Skip to main content

Role of Clinical Pharmacodynamics Studies in the Era of Precision Medicines Against Cancer

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Methods in Clinical Pharmacology

Abstract

Pharmacodynamics (PD) has been integral to the design of rational drug dosing regimens. Detailed PD studies during both the preclinical and clinical stages of the drug development process can also contribute to lead optimization or the selection of the optimal “best-in-class” compound, improve clinical potency estimates and help predict the drug exposure needed to achieve meaningful clinical responses. There has been a substantial and continued increase in the number of clinical oncology trials with integrated PD studies since 2002. Notably, a significant portion of all interventional clinical trials with PD components are initiated for evaluation of oncology drugs. PD studies frequently play a pivotal role in determining the initial dose level for first-in-human clinical studies of immunooncology drugs. The integration of PD data into the dose safety modeling in early oncology studies may provide accurate predictions of the dose-effect relationships by advancing the understanding of target engagement as well as exposure response and therefore has the potential to improve the decision making regarding the optimal dose and schedules as well as risk-benefit assessments for later stages in clinical development. PD studies also have the potential to provide early clinical proof of concept when drugs with complementary activity profiles are combined in cancer therapy. In recent years, population pharmacokinetics–pharmacodynamics (PK-PD) modeling has become a key tool towards streamlining and optimizing oncologic drug development through early understanding, identification and quantification of various dose–response relationships in the context of other patient characteristics as well as risk-benefit of different dosing schedules. Finally, a new and exciting strategy known as “Quantitative Systems Pharmacology” is emerging that advances systems level, multiscale models for disease progression and treatment to better characterize the hierarchical, non-linear, dynamic responses at the network level of drug action that may affect both efficacy and toxicity in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

  • Ait-Oudhia S, Mager DE (2016) Array of translational systems pharmacodynamic models of anti-cancer drugs. J Pharmacokinet Pharmacodyn 43:549–565

    Article  CAS  Google Scholar 

  • Alsharedi M, Bukamur H, Elhamdani A (2018) Osimertinib for the treatment of patients with EGFR mutation-positive non-small cell lung cancer. Drugs Today (Barc) 54:369–379. https://doi.org/10.1358/dot.2018.54.6.2817668

    Article  CAS  Google Scholar 

  • Andronesi OC, Arrillaga-Romany IC, Ly KI, Bogner W, Ratai EM, Reitz K, Iafrate AJ, Dietrich J, Gerstner ER, Chi AS, Rosen BR, Wen PY, Cahill DP, Batchelor TT (2018) Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nat Commun 9(1):1474. https://doi.org/10.1038/s41467-018-03905-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biankin AV, Piantadosi S, Hollingsworth SJ (2015) Patient-centric trials for therapeutic development in precision oncology. Nature 526:361–370. https://doi.org/10.1038/nature15819

    Article  CAS  PubMed  Google Scholar 

  • Bizzotto R, Blaudez E, Borella E, Carrara L, Chan P, Chenel M, Comets E, Gieschke R, Harling K, Harnisch L, Hartung N, Hooker AC, Karlsson MO, Kaye R, Kloft C, Kokash N, Lavielle M, Lestini G, Magni P, Mari A, Mentré F, Muselle C, Nordgren R, Nyberg HB, Parra-Guillén ZP, Pasotti L, Rode-Kristensen N, Sardu ML, Smith GR, Swat MJ, Terranova N, Yngman G, Yvon F, Holford N, DDMoRe consortium (2017) Model description language (MDL): a standard for modeling and simulation. CPT Pharmacometrics Syst Pharmacol 6:647–650. https://doi.org/10.1002/psp4.12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block M (2015) Physiologically based pharmacokinetic and pharmacodynamic modeling in cancer drug development: status, potential and gaps. Expert Opin Drug Metab Toxicol 11:743–756. https://doi.org/10.1517/17425255.2015.1037276

    Article  CAS  PubMed  Google Scholar 

  • Borchmann P, Goergen H, Kobe C, Lohri A, Greil R, Eichenauer DA, Zijlstra JM, Markova J, Meissner J, Feuring-Buske M, Hüttmann A, Dierlamm J, Soekler M, Beck HJ, Willenbacher W, Ludwig WD, Pabst T, Topp MS, Hitz F, Bentz M, Keller UB, Kühnhardt D, Ostermann H, Schmitz N, Hertenstein B, Aulitzky W, Maschmeyer G, Vieler T, Eich H, Baues C, Stein H, Fuchs M, Kuhnert G, Diehl V, Dietlein M, Engert A (2018) PET-guided treatment in patients with advanced-stage Hodgkin’s lymphoma (HD18): final results of an open-label, international, randomised phase 3 trial by the German Hodgkin Study Group. Lancet 390:2790–2802. https://doi.org/10.1016/S0140-6736(17)32134-7

    Article  PubMed  Google Scholar 

  • Brennan FR, Andrews L, Arulanandam AR, Blumel J, Fikes J, Grimaldi C, Lansita J, Loberg LI, MacLachlan T, Milton M, Parker S, Tibbitts J, Wolf J, Allamneni KP (2018) Current strategies in the non-clinical safety assessment of biologics: new targets, new molecules, new challenges. Regul Toxicol Pharmacol. https://doi.org/10.1016/j.yrtph.2018.07.009. pii: S0273-2300(18)30187-9

    Article  CAS  Google Scholar 

  • Buil-Bruna N, López-Picazo JM, Martín-Algarra S, Trocóniz IF (2016) Bringing model-based prediction to oncology clinical practice: a review of pharmacometrics principles and applications. Oncologist 21:220–232. https://doi.org/10.1634/theoncologist.2015-0322

    Article  CAS  PubMed  Google Scholar 

  • Bulgar AD, Snell M, Donze JR, Kirkland EB, Li L, Yang S, Xu Y, Gerson SL, Liu L (2010) Targeting base excision repair suggests a new therapeutic strategy of fludarabine for the treatment of chronic lymphocytic leukemia. Leukemia 4:1795–1799

    Article  Google Scholar 

  • Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, Chaves J, Wierda WG, Awan FT, Brown JR, Hillmen P, Stephens DM, Ghia P, Barrientos JC, Pagel JM, Woyach J, Johnson D, Huang J, Wang X, Kaptein A, Lannutti BJ, Covey T, Fardis M, McGreivy J, Hamdy A, Rothbaum W, Izumi R, Diacovo TG, Johnson AJ, Furman RR (2016) Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med 374:323–332

    Article  CAS  Google Scholar 

  • Caimi PF, Cooper BW, William BM, Dowlati A, Barr PM, Fu P, Pink J, Xu Y, Lazarus HM, de Lima M, Gerson SL (2017) Phase I clinical trial of the base excision repair inhibitor methoxyamine in combination with fludarabine for patients with advanced hematologic malignancies. Oncotarget 8:79864–79875. https://doi.org/10.18632/oncotarget.20094

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Thalhauser CJ, Smithline S, Pagidala J, Miladinov M, Vezina HE, Gupta M, Leil TA, Schmidt BJ (2017) QSP toolbox: computational implementation of integrated workflow components for deploying multi-scale mechanistic models. AAPS J 19:1002–1016

    Article  CAS  Google Scholar 

  • Ciccolini J, Barbolosi D, Meille C, Lombard A, Serdjebi C, Giacometti S, Padovani L, Pasquier E, André N (2017) Pharmacokinetics and pharmacodynamics-based mathematical modeling identifies an optimal protocol for metronomic chemotherapy. Cancer Res 77(17):1–11. https://doi.org/10.1158/0008-5472.CAN-16-3130

    Article  CAS  Google Scholar 

  • Claret L, Girard P, Hoff PM, Van Cutsem E, Zuideveld KP, Jorga K, Fagerberg J, Bruno R (2009) Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J Clin Oncol 27(25):4103–4108. https://doi.org/10.1200/JCO.2008.21.0807

    Article  CAS  PubMed  Google Scholar 

  • Claret L, Mercier F, Houk BE, Milligan PA, Bruno R (2015) Modeling and simulations relating overall survival to tumor growth inhibition in renal cell carcinoma patients. Cancer Chemother Pharmacol 76(3):567–573. https://doi.org/10.1007/s00280-015-2820-x

    Article  CAS  PubMed  Google Scholar 

  • Cook N, Hansen AR, Siu LL, Abdul Razak AR (2015) Early phase clinical trials to identify optimal dosing and safety. Mol Oncol 9:997–1007

    Article  CAS  Google Scholar 

  • Creelan BC, Gabrilovich DI, Gray JE, Williams CC, Tanvetyanon T, Haura EB, Weber JS, Gibney GT, Markowitz J, Proksch JW, Reisman SA, McKee MD, Chin MP, Meyer CJ, Antonia SJ (2017) Safety, pharmacokinetics, and pharmacodynamics of oral omaveloxolone (RTA 408), a synthetic triterpenoid, in a first-in-human trial of patients with advanced solid tumors. Onco Targets Ther 10:4239–4250. https://doi.org/10.2147/OTT.S136992

    Article  PubMed  PubMed Central  Google Scholar 

  • Dal Molin GZ, Omatsu K, Sood AK, Coleman RL (2018) Rucaparib in ovarian cancer: an update on safety, efficacy and place in therapy. Ther Adv Med Oncol 10. https://doi.org/10.1177/1758835918778483

    Article  Google Scholar 

  • de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S (2018) Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet 57:1229. https://doi.org/10.1007/s40262-018-0644-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries Schultink AHM, Boekhout AH, Gietema JA, Burylo AM, Dorlo TPC, van Hasselt JGC, Schellens JHM, Huitema ADR (2018) Pharmacodynamic modeling of cardiac biomarkers in breast cancer patients treated with anthracycline and trastuzumab regimens. J Pharmacokinet Pharmacodyn 45:431–442. https://doi.org/10.1007/s10928-018-9579-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R, Powell R, Rhodes G, Stanski D, Venitz J (2000) Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 40:1399–1418

    CAS  PubMed  Google Scholar 

  • DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, Swords R, Collins RH, Mannis GN, Pollyea DA, Donnellan W, Fathi AT, Pigneux A, Erba HP, Prince GT, Stein AS, Uy GL, Foran JM, Traer E, Stuart RK, Arellano ML, Slack JL, Sekeres MA, Willekens C, Choe S, Wang H, Zhang V, Yen KE, Kapsalis SM, Yang H, Dai D, Fan B, Goldwasser M, Liu H, Agresta S, Wu B, Attar EC, Tallman MS, Stone RM, Kantarjian HM (2018) Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med 378:2386–2398. https://doi.org/10.1056/NEJMoa1716984

    Article  CAS  PubMed  Google Scholar 

  • Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik C, Deeken J, Boni V, Nagasubramanian R, Taylor M, Rudzinski ER, Meric-Bernstam F, Sohal DPS, Ma PC, Raez LE, Hechtman JF, Benayed R, Ladanyi M, Tuch BB, Ebata K, Cruickshank S, Ku NC, Cox MC, Hawkins DS, Hong DS, Hyman DM (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731–739. https://doi.org/10.1056/NEJMoa1714448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigenmann MJ, Frances N, Lave T, Walz A-C (2017) PKPD modeling of acquired resistance to anti-cancer drug treatment. J Pharmacokinet Pharmacodyn 44:617–630. https://doi.org/10.1007/s10928-017-9553-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eissing T, Kuepfer L, Becker C, Block M, Coboeken K, Gaub T, Goerlitz L, Jaeger J, Loosen R, Ludewig B, Meyer M, Niederalt C, Sevestre M, Siegmund HU, Solodenko J, Thelen K, Telle U, Weiss W, Wendl T, Willmann S, Lippert J (2011) A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front Physiol 2:4

    Article  Google Scholar 

  • Elassaiss-Schaap J, Rossenu S, Lindauer A, Kang SP, de Greef R, Sachs JR, de Alwis DP (2017) Using model-based “learn and confirm” to reveal the pharmacokinetics-pharmacodynamics relationship of pembrolizumab in the KEYNOTE-001 trial. CPT Pharmacometrics Syst Pharmacol 6:21–28

    Article  CAS  Google Scholar 

  • FDA Guidance on Clinical Pharmacology Section of Labeling for Human Prescription Drug and Biological Products (2016) https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm109739.pdf

  • Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J, Reid JM, Ames MM, Speights R, Ingle AM, Zwiebel J, Blaney SM, Adamson PC (2010) Pediatric phase I trial and pharmacokinetic study of vorinostat: a children’s oncology group phase I consortium report. J Clin Oncol 28:3623–3629

    Article  CAS  Google Scholar 

  • Fouliard S, Robert R, Jacquet-Bescond A, Rieu C, Balasubramanian RS, Loury D, Loriot Y, Hollebecque A, Kloos I, Soria JC, Chenel M, Depil S (2013) Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I. Eur J Cancer 49:2791–2797. https://doi.org/10.1016/j.ejca.2013.05.009. Get rights and content

    Article  CAS  PubMed  Google Scholar 

  • Freshwater T, Kondic A, Ahamadi M, Li CH, de Greef R, de Alwis D, Stone JA (2017) Evaluation of dosing strategy for pembrolizumab for oncology indications. J Immunother Cancer 5:43. https://doi.org/10.1186/s40425-017-0242-5. eCollection 2017

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallo JM, Birtwistle MR (2015) Network pharmacodynamic models for customized cancer therapy. WIREs Syst Biol Med 7:243–251. https://doi.org/10.1002/wsbm.1300

    Article  Google Scholar 

  • Garralda E, Dienstmann R, Tabernero J (2017) Pharmacokinetic/pharmacodynamic modeling for drug development in oncology. Am Soc Clin Oncol Educ Book 37:210–215. https://doi.org/10.14694/EDBK_180460

    Article  PubMed  Google Scholar 

  • Goey AK, Sissung TM, Peer CJ, Trepel JB, Lee MJ, Tomita Y, Ehrlich S, Bryla C, Balasubramaniam S, Piekarz R, Steinberg SM, Bates SE, Figg WD (2016) Effects of UGT1A1 genotype on the pharmacokinetics, pharmacodynamics, and toxicities of belinostat administered by 48-hour continuous infusion in patients with cancer. J Clin Pharmacol 56:461–473. https://doi.org/10.1002/jcph.625

    Article  CAS  PubMed  Google Scholar 

  • Gray HJ, Bell-McGuinn K, Fleming GF, Cristea M, Xiong H, Sullivan D, Luo Y, McKee MD, Munasinghe W, Martin LP (2018) Phase I combination study of the PARP inhibitor veliparib plus carboplatin and gemcitabine in patients with advanced ovarian cancer and other solid malignancies. Gynecol Oncol 148:507–514. https://doi.org/10.1016/j.ygyno.2017.12.029

    Article  CAS  PubMed  Google Scholar 

  • Grisafi D, Ceschi A, Sava G, Avalos Clerici V, Scaglione F (2018) Reconsidering clinical pharmacology frameworks as a necessary strategy for improving the health care of patients: a systematic review. Eur J Clin Pharmacol. https://doi.org/10.1007/s00228-018-2511-8. [Epub ahead of print]

  • Hansen AR, Cook N, Amir E, Siu LL, Razak ARA (2017) Determinants of the recommended phase 2 dose of molecular targeted agents. Cancer 123:1409–1415

    Article  CAS  Google Scholar 

  • Hidalgo MM, Epelbaum R, Semenisty V, Geva R, Golan T, Borazanci EH, Stemmer SM, Borad MJ, Park JO, Pedersen K, Wolpin BM, Ramirez RA, Becerra C, Shaw S, Oberkovitz G, Haras AV, Sorani E, Lustig TM, Peled A, Von Hoff DD (2018) Evaluation of pharmacodynamic (PD) biomarkers in patients with metastatic pancreatic cancer treated with BL-8040, a novel CXCR4 antagonist. J Clin Oncol 36(Suppl 5):88

    Article  Google Scholar 

  • Hirakawa A, Yonemori K, Kinoshita F, Kobayashi Y, Okuma HS, Kawachi A, Tamura K, Fujiwara Y, Rubinstein L, Harris PJ, Takebe N (2018) Potential utility of a longitudinal relative dose intensity of molecularly targeted agents in phase 1 dose-finding trials. Cancer Sci 109:207–214. https://doi.org/10.1111/cas.13436

    Article  CAS  PubMed  Google Scholar 

  • Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, Buggy JJ (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A 107: 13075–13080

    Article  CAS  Google Scholar 

  • Ishiguro H, Saji S, Nomura S, Tanaka S, Ueno T, Onoue M, Iwata H, Yamanaka T, Sasaki Y, Toi M (2017) A phase I/II pharmacokinetics/pharmacodynamics study of irinotecan combined with S-1 for recurrent/metastatic breast cancer in patients with selected UGT1A1 genotypes (the JBCRG-M01 study). Cancer Med 6:2909–2917. https://doi.org/10.1002/cam4.1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyengar R, Zhao S, Chung SW, Mager DE, Gallo JM (2012) Merging systems biology with pharmacodynamics. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3003563

    Article  Google Scholar 

  • Jain RK, Lee JJ, Hong D, Markman M, Gong J, Naing A, Wheler J, Kurzrock R (2010) Phase I oncology studies: evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin Cancer Res 16:1289–1297

    Article  CAS  Google Scholar 

  • Jamal R, Lapointe R, Cocolakis E, Thébault P, Kazemi S, Friedmann JE, Dionne J, Cailhier JF, Bélanger K, Ayoub JP, Le H, Lambert C, El-Hajjar J, van Kempen LC, Spatz A, Miller WH Jr (2017) Peripheral and local predictive immune signatures identified in a phase II trial of ipilimumab with carboplatin/paclitaxel in unresectable stage III or stage IV melanoma. J Immunother Cancer 5:83. https://doi.org/10.1186/s40425-017-0290-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Jänne PA, Kim G, Shaw AT, Sridhara R, Pazdur R, McKee AE (2016) Dose finding of small-molecule oncology drugs: optimization throughout the development life cycle. Clin Cancer Res 22:2613–2617

    Article  Google Scholar 

  • Krebs M, Dive C, Dean EJ, Rothwell DG, Brognard J, Wallace A (2016) TARGET trial: molecular profiling of circulating tumour DNA to stratify patients to early phase clinical trials. J Clin Oncol 34:TPS11614. http://www.ascopubs.org/doi/abs/10.1200/JCO.2016.34.15_suppl.TPS11614#affiliationsContainer

    Article  Google Scholar 

  • Laetsch TW, DuBois SG, Nagasubramanian R, Turpin B, Mascarenhas L, Federman N (2017) A pediatric phase I study of larotrectinib, a highly selective inhibitor of the tropomyosin receptor kinase (TRK) family. J Clin Oncol 35(Suppl 15):10510. http://ascopubs.org/doi/abs/10.1200/JCO.2017.35.15_suppl.10510

    Article  Google Scholar 

  • Lai X, Geier O, Fleischer T, Garred O, Borgen EF, Funke S, Kumar S, Rognes ME, Seierstad T, Boerresen-Dale A-L, Kristensen VN, Engebraaten O, Kohn-Luque A, Frigessi A (2018) Towards personalized computer simulation of breast cancer treatment: a multi-scale pharmacokinetic and pharmacodynamic model informed by multi-type patient data. bioRxiv. https://doi.org/10.1101/371369

  • Lavezzi SM, Borella E, Carrara L, De Nicolao G, Magni P, Poggesi I (2018) Mathematical modeling of efficacy and safety for anticancer drugs clinical development. Expert Opin Drug Discovery 13(1):5–21. https://doi.org/10.1080/17460441.2018.1388369

    Article  CAS  Google Scholar 

  • Li L, Ma L, Schrieber SJ, Rahman NA, Deisseroth A, Farrell AT, Wang Y, Sinha V, Marathe A (2018) Quantitative relationship between AUEC of absolute neutrophil count and duration of severe neutropenia for G-CSF in breast cancer patients. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.991. [Epub ahead of print]

    Article  CAS  Google Scholar 

  • Lu D, Lu T, Stroh M, Graham RA, Agarwal P, Musib L, Li CC, Lum BL, Joshi A (2016) A survey of new oncology drug approvals in the USA from 2010 to 2015: a focus on optimal dose and related postmarketing activities. Cancer Chemother Pharmacol 77:459–476

    Article  CAS  Google Scholar 

  • Mahalingam D, Goel S, Aparo S, Patel Arora S, Noronha N, Tran H, Chakrabarty R, Selvaggi G, Gutierrez A, Coffey M, Nawrocki ST, Nuovo G, Mita MM (2018) A phase II study of Pelareorep (REOLYSIN®) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers (Basel) 10(6). https://doi.org/10.3390/cancers10060160. pii: E160

    Article  Google Scholar 

  • Maitland ML, Piha-Paul S, Falchook G, Kurzrock R, Nguyen L, Janisch L, Karovic S, McKee M, Hoening E, Wong S, Munasinghe W, Palma J, Donawho C, Lian GK, Ansell P, Ratain MJ, Hong D (2018) Clinical pharmacodynamic/exposure characterisation of the multikinase inhibitor ilorasertib (ABT-348) in a phase 1 dose-escalation trial. Br J Cancer 118:1042–1050. https://doi.org/10.1038/s41416-018-0020-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolis E, Brogren J, Cole S, Hay JL, Nordmark A, Karlsson KE, Lentz F, Benda N, Wangorsch G, Pons G, Zhao W, Gigante V, Serone F, Standing JF, Dokoumetzidis A, Vakkilainen J, van den Heuvel M, Mangas Sanjuan V, Taminiau J, Kerwash E, Khan D, Musuamba FT, Skottheim Rusten I, EMA Modelling and Simulation Working Group (2017) Commentary on the MID3 good practices paper. CPT Pharmacometrics Syst Pharmacol 6:416–417. https://doi.org/10.1002/psp4.12223. Epub 2017 Jul 22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meille C, Guerreiro N, Jullion A, Bauer S, Chatterjee M, de Vos F, Lin CC, Suárez Rodríguez C, Tai D, Cassier P, Yamamoto N, de Weger VA, Klopfenstein M, Mariconti L, Kuriakose ET, Hyman DM (2017) Optimization of the dose and schedule of an HDM2 inhibitor NVP-HDM201 in a first-in-human phase I study using a mechanism-based PK/PD model [abstract]. In: Proceedings of the American Association for Cancer Research annual meeting 2017; 2017 Apr 1–5, Washington, DC. AACR, Philadelphia. https://doi.org/10.1158/1538-7445.AM2017-CT154. Cancer Res 2017;77(13 Suppl): Abstract No: ct 154

    Article  Google Scholar 

  • Moreau P, Karamanesht II, Domnikova N, Kyselyova MY, Vilchevska KV, Doronin VA, Schmidt A, Hulin C, Leleu X, Esseltine DL, Venkatakrishnan K, Skee D, Feng H, Girgis S, Cakana A, van de Velde H, Deraedt W, Facon T (2012) Pharmacokinetic, pharmacodynamic and covariate analysis of subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma. Clin Pharmacokinet 51:823–829. https://doi.org/10.1007/s40262-012-0010-0

    Article  CAS  PubMed  Google Scholar 

  • Musante CJ, Ramanujan S, Schmidt BJ, Ghobrial OG, Lu J, Heatherington AC (2017) Quantitative systems pharmacology: a case for disease models. Clin Pharmacol Ther 101:24–27

    Article  CAS  Google Scholar 

  • Musuamba FT, Manolis E, Holford N, Cheung S, Friberg LE, Ogungbenro K, Posch M, Yates J, Berry S, Thomas N, Corriol-Rohou S, Bornkamp B, Bretz F, Hooker AC, Van der Graaf PH, Standing JF, Hay J, Cole S, Gigante V, Karlsson K, Dumortier T, Benda N, Serone F, Das S, Brochot A, Ehmann F, Hemmings R, Rusten IS (2017) Advanced methods for dose and regimen finding during drug development: summary of the EMA/EFPIA workshop on dose finding (London 4–5 December 2014). CPT Pharmacometrics Syst Pharmacol 6:418–429. https://doi.org/10.1002/psp4.12196. Epub 2017 Jul 19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutti L, Peikert T, Robinson BWS, Scherpereel A, Tsao AS, de Perrot M, Woodard GA, Jablons DM, Wiens J, Hirsch FR, Yang H, Carbone M, Thomas A, Hassan R (2018). State of the art: concise review scientific advances and new frontiers in mesothelioma therapeutics. J Thorac Oncol. https://doi.org/10.1016/j.jtho.2018.06.011 . pii: S1556-0864(18)30720-2. [Epub ahead of print]

    Article  Google Scholar 

  • Nightingale G, Schwartz R, Kachur E, Dixon BN, Cote C, Barlow A, Barlow B, Medina P (2018) Clinical pharmacology of oncology agents in older adults: a comprehensive review of how chronologic and functional age can influence treatment-related effects. J Geriatr Oncol. https://doi.org/10.1016/j.jgo.2018.06.008. pii: S1879-4068(18)30161-9

  • Niu J, Scheuerell C, Mehrotra S, Karan S, Puhalla S, Kiesel BF, Ji J, Chu E, Gopalakrishnan M, Ivaturi V, Gobburu J, Beumer JH (2017) Parent-metabolite pharmacokinetic modeling and pharmacodynamics of veliparib (ABT-888), a PARP inhibitor, in patients with BRCA 1/2-mutated cancer or PARP-sensitive tumor types. J Clin Pharmacol 57:977–987. https://doi.org/10.1002/jcph.892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owonikoko TK, Busari AK, Kim S, Chen Z, Akintayo A, Lewis C, Carthon BC, Alese OB, El-Rayes BF, Ramalingam SS, Harvey RD (2018) Race-, age-, and gender-based characteristics and toxicities of targeted therapies on phase I trials. Oncology 95:138. https://doi.org/10.1159/000488763. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  • Palmirotta R, Carella C, Silvestris E, Cives M, Stucci SL, Tucci M, Lovero D, Silvestris F (2018) SNPs in predicting clinical efficacy and toxicity of chemotherapy: walking through the quicksand. Oncotarget 9:25355–25382. https://doi.org/10.18632/oncotarget.25256

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel VK, Lamothe B, Ayres ML, Gay J, Cheung JP, Balakrishnan K, Ivan C, Morse J, Nelson M, Keating MJ, Wierda WG, Marszalek JR, Gandhi V (2018) Pharmacodynamics and proteomic analysis of acalabrutinib therapy: similarity of on-target effects to ibrutinib and rationale for combination therapy. Leukemia 32:920–930. https://doi.org/10.1038/leu.2017.321

    Article  CAS  PubMed  Google Scholar 

  • Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, Drengler R, Chen C, Smith L, Espino G, Gergich K, Delgado L, Daud A, Lindia JA, Li XN, Pierce RH, Yearley JH, Wu D, Laterza O, Lehnert M, Iannone R, Tolcher AW (2015) Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res 21:4286–4293

    Article  CAS  Google Scholar 

  • Peck RW (2015) The right dose for every patient: a key step for precision medicine. Nat Rev Drug Discov 15:145–146. Available from http://www.nature.com/doifinder/10.1038/nrd.2015.22

    Article  Google Scholar 

  • Peer CJ, Hall OM, Sissung TM, Piekarz R, Balasubramaniam S, Bates SE, Figg WD (2018) A population pharmacokinetic/toxicity model for the reduction of platelets during a 48-h continuous intravenous infusion of the histone deacetylase inhibitor belinostat. Cancer Chemother Pharmacol 82:565–570. https://doi.org/10.1007/s00280-018-3631-7

    Article  CAS  PubMed  Google Scholar 

  • Phelan JD, Young RM, Webster DE, Roulland S, Wright GW, Kasbekar M, Shaffer AL 3rd, Ceribelli M, Wang JQ, Schmitz R, Nakagawa M, Bachy E, Huang DW, Ji Y, Chen L, Yang Y, Zhao H, Yu X, Xu W, Palisoc MM, Valadez RR, Davies-Hill T, Wilson WH, Chan WC, Jaffe ES, Gascoyne RD, Campo E, Rosenwald A, Ott G, Delabie J, Rimsza LM, Rodriguez FJ, Estephan F, Holdhoff M, Kruhlak MJ, Hewitt SM, Thomas CJ, Pittaluga S, Oellerich T, Staudt LM (2018) A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature 560:387–391. https://doi.org/10.1038/s41586-018-0290-0

    Article  CAS  PubMed  Google Scholar 

  • Pinto N, DuBois SG, Marachelian A, Diede SJ, Taraseviciute A, Glade Bender JL, Tsao-Wei D, Groshen SG, Reid JM, Haas-Kogan DA, Reynolds CP, Kang MH, Irwin MS, Macy ME, Villablanca JG, Matthay KK, Park JR (2018) Phase I study of vorinostat in combination with isotretinoin in patients with refractory/recurrent neuroblastoma: a new approaches to neuroblastoma therapy (NANT) trial. Pediatr Blood Cancer 65:e27023. https://doi.org/10.1002/pbc.27023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postel-Vinay S, Aspeslagh S, Lanoy E, Robert C, Soria JC, Marabelle A (2016) Challenges of phase 1 clinical trials evaluating immune checkpoint-targeted antibodies. Ann Oncol 27:214–224

    Article  CAS  Google Scholar 

  • Ribba B, Grimm HP, Agoram B, Davies MR, Gadkar K, Niederer S, van Riel N, Timmis J, van der Graaf PH (2017) Methodologies for quantitative systems pharmacology (QSP) models: design and estimation. CPT Pharmacometrics Syst Pharmacol 6:496–498

    Article  CAS  Google Scholar 

  • Rocchetti M, Del Bene F, Germani M, Fiorentini F, Poggesi I, Pesenti E, Magni P, De Nicolao G (2009) Testing additivity of anticancer agents in pre-clinical studies: a PK/PD modelling approach. Eur J Cancer 45(18):3336–3346

    Article  CAS  Google Scholar 

  • Sato M, Ochiai Y, Kijima S, Nagai N, Ando Y, Shikano M, Nomura Y (2017) Quantitative modeling and simulation in PMDA: a Japanese regulatory perspective. CPT Pharmacometrics Syst Pharmacol 6:413–415

    Article  CAS  Google Scholar 

  • Schindler E (2018) Pharmacometrics to improve clinical benefit assessment in oncology. Digital comprehensive summaries of Uppsala Dissertations from the Faculty of Pharmacy 243. ISSN 1651-6192 ISBN 978-91-513-0191-4urn:nbn:se:uu:diva-336420

    Google Scholar 

  • Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, Finley G, Kelsch C, Lee A, Coleman S, Deng Y, Shen Y, Kowanetz M, Lopez-Chavez A, Sandler A, Reck M, IMpower150 Study Group (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378:2288–2301. https://doi.org/10.1056/NEJMoa1716948

    Article  CAS  PubMed  Google Scholar 

  • Stein S, Zhao R, Haeno H, Vivanco I, Michor F (2018) Mathematical modeling identifies optimum lapatinib dosing schedules for the treatment of glioblastoma patients. PLoS Comput Biol 14(1):e1005924. https://doi.org/10.1371/journal.pcbi.1005924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam CS, Anderson MA, Pott C, Agarwal R, Handunnetti S, Hicks RJ, Burbury K, Turner G, Di Iulio J, Bressel M, Westerman D, Lade S, Dreyling M, Dawson SJ, Dawson MA, Seymour JF, Roberts AW (2018) Ibrutinib plus venetoclax for the treatment of mantle-cell lymphoma. N Engl J Med 378:1211–1223. https://doi.org/10.1056/NEJMoa1715519

    Article  CAS  PubMed  Google Scholar 

  • Tan CRC, Abdul-Majeed S, Cael B, Barta SK (2018) Clinical pharmacokinetics and pharmacodynamics of bortezomib. Clin Pharmacokinet. https://doi.org/10.1007/s40262-018-0679-9. [Epub ahead of print]

  • Tham LS, Wang L, Soo RA, Lee SC, Lee HS, Yong WP, Goh BC, Holford NH (2008) A pharmacodynamic model for the time course of tumor shrinkage by gemcitabine + carboplatin in non-small cell lung cancer patients. Clin Cancer Res 14(13):4213–4218

    Article  CAS  Google Scholar 

  • Torres-Ayuso P, Sahoo S, Ashton G, An E, Simms N, Galvin M, Leong HS, Frese KK, Simpson K, Cook N, Hughes A, Miller CJ, Marais R, Dive C, Krebs MG, Brognard J (2018) Signaling pathway screening platforms are an efficient approach to identify therapeutic targets in cancers that lack known driver mutations: a case report for a cancer of unknown primary origin. NPJ Genom Med 3:15. https://doi.org/10.1038/s41525-018-0055-6. eCollection 2018

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsimberidou AM, Tsimberidou AM, Hong DS, Ye Y, Cartwright C, Wheler JJ, Falchook GS, Naing A, Fu S, Piha-Paul S, Janku F, Meric-Bernstam F, Hwu P, Kee B, Kies MS, Broaddus R, Mendelsohn J, Hess KR, Kurzrock R (2017) Initiative for molecular profiling and advanced cancer therapy (IMPACT): an MD Anderson Precision Medicine Study. JCO Precis Oncol. https://doi.org/10.1200/PO.17.00002

  • Turan T, Kannan D, Patel M, Matthew Barnes J, Tanlimco SG, Lu R, Halliwill K, Kongpachith S, Kline DE, Hendrickx W, Cesano A, Butterfield LH, Kaufman HL, Hudson TJ, Bedognetti D, Marincola F, Samayoa J (2018) Immune oncology, immune responsiveness and the theory of everything. J Immunother Cancer 6(1):50. https://doi.org/10.1186/s40425-018-0355-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner D, Kondic AG, Anderson KM, Robinson A, Garon EB, Riess JW, Jain L, Mayawala K, Kang J, Ebbinghaus SW, Sinha V, de Alwis DP, Stone JA (2018) Pembrolizumab exposure-response assessments challenged by association of cancer cachexia and catabolic clearance. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-0415. pii: clincanres.0415.2018. [Epub ahead of print]

  • Uckun FM, Qazi S (2010) Bruton’s tyrosine kinase as a molecular target in treatment of leukemias and lymphomas as well as inflammatory disorders and autoimmunity. Expert Opin Ther Patents 20:1457–1470

    Article  CAS  Google Scholar 

  • Uckun FM, Zheng Y, Cetkovic-Cvrlje M, Vassilev A, Lisowski E, Waurzyniak B, Chen H, Carpenter R, Chen CL (2002) In vivo pharmacokinetic features, toxicity profile, and chemosensitizing activity of alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl)propenamide (LFM-A13), a novel antileukemic agent targeting Bruton’s tyrosine kinase. Clin Cancer Res 8:1224–1233

    CAS  PubMed  Google Scholar 

  • Uckun FM, Vassilev A, Dibirdik I, Tibbles HE (2007) Targeting JAK3 kinase-linked signal transduction pathways with rationally designed inhibitors [Review]. Anti Cancer Agents Med Chem 7:612–623

    Article  CAS  Google Scholar 

  • Uckun FM, Qazi S, Ma H, Tuel-Ahlgren L, Ozer Z (2010) STAT3 is a substrate of SYK tyrosine kinase in B-lineage leukemia/lymphoma cells exposed to oxidative stress. Proc Natl Acad Sci U S A 107:2902–2907

    Article  CAS  Google Scholar 

  • Valla K, Flowers CR, Koff JL (2018) Targeting the B cell receptor pathway in non-Hodgkin lymphoma. Expert Opin Investig Drugs 27:513–522. https://doi.org/10.1080/13543784.2018.1482273

    Article  CAS  PubMed  Google Scholar 

  • Waller CF, Tiessen RG, Lawrence TE, Shaw A, Liu MS, Sharma R, Baczkowski M, Kothekar MA, Micales CE, Barve A, Ranganna GM, Pennella EJ (2018) A pharmacokinetics and pharmacodynamics equivalence trial of the proposed pegfilgrastim biosimilar, MYL-1401H, versus reference pegfilgrastim. J Cancer Res Clin Oncol 144:1087–1095. https://doi.org/10.1007/s00432-018-2643-3

    Article  CAS  PubMed  Google Scholar 

  • Wicki A, Brown N, Xyrafas A, Bize V, Hawle H, Berardi S, Cmiljanović N, Cmiljanović V, Stumm M, Dimitrijević S, Herrmann R, Prêtre V, Ritschard R, Tzankov A, Hess V, Childs A, Hierro C, Rodon J, Hess D, Joerger M, von Moos R, Sessa C, Kristeleit R (2018) First-in human, phase 1, dose-escalation pharmacokinetic and pharmacodynamic study of the oral dual PI3K and mTORC1/2 inhibitor PQR309 in patients with advanced solid tumors (SAKK 67/13). Eur J Cancer 96:6–16. https://doi.org/10.1016/j.ejca.2018.03.012

    Article  CAS  PubMed  Google Scholar 

  • Zamboni WC, D’Argenio DZ, Stewart CF, MacVittie T, Delauter BJ, Farese AM, Potter DM, Kubat NM, Tubergen D, Egorin MJ (2001) Pharmacodynamic model of topotecan-induced time course of neutropenia. Clin Cancer Res 7(8):2301–2308

    CAS  PubMed  Google Scholar 

  • Zhou Q, Gallo JM (2011) The pharmacokinetic/pharmacodynamic pipeline: translating anticancer drug pharmacology to the clinic. AAPS J 13(1):111–120. https://doi.org/10.1208/s12248-011-9253-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih M. Uckun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Uckun, F.M., Qazi, S. (2019). Role of Clinical Pharmacodynamics Studies in the Era of Precision Medicines Against Cancer. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics