Skip to main content

Optimal Production Manufacturing Based on Intelligent Control System

  • Conference paper
  • First Online:
Technological Transformation: A New Role For Human, Machines And Management (TT 2020)

Abstract

In this article, we proposed an intelligent approach for an optimal production based on the manufacturing process. By examining the manufacturing process, we draw a big idea of how this industry manufacturing performing his production and analysing those process to determine the control factors that control it, by using those information we build a control system based on the factory real control system. To simplify the complexity of the manufacturing process, we divide it into a sub-process based on the production line and the number of processes and create for each sub-process a logical model. By accumulating all the logical model, we have a big hierarchy logical model for the manufacturing process. Each of those sub-system logical models examined using an artificial neural network, this model based on the control system that is created. The goal of the neural network is to determine how the control factors interfere with manufacturing production. From results obtained from the neural network and by using Pareto front, we determine a set of an optimal configuration for the control system. the conclusions determine in this article can be extended to the processing industry worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagajewicz, M., Ji, S.: Rigorous targeting procedure for the design of crude fractionation units with pre-flashing or pre-fractionation. Ind. Eng. Chem. Res. 41(12), 3003–3011 (2002)

    Article  Google Scholar 

  2. Bagajewicz, M.J.: Energy savings horizons for the retrofit of chemical processes. Application to crude fractionation units. Comput. Chem. Eng. 23(1), 1–9 (1998)

    Article  Google Scholar 

  3. Bansal, S., Darbari, M.: Multi-objective intelligent manufacturing system for multi machine scheduling. Int. J. Adv. Comput. Sci. Appl. 3(3), 102 (2012)

    Google Scholar 

  4. Benki, A.: Méthodes efficaces de capture de front de pareto en conception mécanique multicritére: applications industrielles, p. 153 (2014)

    Google Scholar 

  5. Cheikh, M., Jarboui, B., Loukil, T., Siarry, P.: A method for selecting pareto optimal solutions in multiobjective optimization, p. 12 (2010)

    Google Scholar 

  6. Contreras-Leiva, M.P., Rivas, F., Rojas, J.D., Arrieta, O., Vilanova, R., Barbu, M.: Multi-objective optimal tuning of two degrees of freedom PID controllers using the ENNC method. In: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), pp. 67–72. IEEE, Sinaia (2016)

    Google Scholar 

  7. Dipama, J.: Optimisation Multi-Objectif Des Systèmes Énergétiques, p. 205 (2010)

    Google Scholar 

  8. Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Ppp-net: platform-aware progressive search for pareto optimal neural architectures, p. 4 (2018)

    Google Scholar 

  9. Fieldsend, J.E., Singh, S.: Pareto evolutionary neural networks. IEEE Trans. Neural Netw. 16(2), 338–354 (2005)

    Article  Google Scholar 

  10. Zhao, H., Lee, T.-T.: Research on multi-objective optimization control for nonlinear unknown systems. In: The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ 2003, pp. 402–407. IEEE, St Louis (2003)

    Google Scholar 

  11. Kripke, S.A.: Semantical analysis of modal logic i normal modal propositional calculi. Math. Logic Q. 9(5–6), 67–96 (1963)

    Article  MathSciNet  Google Scholar 

  12. Nguyen, T.T.: A multi-objective deep reinforcement learning framework, p. 17 (2018)

    Google Scholar 

  13. Oujebbour, F.Z.: Méthodes et applications industrielles en optimisation multi-critère de paramètres de processus et de forme en emboutissage, p. 183 (2014)

    Google Scholar 

  14. Pham, N.K., Kumar, A., Aung, K.M.M.: Machine learning approach to generate pareto front for list-scheduling algorithms. In: Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems - SCOPES 2016, pp. 127–134. ACM Press, Sankt Goar (2016)

    Google Scholar 

  15. Meza, G.R., Ferragud, X.B., Saez, J.S., Durá, J.M.H.: Background on multiobjective optimization for controller tuning. In: Controller Tuning with Evolutionary Multiobjective Optimization, vol. 85, pp. 23–58. Springer Cham (2017)

    Google Scholar 

  16. Rivals, I., Personnaz, L., Dreyfus, G., Ploix, J.L.: Modelisation, Classificátion Et Commande Par Reseaux De Neurones: principes fondamentaux, methodologie de conception et illustrations’ industrielles, p. 42 (1995)

    Google Scholar 

  17. Roijers, D.M., Whiteson, S., Vamplew, P., Dazeley, R.: Why multi-objective reinforcement learning? p. 2 (2015)

    Google Scholar 

  18. Saad, I., Benrejeb, M.: Optimisation multicritere par Pareto-optimalite de problemes d’ordonnancement en tenant compte du cout de la production, p. 8 (2006)

    Google Scholar 

  19. Schweidtmann, A.M., Clayton, A.D., Holmes, N., Bradford, E., Bourne, R.A., Lapkin, A.A.: Machine learning meets continuous flow chemistry: automated optimization towards the pareto front of multiple objectives. Chem. Eng. J. 352, 277–282 (2018)

    Article  Google Scholar 

  20. Shir, O.M., Chen, S., Amid, D., Boaz, D., Anaby-Tavor, A., Moor, D.: Pareto optimization and tradeoff analysis applied to meta-learning of multiple simulation criteria. In: 2013 Winter Simulations Conference (WSC), pp. 89–100. IEEE, Washington (2013)

    Google Scholar 

  21. Zhang, T., Owodunni, O., Gao, J.: Scenarios in multi-objective optimisation of process parameters for sustainable Machining. Procedia CIRP 26, 373–378 (2015)

    Article  Google Scholar 

  22. Zilouchian, A., Jamshidi, M. (eds.): Intelligent Control Systems Using Soft Computing Methodologies. CRC Press, Boca Raton (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanafi Mohamed Yassine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yassine, H.M., Shkodyrev, V.P. (2021). Optimal Production Manufacturing Based on Intelligent Control System. In: Schaumburg, H., Korablev, V., Ungvari, L. (eds) Technological Transformation: A New Role For Human, Machines And Management. TT 2020. Lecture Notes in Networks and Systems, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-030-64430-7_18

Download citation

Publish with us

Policies and ethics