Skip to main content

Cellulose Nanofibers

Synthesis, Unique Properties, and Emerging Applications

  • Reference work entry
  • First Online:
Handbook of Nanocelluloses

Abstract

Considering the environmentally oriented globalization and the worldwide sustainable development approach of governments, the production of nanocelluloses, in particular, cellulose nanofibers, from different resources (plant, animals, and microorganisms) has drawn extensive attention. Cellulose nanofibers comprise of three main types including microfibrillated cellulose (MFC), nanocrystalline cellulose (NFC), as well as bacterial nanocellulose (BC). To date, researchers conduct studies on cellulose nanofibers (CNFs) as top candidates that possess staggering physical, chemical, and biological properties. In this chapter, different kinds of CNFs and their properties are discussed. Unique morphological, mechanical, chemical, electrical, and thermal properties of CNFs will be also highlighted followed by other major properties such as optical, biodegradability, and biocompatibility. Finally, some emerging applications in reinforcement, electronics, nanopaper production, filtration, and biomedical field are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mu, R., et al.: Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci. Technol. 93(Sept), 136–144 (2019). https://doi.org/10.1016/j.tifs.2019.09.013

    Article  CAS  Google Scholar 

  2. Zhang, Q., Zhang, L., Wu, W., Xiao, H.: Methods and applications of nanocellulose loaded with inorganic nanomaterials: a review. Carbohydr. Polym. 229, 115454 (2020). https://doi.org/10.1016/j.carbpol.2019.115454

    Article  CAS  PubMed  Google Scholar 

  3. Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T., Goswami, S.: Commercial application of cellulose nano-composites – a review. Biotechnol. Rep. 21, e00316 (2019). https://doi.org/10.1016/j.btre.2019.e00316

    Article  Google Scholar 

  4. Trache, D., et al.: Nanocellulose: from fundamentals to advanced applications, vol. 8, no. May (2020)

    Google Scholar 

  5. Missoum, K., Belgacem, M.N., Barnes, J.P., Brochier-Salon, M.C., Bras, J.: Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter. 8(32), 8338–8349 (2012). https://doi.org/10.1039/c2sm25691f

    Article  CAS  Google Scholar 

  6. Besbes, I., Vilar, M.R., Boufi, S.: Nanofibrillated cellulose from Alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydr. Polym. 86(3), 1198–1206 (2011). https://doi.org/10.1016/j.carbpol.2011.06.015

    Article  CAS  Google Scholar 

  7. Orelma, H., Filpponen, I., Johansson, L.S., Österberg, M., Rojas, O.J., Laine, J.: Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases. 7(1–4), 1–12 (2012). https://doi.org/10.1007/s13758-012-0061-7

    Article  CAS  Google Scholar 

  8. Mishra, R.K., Sabu, A., Tiwari, S.K.: Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J. Saudi Chem. Soc. 22(8), 949–978 (2018). https://doi.org/10.1016/j.jscs.2018.02.005

    Article  CAS  Google Scholar 

  9. Barhoum, A., Li, H., Chen, M., Cheng, L., Yang, W., Dufresne, A.: Emerging applications of cellulose nanofibers. Handb. Nanofibers, 1–26 (2018). https://doi.org/10.1007/978-3-319-42789-8_53-1

  10. Klemm, D., Schumann, D., Udhardt, U., Marsch, S.: Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog. Polym. Sci. 26(9), 1561–1603 (2001). https://doi.org/10.1016/S0079-6700(01)00021-1

    Article  CAS  Google Scholar 

  11. Mohammadkazemi, F., Azin, M., Ashori, A.: Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 117, 518–523 (2015). https://doi.org/10.1016/j.carbpol.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  12. Devabaktuni Lavanya, L.N.V.K., Kulkarni, P.K., Dixit, M., Raavi, P.K.: Sources of cellulose and their applications – a review. Int. J. Drug Formul. Res. Sources Cellulose Appl. 2(2011), 19–38 (2015)

    Google Scholar 

  13. Patel, D.K., Dutta, S.D., Lim, K.-T.: Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv. 9(33), 19143–19162 (2019)

    Article  CAS  Google Scholar 

  14. Kaushik, M., Moores, A.: Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 18(3), 622–637 (2016). https://doi.org/10.1039/c5gc02500a

    Article  CAS  Google Scholar 

  15. Jozala, A.F., et al.: Bacterial nanocellulose production and application: a 10-year overview. Appl. Microbiol. Biotechnol. 100(5), 2063–2072 (2016). https://doi.org/10.1007/s00253-015-7243-4

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Z., Peng, H., Wang, W., Liu, T.: Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 116(5), 2658–2667 (2010). https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  17. Abeer, M.M., Mohd Amin, M.C.I., Martin, C.: A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J. Pharm. Pharmacol. 66(8), 1047–1061 (2014). https://doi.org/10.1111/jphp.12234

    Article  CAS  PubMed  Google Scholar 

  18. Nechyporchuk, O., Belgacem, M.N., Bras, J.: Production of cellulose nanofibrils: a review of recent advances. Ind. Crop. Prod. 93, 2–25 (2016). https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  CAS  Google Scholar 

  19. Roman, M.: Toxicity of cellulose nanocrystals: a review. Ind. Biotechnol. 11(1), 25–33 (2015). https://doi.org/10.1089/ind.2014.0024

    Article  CAS  Google Scholar 

  20. Serra, A., González, I., Oliver-Ortega, H., Tarrès, Q., Delgado-Aguilar, M., Mutjé, P.: Reducing the amount of catalyst in TEMPO-oxidized cellulose nanofibers: effect on properties and cost. Polymers (Basel). 9(11) (2017). https://doi.org/10.3390/polym9110557

  21. Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., Guan, G.: Nanocellulose: extraction and application. Carbon Resour. Convers. 1(1), 32–43 (2018). https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  22. Ilyas, R.A., et al.: Production, processes and modification of nanocrystalline cellulose from agro-waste: a review. In: Nanocrystalline Materials. IntechOpen-UK: IntechOpen (2019)

    Google Scholar 

  23. Khajavi, R., Meftahi, A., Alibakhshi, S., Samih, L.: Investigation of microbial cellulose/cotton/silver nanobiocomposite as a modern wound dressing. Adv. Mater. Res. 829, 616–621 (2014). https://doi.org/10.4028/www.scientific.net/AMR.829.616

    Article  CAS  Google Scholar 

  24. Klemm, D., et al.: Nanocelluloses: a new family of nature-based materials. Angew. Chemie – Int. Ed. 50(24), 5438–5466 (2011). https://doi.org/10.1002/anie.201001273

    Article  CAS  Google Scholar 

  25. Dilamian, M., Noroozi, B.: A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw. Cellulose. 26(10), 5831–5849 (2019). https://doi.org/10.1007/s10570-019-02469-y

    Article  CAS  Google Scholar 

  26. dos Santos, R.M., Flauzino Neto, W.P., Silvério, H.A., Martins, D.F., Dantas, N.O., Pasquini, D.: Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind. Crop. Prod. 50, 707–714 (2013). https://doi.org/10.1016/j.indcrop.2013.08.049

    Article  CAS  Google Scholar 

  27. Phanthong, P., Ma, Y., Guan, G., Abudula, A.: Extraction of nanocellulose from raw apple stem. J. Japan Inst. Energy. 94(8), 787–793 (2015). https://doi.org/10.3775/jie.94.787

    Article  CAS  Google Scholar 

  28. Rossi, E., Montoya Rojo, Ú., Cerrutti, P., Foresti, M.L., Errea, M.I.: Carboxymethylated Bacterial Cellulose: an Environmentally Friendly Adsorbent for Lead Removal from Water, vol. 6(6). Elsevier, Amesterdam: Elsevier B.V (2018)

    Google Scholar 

  29. Pinkney, S., Skuse, D., Rowson, N., Blackburn, S.: Microfibrillated cellulose – a new structural material, pp. 9–10. University of Birmingham,Uk: University of Birmingham (2011)

    Google Scholar 

  30. Ho, T.T.T., Zimmermann, T., Hauert, R., Caseri, W.: Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose. 18(6), 1391–1406 (2011). https://doi.org/10.1007/s10570-011-9591-2

    Article  CAS  Google Scholar 

  31. Habibi, Y., Goffin, A.L., Schiltz, N., Duquesne, E., Dubois, P., Dufresne, A.: Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem. 18(41), 5002–5010 (2008). https://doi.org/10.1039/b809212e

    Article  CAS  Google Scholar 

  32. Torres, F.G., Troncoso, O.P., Lopez, D., Grande, C., Gomez, C.M.: Reversible stress softening and stress recovery of cellulose networks. Soft Matter. 5(21), 4185–4190 (2009). https://doi.org/10.1039/b900441f

    Article  CAS  Google Scholar 

  33. Zhang, F., Ren, H., Tong, G., Deng, Y.: Ultra-lightweight poly (sodium acrylate) modified TEMPO-oxidized cellulose nanofibril aerogel spheres and their superabsorbent properties. Cellulose. 23(6), 3665–3676 (2016). https://doi.org/10.1007/s10570-016-1041-8

    Article  CAS  Google Scholar 

  34. Nair, S.S., Zhu, J.Y., Deng, Y., Ragauskas, A.J.: Characterization of cellulose nanofibrillation by micro grinding. J. Nanopart. Res. 16(4) (2014). https://doi.org/10.1007/s11051-014-2349-7

  35. Wang, S., et al.: Deconstruction of cellulosic fibers to fibrils based on enzymatic pretreatment. Bioresour. Technol. 267(June), 426–430 (2018). https://doi.org/10.1016/j.biortech.2018.07.067

    Article  CAS  PubMed  Google Scholar 

  36. Bian, H., et al.: Comparison of mixed enzymatic pretreatment and post-treatment for enhancing the cellulose nanofibrillation efficiency. Bioresour. Technol. 293 (2019). https://doi.org/10.1016/j.biortech.2019.122171

  37. Xie, H., Du, H., Yang, X., Si, C.: Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int. J. Polym. Sci. 2018 (2018). https://doi.org/10.1155/2018/7923068

  38. Long, L., et al.: Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass. Bioresour. Technol. 257(2), 334–338 (2018). https://doi.org/10.1016/j.biortech.2018.02.104

    Article  CAS  PubMed  Google Scholar 

  39. Tian, X., et al.: Enzyme-assisted mechanical production of microfibrillated cellulose from northern bleached softwood Kraft pulp. Cellulose. 24(9), 3929–3942 (2017). https://doi.org/10.1007/s10570-017-1382-y

    Article  CAS  Google Scholar 

  40. Bian, H., Gao, Y., Yang, Y., Fang, G., Dai, H.: Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresour. Technol. 256, 321–327 (2018). https://doi.org/10.1016/j.biortech.2018.02.038

    Article  CAS  PubMed  Google Scholar 

  41. Pommet, M., et al.: Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules. 9(6), 1643–1651 (2008). https://doi.org/10.1021/bm800169g

    Article  CAS  PubMed  Google Scholar 

  42. Niu, Q., Gao, K., Wu, W.: Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic. Carbohydr. Polym. 110, 47–52 (2014). https://doi.org/10.1016/j.carbpol.2014.03.042

    Article  CAS  PubMed  Google Scholar 

  43. Maiti, S., et al.: Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr. Polym. 98(1), 562–567 (2013). https://doi.org/10.1016/j.carbpol.2013.06.029

    Article  CAS  PubMed  Google Scholar 

  44. Wahlström, R.M., Suurnäkki, A.: Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem. 17(2), 694–714 (2015). https://doi.org/10.1039/c4gc01649a

    Article  Google Scholar 

  45. Moniruzzaman, M., Ono, T.: Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment. Bioresour. Technol. 127, 132–137 (2013). https://doi.org/10.1016/j.biortech.2012.09.113

    Article  CAS  PubMed  Google Scholar 

  46. Michelin, M., Gomes, D.G., Romaní, A., Polizeli, M.d.L.T.M., Teixeira, J.A.: Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules. 25(15), 1–36 (2020). https://doi.org/10.3390/molecules25153411

    Article  CAS  Google Scholar 

  47. Cai, J., et al.: Bamboo cellulose-derived cellulose acetate for electrospun nanofibers: synthesis, characterization and kinetics. Cellulose. 25(1), 391–398 (2018). https://doi.org/10.1007/s10570-017-1604-3

    Article  CAS  Google Scholar 

  48. Wsoo, M.A., Shahir, S., Mohd Bohari, S.P., Nayan, N.H.M., Razak, S.I.A.: A Review on the Properties of Electrospun Cellulose Acetate and Its Application in Drug Delivery Systems: A New Perspective, vol. 491. Elsevier, Amesterdam: Elsevier Ltd (2020)

    Google Scholar 

  49. Chakrabarty, A., Teramoto, Y.: Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them. Polymers (Basel). 10(5) (2018). https://doi.org/10.3390/polym10050517

  50. Ebrahimi, E., Babaeipour, V., Meftahi, A., Alibakhshi, S.: Effects of bio-production process parameters on bacterial cellulose mechanical properties. J. Chem. Eng. Japan. 50(11), 857–861 (2017). https://doi.org/10.1252/jcej.15we301

    Article  CAS  Google Scholar 

  51. Campano, C., Balea, A., Blanco, A., Negro, C.: Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose. 23(1), 57–91 (2016). https://doi.org/10.1007/s10570-015-0802-0

    Article  CAS  Google Scholar 

  52. Meftahi, A., Khajavi, R., Rashidi, A., Rahimi, M.K., Bahador, A.: Effect of purification on nano microbial cellulose pellicle properties. Procedia Mater. Sci. 11, 206–211 (2015). https://doi.org/10.1016/j.mspro.2015.11.108

    Article  CAS  Google Scholar 

  53. Gan, P.G., Sam, S.T., Bin Abdullah, M.F., Omar, M.F.: Thermal properties of nanocellulose-reinforced composites: a review. J. Appl. Polym. Sci. 137(11) (2020). https://doi.org/10.1002/app.48544

  54. Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., Sun, D.: Recent advances in bacterial cellulose. Cellulose. 21(1), 1–30 (2014). https://doi.org/10.1007/s10570-013-0088-z

    Article  Google Scholar 

  55. Jannatyha, N., Shojaee-Aliabadi, S., Moslehishad, M., Moradi, E.: Comparing mechanical, barrier and antimicrobial properties of nanocellulose/CMC and nanochitosan/CMC composite films. Int. J. Biol. Macromol. 164, 2323–2328 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.249

    Article  CAS  PubMed  Google Scholar 

  56. Hurley, B.R.A., Ouzts, A., Fischer, J., Gomes, T.: Paper presented at IAPRI world conference 2012 effects of private and public label packaging on consumer purchase patterns. Packag. Technol. Sci. 29(1), 399–412 (2013). https://doi.org/10.1002/pts

    Article  Google Scholar 

  57. Yang, W., Cheng, T., Feng, Y., Qu, J., He, H., Yu, X.: Isolating cellulose nanofibers from steam-explosion pretreated corncobs using mild mechanochemical treatments. Bioresources. 12(4), 9183–9197 (2017). https://doi.org/10.15376/biores.12.4.9183-9197

    Article  CAS  Google Scholar 

  58. Sanchez-Salvador, J.L., et al.: Comparison of mechanical and chemical nanocellulose as additives to reinforce recycled cardboard. Sci. Rep. 10(1), 1–14 (2020). https://doi.org/10.1038/s41598-020-60507-3

    Article  CAS  Google Scholar 

  59. Guhados, G., Wan, W., Hutter, J.L.: Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir. 21(14), 6642–6646 (2005). https://doi.org/10.1021/la0504311

    Article  CAS  PubMed  Google Scholar 

  60. Kim, H.C., Kim, J.W., Zhai, L., Kim, J.: Strong and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields. Cellulose. 26(10), 5821–5829 (2019). https://doi.org/10.1007/s10570-019-02496-9

    Article  CAS  Google Scholar 

  61. Kim, J.H., et al.: Review of nanocellulose for sustainable future materials. Int. J. Precis. Eng. Manuf. – Green Technol. 2(2), 197–213 (2015). https://doi.org/10.1007/s40684-015-0024-9

    Article  Google Scholar 

  62. Boufi, S., Kaddami, H., Dufresne, A.: Mechanical performance and transparency of nanocellulose reinforced polymer nanocomposites. Macromol. Mater. Eng. 299(5), 560–568 (2014). https://doi.org/10.1002/mame.201300232

    Article  CAS  Google Scholar 

  63. Du, X., Zhang, Z., Liu, W., Deng, Y.: Nanocellulose-based conductive materials and their emerging applications in energy devices – a review. Nano Energy. 35, 299–320 (2017). https://doi.org/10.1016/j.nanoen.2017.04.001

    Article  CAS  Google Scholar 

  64. Abdel-karim, A.M., Salama, A.H., Hassan, M.L.: Electrical conductivity and dielectric properties of nanofibrillated cellulose thin films from bagasse. J. Phys. Org. Chem. 31(9), 1–9 (2018). https://doi.org/10.1002/poc.3851

    Article  CAS  Google Scholar 

  65. Hernández-Flores, J.A., et al.: Morphological and electrical properties of nanocellulose compounds and its application on capacitor assembly. Int. J. Polym. Sci. 2020 (2020). https://doi.org/10.1155/2020/1891064

  66. Lin, N., Dufresne, A.: Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59, 302–325 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  67. Meftahi, A., Shahriari, H.R., Khajavi, R., Rahimi, M.K., Sharifian, A.: Investigation on nano microbial cellulose/honey composite for medical application. Mater. Res. Express. 7(8), 085003 (2020). https://doi.org/10.1088/2053-1591/aba8de

    Article  CAS  Google Scholar 

  68. Bhat, A.H., Dasan, Y.K., Khan, I., Soleimani, H., Usmani, A.: Application of Nanocrystalline Cellulose: Processing and Biomedical Applications. woodheadpublishing, Cambridge (2017)

    Google Scholar 

  69. Jorfi, M., Foster, E.J.: Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132(14), 1–19 (2015). https://doi.org/10.1002/app.41719

    Article  CAS  Google Scholar 

  70. Moniri, M., et al.: Production and status of bacterial cellulose in biomedical engineering. Nano. 7(9), 1–26 (2017). https://doi.org/10.3390/nano7090257

    Article  CAS  Google Scholar 

  71. Poveda, R.L., Gupta, N.: Carbon nanofiber reinforced polymer composites. Carbon Nanofiber Reinf. Polym. Compos., 1–98 (2015). https://doi.org/10.1007/978-3-319-23787-9

  72. Gustin, M.S.: Evaluation of small-scale constructed wetland for water quality and Hg transformation. J. Hazard. Mater. 1–13 (2007). https://doi.org/10.1016/j.jhazmat.2007.06.077

  73. Antonietti, M.: Sustainable bulk structural material engineered from cellulose nanofibers. Matter. 3(2), 339–340 (2020). https://doi.org/10.1016/j.matt.2020.06.024

    Article  Google Scholar 

  74. Huang, W.: Cellulose Nanopapers. Elsevier, UK. (2018)

    Google Scholar 

  75. Fang, Z., et al.: Novel nanostructured paper with ultra-high transparency and ultra-high haze for solar cells novel nanostructured paper with ultra-high transparency and ultra-high haze for solar cells solar cell substrates require high optical transparency, but also pref. Nano Lett. 12, 765–773 (2013)

    Google Scholar 

  76. Chen, C., Hu, L.: Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc. Chem. Res. 51(12), 3154–3165 (2018). https://doi.org/10.1021/acs.accounts.8b00391

    Article  CAS  PubMed  Google Scholar 

  77. Dias, O.A.T., Konar, S., Leão, A.L., Yang, W., Tjong, J., Sain, M.: Current state of applications of nanocellulose in flexible energy and electronic devices. Front. Chem. 8 (2020). https://doi.org/10.3389/fchem.2020.00420

  78. Kim, J.M., Guccini, V., Dong Seong, K., Oh, J., Salazar-Alvarez, G., Piao, Y.: Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes. Carbon N. Y. 118, 8–17 (2017). https://doi.org/10.1016/j.carbon.2017.03.028

    Article  CAS  Google Scholar 

  79. Chen, X., Yuan, F., Zhang, H., Huang, Y., Yang, J., Sun, D.: Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. J. Mater. Sci. 51(12), 5573–5588 (2016). https://doi.org/10.1007/s10853-016-9899-2

    Article  CAS  Google Scholar 

  80. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    Article  Google Scholar 

  81. Dai, Z., Ottesen, V., Deng, J., Helberg, R.M.L., Deng, L.: A brief review of nanocellulose based hybrid membranes for CO2 separation. Fibers. 7(5), 1–18 (2019). https://doi.org/10.3390/FIB7050040

    Article  Google Scholar 

  82. Sohsomboon, N., Kanzaki, H., Unique, N.T.: Erratum: unique antimicrobial spectrum of ophiobolin K produced by aspergillus ustus bioscience. Biotechnol. Biochem. (2018). https://doi.org/10.1080/09168451.2018.1429890. Biosci. Biotechnol. Biochem., vol. 83, no. 11, p. 2174, 2019, https://doi.org/10.1080/09168451.2018.1437884

  83. Zhang, Z., Sèbe, G., Rentsch, D., Zimmermann, T., Tingaut, P.: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26(8), 2659–2668 (2014). https://doi.org/10.1021/cm5004164

    Article  CAS  Google Scholar 

  84. Mautner, A.: Nanocellulose water treatment membranes and filters: a review. Polym. Int. 69(9), 741–751 (2020). https://doi.org/10.1002/pi.5993

    Article  CAS  Google Scholar 

  85. Wang, W., et al.: Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. J. Hazard. Mater. 385, 121582 (2020). https://doi.org/10.1016/j.jhazmat.2019.121582

    Article  CAS  PubMed  Google Scholar 

  86. Singh, M.R., Patel, S., Singh, D.: Natural Polymer-Based Hydrogels as Scaffolds for Tissue Engineering. Elsevier, UK. (2016)

    Google Scholar 

  87. Meftahi, A., Shahriari, H.R., Khajavi, R., Rahimi, M.K., Sharifian, A., Meftahi, A.: Investigation on nano microbial cellulose/honey composite for medical application. Mater. Res. Express. 7(8) (2020). https://doi.org/10.1088/2053-1591/aba8de

  88. Meftahi, A., Nasrolahi, D., Babaeipour, V., Alibakhshi, S., Shahbazi, S.: Investigation of nano bacterial cellulose coated by Sesamum oil for wound dressing application. Procedia Mater. Sci. 11, 212–216 (2015). https://doi.org/10.1016/j.mspro.2015.11.109

    Article  CAS  Google Scholar 

  89. K. Ludwicka, M. Jedrzejczak-Krzepkowska, K. Kubiak, M. Kolodziejczyk, T. Pankiewicz, and S. Bielecki, Medical and cosmetic applications of bacterial NanoCellulose. Elsevier B.V., 2016

    Google Scholar 

  90. Rajwade, J.M., Paknikar, K.M., Kumbhar, J.V.: Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 99(6), 2491–2511 (2015). https://doi.org/10.1007/s00253-015-6426-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Meftahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Meftahi, A., Momeni Heravi, M.E., Barhoum, A., Samyn, P., Najarzadeh, H., Alibakhshi, S. (2022). Cellulose Nanofibers. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-89621-8_13

Download citation

Publish with us

Policies and ethics