 

  • Roszkowska AM, Torrisi L (2014) Intraocular lens employed for cataract surgery. J Phys Conf Ser 508(1):012014

    Article  Google Scholar 

  • Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre JP, Audebert P, Gauthier JC, Hulin D (2001) Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410:65

    Article  ADS  Google Scholar 

  • Sarbada S, Shin YC (2017) Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser. Appl Surf Sci 405:465–475

    Article  ADS  Google Scholar 

  • Schuster C, Rothe N, Svanidze AV, Fiedler S, Irsig R, Tiggesbaumker J, Senz V, Vehse M, Seitz H, Lochbrunner S (2012) Material processing with shaped femtosecond laser pulses. Biomed Tech (Berl) 57(Suppl 1S):894–896

    Google Scholar 

  • Sokolowski-Tinten K, Bialkowski J, Boing M, Cavalleri A, von der Linde D (1998) Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation. Phys Rev B 58(18):R11805–R11808

    Article  ADS  Google Scholar 

  • Sowa S, Watanabe W, Tamaki T, Nishii J, Itoh K (2006) Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express 14(1):291–297

    Article  ADS  Google Scholar 

  • Srinivasan R, Sutcliffe E, Braren B (1987) Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl Phys Lett 51(16):1285–1287

    Article  ADS  Google Scholar 

  • Srinivasan R, Hall RR, Loehle WD, Wilson WD, Allbee DC (1995) Chemical transformations of the polyimide Kapton brought about by ultraviolet laser radiation. J Appl Phys 78(8):4881–4887

    Article  ADS  Google Scholar 

  • Stoian R, Rosenfeld A, Ashkenasi D, Hertel IV, Bulgakova NM, Campbell EEB (2002) Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys Rev Lett 88(9):097603

    Article  ADS  Google Scholar 

  • Stuart BC, Feit MD, Rubenchik AM, Shore BW, Perry MD (1995) Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys Rev Lett 74(12):2248–2251

    Article  ADS  Google Scholar 

  • Suriano R, Kuznetsov A, Eaton SM, Kiyan R, Cerullo G, Osellame R, Chichkov BN, Levi M, Turri S (2011) Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Appl Surf Sci 257(14):6243–6250

    Article  ADS  Google Scholar 

  • van Driel HM (1987) Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-um picosecond laser pulses. Phys Rev B 35(15):8166–8176

    Article  ADS  Google Scholar 

  • Varel H, Ashkenasi D, Rosenfeld A, Herrmann R, Noack F, Campbell EEB (1996) Laser-induced damage in SiO2 and CaF2 with picosecond and femtosecond laser pulses. Appl Phys A 62(3):293–294

    Article  ADS  Google Scholar 

  • Vázquez RM, Eaton SM, Ramponi R, Cerullo G, Osellame R (2011) Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation. Opt Express 19(12):11597–11604

    Article  ADS  Google Scholar 

  • von der Linde D, Sokolowski-Tinten K, Bialkowski J (1997) Laser–solid interaction in the femtosecond time regime. Appl Surf Sci 109–110:1–10

    Article  Google Scholar 

  • Vorobyev A, Guo C (2013) Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7(3):385–407

    Article  ADS  Google Scholar 

  • Wang ZB, Hong MH, Lu YF, Wu DJ, Lan B, Chong TC (2003) Femtosecond laser ablation of polytetrafluoroethylene (teflon) in ambient air. J Appl Phys 93(10):6375–6380

    Article  ADS  Google Scholar 

  • Wang ZK, Zheng HY, Lim CP, Lam YC (2009) Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation. Appl Phys Lett 95(11):111110

    Article  ADS  Google Scholar 

  • Wang ZK, Zheng HY, Xia HM (2011) Femtosecond laser-induced modification of surface wettability of PMMA for fluid separation in microchannels. Microfluid Nanofluid 10(1):225–229

    Article  Google Scholar 

  • Wang B, Wang X, Zheng H, Lam Y (2016) Femtosecond laser-induced surface wettability modification of polystyrene surface. Sci China Phys Mech Astron 59(12):124211

    Article  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  Google Scholar 

  • Yeong WY, Yu H, Lim KP, Ng KLG, Boey YCF, Subbu VS, Tan LP (2010) Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer. Tissue Eng Part C Methods 16(5):1011–1021

    Article  Google Scholar 

  • Yong J, Chen F, Yang Q, Du G, Bian H, Zhang D, Si J, Yun F, Hou X (2013a) Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Appl Mater Interfaces 5(19):9382–9385

    Article  Google Scholar 

  • Yong J, Chen F, Yang Q, Zhang D, Du G, Si J, Yun F, Hou X (2013b) Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion. J Phys Chem C 117(47):24907–24912

    Article  Google Scholar 

  • Yong J, Yang Q, Chen F, Zhang D, Du G, Bian H, Si J, Yun F, Hou X (2014) Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Appl Surf Sci 288:579–583

    Article  ADS  Google Scholar 

  • Yoon TO, Shin HJ, Jeoung SC, Park Y-I (2008) Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification. Opt Express 16(17):12715–12725

    Article  ADS  Google Scholar 

  • Zoubir A, Lopez C, Richardson M, Richardson K (2004) Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate). Opt Lett 29(16):1840–1842

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Kietzig .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Assaf, Y., Kietzig, AM. (2020). Laser Surface Structuring of Polymers and Functionalization. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics