Skip to main content

Estimation of Quality in Frozen Fish by Low Field NMR

  • Living reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

This chapter addresses the potential of LF 1H NMR relaxometry to estimate the quality of fish products during freezing and frozen storage. This technique has shown to be, at least for some fish species, sensitive to changes occurring at subzero temperatures and the variation in the relaxation times kept a relationship with documented effects on the morphological and biochemical alterations of fish muscle. Moreover, the dependency of the relaxometry data on the freezing time and temperature has allowed the identification of indicators suitable for the estimation of shelf life, thus contributing to the increasing range of applications of the T2 decay signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Peri C. The universe of food quality. Food Qual Prefer. 2006;17:3–8.

    Article  Google Scholar 

  2. Grunert KG. Food quality-a means-end perspective. Food Qual Prefer. 1995;6:171–6.

    Article  Google Scholar 

  3. Shenouda SYK. Theories of protein denaturation during frozen storage of fish flesh. Advances in Food Research. 1980;26:275–311.

    Article  Google Scholar 

  4. Haard NF. Biochemical reactions in fish muscle during frozen storage. In: Bligh EG, editor. Seafood science and technology. Canada: fishing news books. London: Blackwell Scientific Publications; 1992. p. 176–209.

    Google Scholar 

  5. Sikorski ZE, Kolakowska A. Changes in proteins in frozen stored fish. In: Zikorski ZE, Sun Pan B, Shahidi F, editors. Seafood proteins. New York: Chapman and Hall; 1994. p. 99–112.

    Chapter  Google Scholar 

  6. Carmona P, Sánchez-Alonso I, Careche M. Chemical changes during freezing and frozen storage of fish investigated by vibrational spectroscopy. In: ECY L-C, Griffiths P, Chalmers JM, editors. Applications of vibrational spectroscopy in food science. New York: Wiley; 2010. p. 229–40.

    Google Scholar 

  7. Jaczynski J, Tahergorabi R, Hunt AL, Park JW. Safety and quality of frozen aquatic food products. In: Da-Wen S, editor. Handbook of frozen food processing and packaging. 2nd ed. Boca Raton: CRC Press; 2012. p. 343–85.

    Google Scholar 

  8. Careche M, Herrero AM, Rodríguez-Casado A, Del Mazo ML, Carmona P. Structural changes of hake (Merluccius merluccius L.) fillets: effects of freezing and frozen storage. J Agric Food Chem. 1999;47:952–9.

    Article  Google Scholar 

  9. Herrero AM, Carmona P, Careche M. Raman spectroscopic study of structural changes in hake (Merluccius merluccius L.) muscle proteins during frozen storage. J Agric Food Chem. 2004;52:2147–53.

    Article  Google Scholar 

  10. Herrero AM, Carmona P, García ML, Solas MT, Careche M. Ultrastructural changes and structure and mobility of myowater in frozen-stored hake (Merluccius merluccius L.) muscle: relationship with functionality and texture. J Agric Food Chem. 2005;53:2558–66.

    Article  Google Scholar 

  11. Howgate P. Fish. In: Vaughan JG, editor. Food miscroscopy. London: Academic Press; 1979. p. 343–92.

    Google Scholar 

  12. García ML, Martín-Benito J, Solas MT, Fernández B. Ultrastructure of the myofibrillar component in cod (Gadus morhua L.) and hake (Merluccius merluccius L.) stored at −20° C as a function of time. J Agric Food Chem. 1999;47:3809–15.

    Article  Google Scholar 

  13. Sánchez-Alonso I, Carmona P, Careche M. Vibrational spectroscopic analysis of hake (Merluccius merluccius L.) lipids during frozen storage. Food Chem. 2012;132:160–7.

    Article  Google Scholar 

  14. Bremner HA. Toward practical definitions of quality for food science. Crit Rev Food Sci Nutr. 2000;40:83–90.

    Article  Google Scholar 

  15. Bertram HC, Andersen HJ. Applications of NMR in meat science. In: Webb GA, editor. Annual reports on NMR spectroscopy. San Diego: Elsevier; 2004. p. 157–202.

    Google Scholar 

  16. Pearce KL, Rosenvold K, Andersen HJ, Hopkins DL. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes – a review. Meat Sci. 2011;89:111–24.

    Article  Google Scholar 

  17. Erikson U, Standal IB, Aursand IG, Veliyulin E, Aursand M. Use of NMR in fish processing optimization: a review of recent progress. Magn Reson Chem. 2012;50:471–80.

    Article  Google Scholar 

  18. Kirtil E, Oztop MH. 1H nuclear magnetic resonance relaxometry and magnetic resonance imaging and applications in food science and processing. Food Eng Rev. 2016;8:1–22.

    Article  Google Scholar 

  19. Belton PS. Spectroscopic approaches to the understanding of water in foods. Food Rev Int. 2011;27:170–91.

    Article  Google Scholar 

  20. Hills BP, Takacs SF, Belton PS. A new interpretation of proton NMR relaxation time measurements of water in food. Food Chem. 1990;37:95–111.

    Article  Google Scholar 

  21. Jepsen SM, Pedersen HT, Engelsen SB. Application of chemometrics to low-field 1H NMR relaxation data of intact fish flesh. J Sci Food Agric. 1999;79:1793–802.

    Article  Google Scholar 

  22. Jensen KN, Guldager HS, Jørgensen BM. Three-way modelling of NMR relaxation profiles from thawed cod muscle. J Aquat Food Prod Technol. 2002;11:201–14.

    Article  Google Scholar 

  23. Hills BP, Takacs SF, Belton PS. The effects of proteins on the proton N.M.R. transverse relaxation time of water. II. Protein aggregation. Molecular Physics. 1989;67:919–37.

    Article  Google Scholar 

  24. Hills BP, Takacs SF, Belton PS. The effects of proteins on the proton N.M.R. transverse relaxation time of water I. Native bovine serum albumin. Molecular Physics. 1989;67:903–18.

    Article  Google Scholar 

  25. Belton PS, Jackson RR, Packer KJ. Pulsed NMR studies of water in striated muscle: I Transverse nuclear spin relaxation-times and freezing effects. Biochim Biophys Acta. 1972;286:16–25.

    Article  Google Scholar 

  26. Venturi L, Rocculi P, Cavani C, Placucci G, Rosa MD, Cremonini MA. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance. J Agric Food Chem. 2007;55:10572–8.

    Article  Google Scholar 

  27. Gudjónsdóttir M, Lauzon HL, Magnusson H, Sveinsdottir K, Arason S, Martinsdottir E, Rustad T. Low field nuclear magnetic resonance on the effect of salt and modified atmosphere packaging on cod (Gadus morhua) during superchilled storage. Food Res Int. 2011;44:241–9.

    Article  Google Scholar 

  28. Erikson U, Kjørsvik E, Bardal T, Digre H, Schei M, Søreide TS, Aursand IG. Quality of Atlantic cod frozen in cell alive system, air-blast, and cold storage freezers. J Aquat Food Prod Technol. 2016;25:1001–20.

    Article  Google Scholar 

  29. Erikson U, Veliyulin E, Singstad TE, Aursand M. Salting and desalting of fresh and frozen-thawed cod (Gadus morhua) fillets: a comparative study using 23Na NMR, 23Na MRI, low-field 1H NMR, and physicochemical analytical methods. J Food Sci. 2004;69:E107–14.

    Google Scholar 

  30. Andersen CM, Rinnan A. Distribution of water in fresh cod. LWT-Food Sci Technol. 2002;35:687–96.

    Article  Google Scholar 

  31. Gudjónsdóttir M, Arason S, Rustad T. The effects of pre-salting methods on water distribution and protein denaturation of dry salted and rehydrated cod – a low-field NMR study. J Food Eng. 2011;104:23–9.

    Article  Google Scholar 

  32. Aursand IG, Gallart-Jornet L, Erikson U, Axelson DE, Rustad T. Water distribution in brine salted cod (Gadus morhua) and salmon (Salmo salar): a low-field 1H NMR study. J Agric Food Chem. 2008;56:6252–60.

    Article  Google Scholar 

  33. Digre H, Erikson U, Aursand IG, Gallart-Jornet L, Misimi E, Rustad T. Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality. J Food Sci. 2011;76:S89–S100.

    Article  Google Scholar 

  34. Lambelet P, Renevey F, Kaabi C, Raemy A. Low-field nuclear magnetic resonance relaxation study of stored or processed cod. J Agric Food Chem. 1995;43:1462–6.

    Article  Google Scholar 

  35. Yano S, Tanaka M, Suzuki N, Kanzaki Y. Texture change of beef and salmon meats caused by refrigeration and use of pulse NMR as an index of taste. Food Sci Technol Res. 2002;8:137–43.

    Article  Google Scholar 

  36. Aursand IG, Veliyulin E, Bocker U, Ofstad R, Rustad T, Erikson U. Water and salt distribution in Atlantic salmon (Salmo salar) studied by low-field 1H NMR, 1H and 23Na MRI and light microscopy: effects of raw material quality and brine salting. J Agric Food Chem. 2009;57:46–54.

    Article  Google Scholar 

  37. Sánchez-Alonso I, Moreno P, Careche M. Low field NMR relaxometry in hake (Merluccius merluccius, L.) muscle after different freezing and storage conditions. Food Chem. 2014;153:250–7.

    Article  Google Scholar 

  38. Sánchez-Valencia J, Sánchez-Alonso I, Martinez I, Careche M. Low-field nuclear magnetic resonance of proton (1H LF NMR) relaxometry for monitoring the time and temperature history of frozen hake (Merluccius merluccius L.) muscle. Food Bioprocess Technol. 2015;8:2137–45.

    Article  Google Scholar 

  39. Åsli M, Ofstad R, Böcker U, Jessen F, Einena O, Mørkøre T. Effect of sodium bicarbonate and varying concentrations of sodium chloride in brine on the liquid retention of fish (Pollachius virens L.) muscle. J Sci Food Agric. 2016;96:1252–9.

    Article  Google Scholar 

  40. Aursand IG, Erikson U, Veliyulin E. Water properties and salt uptake in Atlantic salmon fillets as affected by ante-mortem stress, rigor mortis, and brine salting: a low-field 1H NMR and 1H/23Na MRI study. Food Chem. 2010;120:482–9.

    Article  Google Scholar 

  41. Løje H, Green-Petersen D, Nielsen J, Jørgensen BM, Jensen KN. Water distribution in smoked salmon. J Sci Food Agric. 2007;87:212–7.

    Article  Google Scholar 

  42. Jensen KN, Jørgensen BM, Nielsen HH, Nielsen J. Water distribution and mobility in herring muscle in relation to lipid content, season, fishing ground and biological parameters. J Sci Food Agric. 2005;85:1259–67.

    Article  Google Scholar 

  43. Gudjónsdóttir M, Gunnlaugsson VN, Finnbogadottir GA, Sveinsdottir K, Magnusson H, Arason S, Rustad T. Process control of lightly salted wild and farmed Atlantic cod (Gadus morhua) by brine injection, brining, and freezing – a low field NMR study. J Food Sci. 2010;75:E527–36.

    Article  Google Scholar 

  44. Zang J, Xu Y, Xia W, Jiang Q. The impact of desmin on texture and water-holding capacity of ice-stored grass carp (Ctenopharyngodon idella) fillet. Int J Food Sci Technol. 2016;52:464–71.

    Article  Google Scholar 

  45. Gudjónsdóttir M, Karlsdóttir MG, Arason S, Rustad T. Injection of fish protein solutions of fresh saithe (Pollachius virens) fillets studied by low field nuclear magnetic resonance and physicochemical measurements. J Food Sci Technol-Mysore. 2013;50:228–38.

    Article  Google Scholar 

  46. Nikoo M, Regenstein JM, Ghomi MR, Benjakul S, Yang N, Xu X. Study of the combined effects of a gelatin-derived cryoprotective peptide and a non-peptide antioxidant in a fish mince model system. LWT-Food Sci Technol. 2015;60:358–64.

    Article  Google Scholar 

  47. Nott KP, Evans SD, Hall LD. Quantitative magnetic resonance imaging of fresh and frozen-thawed trout. Magn Reson Imaging. 1999;17:445–55.

    Article  Google Scholar 

  48. Sánchez-Alonso I, Martinez I, Sánchez-Valencia J, Careche M. Estimation of freezing storage time and quality changes in hake (Merluccius merluccius, L.) by low field NMR. Food Chem. 2012;135:1626–34.

    Article  Google Scholar 

  49. Steen C, Lambelet P. Texture changes in frozen cod mince measured by low-field nuclear magnetic resonance spectroscopy. J Sci Food Agric. 1997;75:268–72.

    Article  Google Scholar 

  50. Burgaard MG, Jørgensen BM. Effect of temperature on quality-related changes in cod (Gadus morhua) during short- and long-term frozen storage. J Aquat Food Prod Technol. 2010;19:249–63.

    Article  Google Scholar 

  51. Martino MN, Zaritzky NE. Ice recrystallization in a model system and in frozen muscle tissue. Cryobiology. 1989;26:138–48.

    Article  Google Scholar 

  52. Li Y, Jia W, Zhang CH, Li X, Wang JZ, Zhang DQ, et al. Fluctuated low temperature combined with high-humidity thawing to reduce physicochemical quality deterioration of beef. Food and Bioprocess Technol. 2014;7:3370–80.

    Article  Google Scholar 

  53. Hurling R, McArthur H. Thawing, refreezing and frozen storage effects on muscle functionality and sensory attributes of frozen cod (Gadus morhua). J Food Sci. 1996;61:1289–96.

    Article  Google Scholar 

  54. Carneiro CD, Marsico ET, Ribeiro RDR, Conte CA, Alvares TS, De Jesus EFO. Studies of the effect of sodium tripolyphosphate on frozen shrimp by physicochemical analytical methods and low field nuclear magnetic resonance (LF H-1 NMR). LWT-Food Sci Technol. 2013;50:401–7.

    Article  Google Scholar 

  55. Carneiro CD, Marsico ET, Ribeiro RDR, Conte CA, Alvares TS, De Jesus EFO. Quality attributes in shrimp treated with polyphosphate after thawing and cooking: a study using physicochemical analytical methods and low-field H-1 NMR. J Food Process Eng. 2013;36:492–9.

    Article  Google Scholar 

  56. Andersen CM, Jorgensen BM. On the relation between water pools and water holding capacity in cod muscle. J Aquat Food Prod Technol. 2004;13:13–23.

    Article  Google Scholar 

  57. Taoukis PS, Labuza TP, Saguy IS. Kinetics of food deterioration and shelf-life prediction. In: Valentas KJ, Rotstein E, Singh RD, editors. The handbook of food engineering practice. New York: CRC Press; 1997. p. 2–75.

    Google Scholar 

  58. Careche M, Carmona P, Sanchez-Alonso I. Monitoring the time and temperature history of frozen hake (Merluccius merluccius, L.) muscle by FTIR spectroscopy of the lipid fraction. Food Bioprocess Technol. 2015;8:112–9.

    Article  Google Scholar 

  59. Cheng JH, Dai Q, Sun DW, Zeng XA, Liu D, Pu HB. Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends Food Sci Technol. 2013;34:18–31.

    Article  Google Scholar 

  60. Sánchez-Valencia J, Sánchez-Alonso I, Martinez I, Careche M. Estimation of frozen storage time or temperature by kinetic modeling of the Kramer shear resistance and water holding capacity (WHC) of hake (Merluccius merluccius, L.) muscle. J Food Eng. 2014;120:37–43.

    Article  Google Scholar 

  61. Sánchez-Alonso I, Moreno P, Careche, M. Low field nuclear magnetic resonance (LF NMR) spectroscopic analysis of hake (Merluccius merluccius, L.) upon freezing. A possibility for authentication of fresh vs thawed muscle. 4th Trans-Atlantic Fisheries Technology Conference (TAFT), Clearwater Beach, FL, 30 Oct–2 Nov 2012.

    Google Scholar 

  62. Careche M, Sánchez-Alonso I, González-Muñoz I, Navas A, Tejada M. LF NMR relaxometry can be used to verify that fish have been subjected to freezing in order to comply with EU regulation about prevention of parasite infection. 46th WEFTA Meeting, Split, 12–14 Oct 2016.

    Google Scholar 

Download references

Acknowledgements

This work has been partly financed by Spanish ANIRISK (AGL2015–68248-C1) MINECO/FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Careche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Careche, M., Sánchez-Alonso, I., Martinez, I. (2017). Estimation of Quality in Frozen Fish by Low Field NMR. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28275-6_83-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28275-6_83-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28275-6

  • Online ISBN: 978-3-319-28275-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics