Skip to main content

Bioactive Compounds of Allium Species

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Vegetables and Legumes

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Evaluation of different plant species of Allium has resulted in identification of several bioactive constituents/phytochemicals. Some of the bioactive phytochemical constituents include organosulfur compounds, thiosulfinates, polysulfanes, polyphenols, tannins, flavonoids, alkaloids, saponins, fructans, fructo-oligosaccharides, essential oils, amino acids, vitamins, pigments, and much more. Traditionally, majority of the plants belonging to Allium sp. have been proved to be effective in treating flu, cold, cough, asthma, headache, stomachache, arthritis, and other common ailments. Besides, bioactive compounds identified in some of the commonly used Allium sp. plants are scientifically proven to contribute towards a wide range of bioactivities such as antioxidant, antimicrobial, anti-inflammatory, antidiabetic, anticancer, anti-hypercholesterolemic activities and much more. In the present chapter, attempts have been made to identify and report on some of the popular, widely consumed, and scientifically proven bioactivities of plants belonging to Allium species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Peters R (2018) Seed production in onions and some other Allium species. In: Onions and allied crops, vol 1. CRC Press, Milton, pp 161–176

    Chapter  Google Scholar 

  2. Banerjee SK, Maulik SK (2002) Effect of garlic on cardiovascular disorders: a review. Nutr J 1:4

    Article  Google Scholar 

  3. Borek C (2001) Antioxidant health effects of aged garlic extract. J Nutr 131:1010–1015

    Article  Google Scholar 

  4. Ernst MK, Chatterton NJ, Harrison PA, Matitschka G (1998) Characterization of fructan oligomers from species of the genus Allium L. J Plant Physiol 153:53–60

    Article  CAS  Google Scholar 

  5. Stajner D, Mili N, Canadanovi-Brunet J, Kapor A, Stajner M, Popovi BM (2006) Exploring Allium species as a source of potential medicinal agents. Phytother Res 20:581–584

    Article  CAS  Google Scholar 

  6. Vaughan JG, Geissler CA (2009) The new Oxford book of food plants. Oxford Press, Oxford, p 188

    Google Scholar 

  7. Randle WM, Lancaster JE (2002) Sulphur compounds in alliums in relation to flavor quality. In: Rabinowitch H-D, Currah L (eds) Allium crop science: recent advances. CABI Publishing, Wallingford, p 330. https://doi.org/10.1079/9780851995106.0329

    Chapter  Google Scholar 

  8. Shouk R, Abdou A, Shetty K, Sarkar D, Eid AH (2014) Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr Res 34:106–115

    Article  CAS  Google Scholar 

  9. Wang D, Liu P, Ma Y, Wang Y, Zhao X (2015) Discrimination of black onion flavor using the electronic nose. In: 6th International conference on manufacturing science and engineering, pp 414–417

    Google Scholar 

  10. Kimura S, Tung YC, Pan MH, Su NW, Lai YJ, Cheng KC (2017) Black garlic: a critical review of its production, bioactivity, and application. J Food Drug Anal 25:62–70

    Article  CAS  Google Scholar 

  11. Martínez-Casas L, Lage-Yusty M, López-Hernández J (2017) Changes in the aromatic profile, sugars, and bioactive compounds when purple garlic is transformed into black garlic. J Agric Food Chem 65:10804–10811

    Article  CAS  Google Scholar 

  12. Sut S, Maggi F, Bruno S, Badalamenti N, Quassinti L, Bramucci M, Beghelli D, Lupidi G, Dall’Acqua S (2020) Hairy garlic (Allium subhirsutum) from Sicily (Italy): LC-DAD-MSn analysis of secondary metabolites and in vitro biological properties. Molecules 25(12):2837. https://doi.org/10.3390/molecules25122837

    Article  CAS  Google Scholar 

  13. Fritsch RM, Keusgen M (2006) Occurrence and taxonomic significance of cysteine sulphoxides in the genus Allium L. (Alliaceae). Phytochemistry 67:1127–1135

    Article  CAS  Google Scholar 

  14. Simin N, Mitić-Ćulafić D, Pavić A, Orcic D, Nemes I, Cetojevic-Simin D, Mimica-Dukić N (2019) An overview of the biological activities of less known wild onions (genus Allium sect. Codonoprasum). Biol Serbica 41(2):57–62

    Google Scholar 

  15. Chyau CC, Lin YC, Mau JL (1997) Storage stability of deep-fried shallot flavoring. J Agric Food Chem 45:3211–3215

    Article  CAS  Google Scholar 

  16. Kubec R, Dadáková E (2009) Chromatographic methods for determination of substituted cysteine derivatives. J Chromatogr A 41:6957–6963

    Article  CAS  Google Scholar 

  17. Rose P, Whiteman M, Moore PK, Zhu YZ (2005) Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat Prod Rep 22(3):351–368

    Article  CAS  Google Scholar 

  18. Shukla Y, Kalra N (2007) Cancer chemoprevention with garlic and its constituents. Cancer Lett 247:167–181

    Article  CAS  Google Scholar 

  19. Upadhyay RK (2016) Nutraceutical, pharmaceutical and therapeutic uses of Allium cepa: a review. Int J Green Pharm 10(1):46–64

    Google Scholar 

  20. Ban JO, Hwang IG, Kim TM, Hwang BY, Lee US, Jeong HS, Yoon YW, Kim DJ, Hong JT (2007) Anti-proliferate and pro-apoptotic effects of 2,3-dihydro-3,5-di-hydroxy-6-methyl-4H-pyranone through inactivation of NF-KB in human colon cancer cells. Arch Pharm Res 30:1455–1463

    Article  CAS  Google Scholar 

  21. Grzeszczuk M, Wesolowska A, Jadczak D, Jakubowska B (2011) Nutritional value of chive edible flowers. Acta Sci Pol Hortorum Cultus 10:85–94

    Google Scholar 

  22. Leino ME (1992) Effect of freezing, freeze-drying, and air-drying on odor of chive characterized by headspace gas chromatography and sensory analyses. J Agric Food Chem 40:1379–1384

    Article  CAS  Google Scholar 

  23. Ríos-Ríos KL, Montilla A, Olano A, Villamiel M (2019) Physicochemical changes and sensorial properties during black garlic elaboration: a review. Trends Food Sci Technol 88:459–467

    Article  CAS  Google Scholar 

  24. Tsiaganis MC, Laskari K, Melissari E (2006) Fatty acid composition of Allium species lipids. J Food Compos Anal 19:620–662

    Article  CAS  Google Scholar 

  25. Najjaa H, Neffati M, Zouari S et al (2007) Essential oil composition and antibacterial activity of different extracts of Allium roseum L. a North African endemic species. C R Chim 10:820–826

    Article  CAS  Google Scholar 

  26. Kowalski R, Rodkiewicz T (2009) Fatty acids in oil from Allium vegetable seeds. Chem Nat Compd 45(3):409–410

    Article  CAS  Google Scholar 

  27. Nehdi IA, Sbihi HM, Tan CP, Al-Resayes SI, Rashid U, Al-Misned FA, El-Serehy HA (2020) Chemical composition, oxidative stability, and antioxidant activity of Allium ampeloprasum L. (Wild Leek) seed oil. J Oleo Sci 69(5):413–421

    Article  CAS  Google Scholar 

  28. Calvey EM, White KD, Matusik JE, Sha D, Block E (1998) Allium chemistry: identification of organosulfur compounds in ramp (Allium tricoccum) homogenates. Phytochemistry 49:359–364

    Article  CAS  Google Scholar 

  29. Dabeek WM, Kovinich N, Walsh C, Marra MV (2019) Characterization and quantification of major flavonol glycosides in ramps (Allium tricoccum). Molecules 24:3281. https://doi.org/10.3390/molecules24183281

    Article  CAS  Google Scholar 

  30. Zennie T, Ogzewalla D (1977) Ascorbic acid and vitamin A content of edible wild plants of Ohio and Kentucky. Econ Bot 31:76–79

    Article  CAS  Google Scholar 

  31. DeLeon ER, Gao Y, Huang E, Olson KR (2016) Garlic oil polysulfides: H2S-and O2-independent prooxidants in buffer and antioxidants in cells. Am J Physiol Regul Integr Comp Physiol 310:1212–1225

    Article  Google Scholar 

  32. Fredotović Ž, Šprung M, Soldo B, Ljubenkov I, Budić-Leto I, Bilušić T, Čikeš-Čulić V, Puizina J (2017) Chemical composition and biological activity of Allium cepa L. and Allium × cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules 22(3):448. https://doi.org/10.3390/molecules22030448

    Article  CAS  Google Scholar 

  33. Guan MJ, Zhao N, Xie KQ, Zeng T (2018) Hepatoprotective effects of garlic against ethanol-induced liver injury: a mini-review. Food Chem Toxicol 111:467–473

    Article  CAS  Google Scholar 

  34. Isbilen O, Rizaner N, Volkan E (2018) Anti-proliferative and cytotoxic activities of Allium autumnale PH Davis (Amaryllidaceae) on human breast cancer cell lines MCF-7 and MDA-MB-231. BMC Complement Altern Med 18:30

    Article  CAS  Google Scholar 

  35. Mollica A, Zengin G, Locatelli M, Picot-Allain CMN, Mahomoodally MF (2018) Multidirectional investigations on different parts of Allium scorodoprasum L. subsp. rotundum (L.) Stearn: phenolic components, in vitro biological, and in silico propensities. Food Res Int 108:641–649

    Article  Google Scholar 

  36. Oommen S, Anto RJ, Srinivas G, Karunagaran D (2004) Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol 485:97–103

    Article  CAS  Google Scholar 

  37. Pandurangan V, Amanulla SSD, Ramanathan K (2016) Anticancer efficacy of dry and fresh Allium ascalonicum (shallot) against HepG2 cell line. Nat J Physiol Pharm Pharmacol 6:196–199

    Article  CAS  Google Scholar 

  38. Park HS, Choi EJ, Lee JH, Kim GH (2013) Evaluation of Allium vegetables for anti-adipogenic, anti-cancer, and anti-inflammatory activities in vitro. J Life Sci 5:127–132

    Article  Google Scholar 

  39. Rahimi-Madiseh M, Heidarian E, Kheiri S, Rafieian-Kopaei M (2017) Effect of hydroalcoholic Allium ampeloprasum extract on oxidative stress, diabetes mellitus and dyslipidemia in alloxan-induced diabetic rats. Biomed Pharmacother 86:363–367

    Article  CAS  Google Scholar 

  40. Satvati SAR, Shooriabi M, Amin M, Shiezadeh F (2017) Evaluation of the antimicrobial activity of Tribulus terrestris, Allium sativum, Salvia officinalis, and Allium hirtifolium Boiss against Enterococcus faecalis. Int J Enteric Pathog 5:63–67

    Article  Google Scholar 

  41. Suleria HR, Butt MS, Anjum FM, Arshad M, Khalid N (2013) Aqueous garlic extract mitigate hypercholesterolemia and hyperglycemia; rabbit experimental modelling. Ann Nutr Metab (Conf Proc) 63:271

    Google Scholar 

  42. Suleria HR, Butt MS, Anjum FM, Saeed F, Khalid N (2015) Onion: nature protection against physiological threats. Crit Rev Food Sci Nutr 55(1):50–66

    Article  CAS  Google Scholar 

  43. Sultan MT, Buttxs MS, Qayyum MMN, Suleria HAR (2014) Immunity: plants as effective mediators. Crit Rev Food Sci Nutr 54(10):1298–1308

    Article  CAS  Google Scholar 

  44. Upadhyay RK (2017) Garlic induced apoptosis, cell cycle check points and inhibition of cancer cell proliferation. J Cancer Res 5(2):35–54

    CAS  Google Scholar 

  45. Zhi-Hong Y, Zi-Fei Q, Yi D, Xin-Sheng Y (2016) Phytochemistry and pharmacology of Allii Macrostemonis bulbus, a traditional Chinese medicine. Chin J Nat Med 14(7):481–498

    Google Scholar 

  46. Parvu M, Toiu A, Vlase L, Parvu EA (2010) Determination of some polyphenolic compounds from Allium species by HPLC-UV-MS. Nat Prod Res 24:1318–1324

    Article  CAS  Google Scholar 

  47. Leighton T, Ginther C, Fluss L, Harter WK, Cansado J, Notario V (1992) Molecular characterization of quercetin and quercetin glycosides in Allium vegetables: their effects on malignant cell transformation. Proc ACS Symp Ser 507:220

    Article  CAS  Google Scholar 

  48. Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem 49:3106–3112

    Article  CAS  Google Scholar 

  49. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  Google Scholar 

  50. Marlett JA (2000) Changes in content and composition of dietary fiber in yellow onions and red delicious apples during commercial storage. J AOAC Int 83:992–996

    Article  CAS  Google Scholar 

  51. Shon MY, Choi SD, Kahng GG, Nam SH, Sung NJ (2004) Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem Toxicol 42:659–666

    Article  CAS  Google Scholar 

  52. Singh BN, Singh B, Singh R, Prakash D, Singh D, Sarma BK, Upadhyay G, Singh HB (2009) Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities. Food Chem Toxicol 47:1161–1167

    Article  CAS  Google Scholar 

  53. Roldán E, Sánchez-Moreno C, de Ancos B, Cano MP (2008) Characterisation of onion (Allium cepa L.) by-products as food ingredients with antioxidant and antibrowning properties. Food Chem 108:907–916

    Article  CAS  Google Scholar 

  54. Škerget M, Majhenič L, Bezjak M, Knez Ž (2009) Antioxidant, radical scavenging and antimicrobial activities of red onion (Allium cepa L.) skin and edible part extracts. Chem Biochem Eng Q 23:435–444

    Google Scholar 

  55. Nile SH, Park SW (2013) Total phenolics, antioxidant and xanthine oxidase inhibitory activity of three coloured onions (Allium cepa L.). Front Life Sci 7:224–228

    Article  CAS  Google Scholar 

  56. Cheng A, Chen X, Jin Q, Wang W, Shi J, Liu Y (2013) Comparison of phenolic content and antioxidant capacity of red and yellow onions. Czech J Food Sci 31:501–508

    Article  CAS  Google Scholar 

  57. Helen A, Krishnakumar K, Vijayammal PL, Augusti KT (2000) Antioxidant effect of onion oil (Allium cepa Linn) on the damages induced by nicotine in rats as compared to alpha-tocopherol. Toxicol Lett 116:61–68

    Article  CAS  Google Scholar 

  58. Ye CL, Dai DH, Hu WL (2013) Antimicrobial and antioxidant activities of the essential oil from onion (Allium cepa L.). Food Control 30:48–53

    Article  CAS  Google Scholar 

  59. Stajner D, Canadanovi-Brunet J, Pavlovi A (2004) Allium schoenoprasum L., as a natural antioxidant. Phytother Res 18:522–524

    Article  CAS  Google Scholar 

  60. Pirbalouti AG, Ahmadzadeh Y, Malekpoor F (2015) Variation in antioxidant, and antibacterial activities and total phenolic content of the bulbs of mooseer (Allium hirtifolium Boiss). Acta Agric Slovenica 105:15–22

    Article  CAS  Google Scholar 

  61. Leelarungrayub N, Rattanapanone V, Chanarat N, Gebicki JM (2006) Quantitative evaluation of the antioxidant properties of garlic and shallot preparations. Nutrition 22:266–274

    Article  CAS  Google Scholar 

  62. Trakranrungsie N, Chatchawanchonteera A, Khunkitti W (2008) Ethnoveterinary study for antidermatophytic activity of Piper betle, Alpinia galanga and Allium ascalonicum extracts in vitro. Res Vet Sci 84(1):80–84

    Article  CAS  Google Scholar 

  63. Park JH, Park YK, Park E (2009) Antioxidative and antigenotoxic effects of garlic (Allium sativum L.) prepared by different processing methods. Plant Foods Hum Nutr 64:244–249

    Article  CAS  Google Scholar 

  64. Nuutila AM, Puupponen-Pimiä R, Aarni M, Oksman-Caldentey K (2003) Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem 81:485–493

    Article  CAS  Google Scholar 

  65. Souri E, Amin G, Farsam H, Andaji S (2004) The antioxidant activity of some commonly used vegetables in Iranian diet. Fitoterapia 75:585–588

    Article  CAS  Google Scholar 

  66. Mnayer D, Fabiano-Tixier A-S, Petitcolas E, Hamieh T, Nehme N, Ferrant C, Fernandez X, Chemat F (2014) Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules 19:20034–20053. https://doi.org/10.3390/molecules191220034

    Article  CAS  Google Scholar 

  67. Chen C, Pung D, Leong V, Hebbar V, Shen G, Nair S, Li W, Kong ANT (2004) Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radic Biol Med 37:1578–1590

    Article  CAS  Google Scholar 

  68. Galeone C, Pelucchi C, Levi F, Negri E, Franceschi S, Talamini R, Giacosa A, La Vecchia C (2006) Onion and garlic use and human cancer. Am J Clin Nutr 84:1027–1032

    Article  CAS  Google Scholar 

  69. Grudzien M, Rapak A (2018) Effect of natural compounds on NK cell activation. J Immunol Res 11:4868417. https://doi.org/10.1155/2018/4868417

    Article  CAS  Google Scholar 

  70. Pan Y, Zheng YM, Ho WS (2018) Effect of quercetin glucosides from Allium extracts on HepG2, PC-3 and HT-29 cancer cell lines. Oncol Lett 15:4657–4661

    Google Scholar 

  71. Putnik P, Gabrić D, Roohinejad S, Barba FJ, Granato D, Mallikarjunan K, Lorenzo JM, Kovačević DB (2018) An overview of organosulfur compounds from Allium spp.: from processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem 276:680–691

    Article  CAS  Google Scholar 

  72. Rose P, Moore PK, Zhu YZ (2018) Garlic and gaseous mediators. Trends Pharmacol Sci 39:624–634

    Article  CAS  Google Scholar 

  73. Amy E, Amy F, Barry I, Ulrike P, Richard B et al (2007) Fruit and vegetable intake and prevalence of colorectal adenoma in a cancer screening trial. Am J Clin Nutr 86:1754–1764

    Article  Google Scholar 

  74. Lai WW, Hsu SC, Chueh FS, Chen YY, Yang JS, Lin JP, Lien JC, Tsai CH, Chung JG (2013) Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-κB and matrix metalloproteinase-2/-9 signaling pathways. Anticancer Res 33: 1941–1950

    CAS  Google Scholar 

  75. Roy M, Mukherjee A, Sarkar R, Mukherjee S, Biswas J (2015) In search of natural remediation for cervical cancer. Anticancer Agents Med Chem 15:57–65

    Article  CAS  Google Scholar 

  76. Shivappa N, Hébert JR, Zucchetto A, Montella M, Serraino D, La Vecchia C, Rossi M (2016) Dietary inflammatory index and endometrial cancer risk in an Italian case–control study. Br J Nutr 115:138–146

    Article  CAS  Google Scholar 

  77. Sengupta A, Ghosh S, Bhattacharjee S (2004) Allium vegetables in cancer prevention: an overview. Asian Pac J Cancer Prev 5(3):237–245

    Google Scholar 

  78. Wang HC, Pao J, Lin SY, Sheen LY (2012) Molecular mechanisms of garlic-derived allyl sulfides in the inhibition of skin cancer progression. Ann N Y Acad Sci 1271(1):44–52

    Article  CAS  Google Scholar 

  79. Zeng Y, Li Y, Yang J, Pu X, Du J, Yang X, Yang T, Yang S (2017) Therapeutic role of functional components in alliums for preventive chronic disease in human being. Evid Based Complement Alternat Med 3:13. https://doi.org/10.1155/2017/9402849

    Article  Google Scholar 

  80. Li Z, Ying X, Shan F, Ji J (2018) The association of garlic with Helicobacter pylori infection and gastric cancer risk: a systematic review and meta-analysis. Helicobacter 23:12532

    Article  Google Scholar 

  81. Atanasova-Goranova V, Dimova P, Pevicharova G (1997) Effect of food products on endogenous generation of n-nitrosamines in rats. Br J Nutr 78:335–345

    Article  CAS  Google Scholar 

  82. Bagul M, Kakumanu S, Wilson TA (2015) Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J Med Food 18:731–737

    Article  CAS  Google Scholar 

  83. Londhe V (2011) Role of garlic (Allium sativum) in various diseases-an overview. J Pharm Res Opin 1:129–134

    CAS  Google Scholar 

  84. Xu L, Yu J, Zhai D, Zhang D, Shen W et al (2014) Role of JNK activation and mitochondrial Bax translocation in allicin-induced apoptosis in human ovarian cancer SKOV3 cells. Evid Based Complement Alternat Med Article ID 378684, 1–6. https://doi.org/10.1155/2014/378684

  85. Saedi TA, Md Noor S, Ismail P, Othman F (2014) The effects of herbs and fruits on leukaemia. Evid Based Complement Alternat Med Article ID 494136, 1–8. https://doi.org/10.1155/2014/494136

  86. Thomson M, Ali M (2003) Garlic [Allium sativum]: a review of its potential use as an anti-cancer agent. Curr Cancer Drug Target 3(1):67–81

    Article  CAS  Google Scholar 

  87. Song K, Milner JA (2001) The influence of heating on the anticancer properties of garlic. J Nutr 131:1054–1057

    Article  Google Scholar 

  88. Fattorusso E, Lanzotti V, Taglialatela-Scafati O, Di Rosa M, Ianaro A (2000) Cytotoxic saponins from bulbs of Allium porrum L. J Agric Food Chem 48:3455–3462

    Article  CAS  Google Scholar 

  89. Shaikh A, Shrivastava B, Apte K, Navale S (2016) Medicinal plants as potential source of anticancer agents: a review. J Pharmacogn Phytochem 5:291–295

    CAS  Google Scholar 

  90. Park KW, Kim SY, Jeong IY, Byun MW, Park KH, Yamada K, Seo KI (2007) Cytotoxic and antitumor activities of thiosulfinates from Allium tuberosum L. J Agric Food Chem 55:7957–7961

    Article  CAS  Google Scholar 

  91. Shirshova TI, Beshlei IV, Deryagina VP (2013) Chemical composition of Allium schoenoprasum leaves and inhibitory effect of their extract on tumor growth in mice. Pharm Chem J 46:672–675

    Article  CAS  Google Scholar 

  92. Timité G, Mitaine-Offer AC, Miyamoto T, Tanaka C, Mirjolet JF, Duchamp O, Lacaille-Dubois MA (2013) Structure and cytotoxicity of steroidal glycosides from Allium schoenoprasum. Phytochemistry 88:61–66

    Article  CAS  Google Scholar 

  93. Ismail S, Jalilian FA, Talebpour AH, Zargar M, Shameli K, Sekawi Z, Jahanshiri F (2013) Chemical composition and antibacterial and cytotoxic activities of Allium hirtifolium Boiss. Biomed Res Int 25:1–9

    Article  CAS  Google Scholar 

  94. Azadi HG, Ghaffari SM, Riazi GH, Ahmadian S, Vahedi F (2008) Antiproliferative activity of chloroformic extract of Persian shallot, Allium hirtifolium, on tumor cell lines. Cytotechnology 56:179–185

    Article  Google Scholar 

  95. Dorosti N, Zarabi S, Ahmadi S, Rostami R (2017) Anticancer activity evaluation of methanolic extract of Allium Jesdianum and Nectaroscordeum Coelzi against HeLa and K562 cell lines. Yafteh 19:31–41

    Google Scholar 

  96. Kucekova Z, Mlcek J, Humpolicek P, Rop O, Valasek P, Saha P (2011) Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects. Molecules 16:9207–9217

    Article  CAS  Google Scholar 

  97. Abdelrahman M, Mahmoud HYAH, El-Sayed M, Tanaka S, Tran LS (2017) Isolation and characterization of Cepa2, a natural alliospiroside A, from shallot (Allium cepa L. Aggregatum group) with anticancer activity. Plant Physiol Biochem 116:167–173

    Article  CAS  Google Scholar 

  98. Smith C, Lombard KA, Peffley EB, Liu W (2016) Genetic analysis of quercetin in onion (Allium cepa L.) ‘Lady Raider’. Tex J Agric Nat Resour 16:24–28

    Google Scholar 

  99. Simin N, Orcic D, Cetojevic-Simin D, Mimica-Dukic N, Anackov G, Beara I, Mitic-Culafic D, Bozin B (2013) Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae). LWT Food Sci Technol 54:139–146

    Article  CAS  Google Scholar 

  100. Rezgui A, Mitaine-Offer AC, Paululat T, Delemasure S, Dutartre P, Lacaille-Dubois MA (2014) Cytotoxic steroidal glycosides from Allium flavum. Fitoterapia 93:121–125

    Article  CAS  Google Scholar 

  101. Mitić-Ćulafić D, Nikolic B, Simin N, Jasnic N, Cetojevic-Simin D, Krstic M, Knezevic-Vukcevic J (2016) Effect of Allium flavum L. and Allium melanantherum Panc. extracts on oxidative DNA damage and antioxidative enzymes superoxide dismutase and catalase. Plant Foods Hum Nutr 71:28–34

    Article  CAS  Google Scholar 

  102. Abdel-Hady H, El-Sayed MM, Abde-Gawad MM, El-Wakil EA, Abdel-Hameed ESS, Abdel-Lateef EES (2018) LC-ESI-MS analysis, antitumor and antioxidant activities of methanolic extract of Egyptian Alliumkurrat. J Appl Pharm Sci 8:85–92

    Article  CAS  Google Scholar 

  103. Ashrafi F, Akhavan Sepahi A, Kazemzadeh A (2010) Effect of aqueous extract of shallot (Allium ascalonicum) on inhibition of growth of Pseudomonas aeruginosa. Iran J Pharm Res 3(2):71–71

    Google Scholar 

  104. Sharifi-Rad J, Mnayer D, Tabanell G, Stojanović-Radić Z, Sharifi-Rad M, Yousaf Z, Vallone L, Setzer WN, Iriti M (2016) Plants of the genus Allium as antibacterial agents: from tradition to pharmacy. Cell Mol Biol 62:57–68

    CAS  Google Scholar 

  105. Snoussi M, Trabelsi N, Dehmeni A, Benzekri R, Bouslama L, Hajlaoui B, Al-sieni A, Papetti A (2016) Phytochemical analysis, antimicrobial and antioxidant activities of Allium roseum var. odoratissimum (Desf.) Coss extracts. Ind Crop Prod 89:533–542

    Article  CAS  Google Scholar 

  106. Calvey EM, Matusik JE, White KD, DeOrazio R, Sha D, Block E (1997) Allium chemistry: supercritical fluid extraction and LC−APCI−MS of thiosulfinates and related compounds from homogenates of garlic, onion, and ramp. Identification in garlic, ramp, and synthesis of 1-propanesulfinothioic acid S-allyl ester. J Agri Food Chem 45:4406–4413

    Article  CAS  Google Scholar 

  107. Khar A, Banerjee K, Jadhav MR, Lawande KE (2011) Evaluation of garlic ecotypes for allicin and other allyl thiosulphinates. Food Chem 128:988–996

    Article  CAS  Google Scholar 

  108. Mylona K, Garcia-Cela E, Sulyok M, Medina A, Magan N (2019) Influence of two garlic-derived compounds, propyl propane thiosulfonate (PTS) and propyl propane thiosulfinate (PTSO), on growth and mycotoxin production by Fusarium species in vitro and in stored cereals. Toxins 11:495. https://doi.org/10.3390/toxins11090495

    Article  CAS  Google Scholar 

  109. Sterling SJ, Eagling RD (2001) Agronomic and allicin yield of Australian grown garlic. Acta Hortic 555:63–73

    Article  CAS  Google Scholar 

  110. Leontiev R, Hohaus N, Jacob C, Gruhlke MCH, Slusarenko AJ (2018) A comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Sci Rep 8:6763. https://doi.org/10.1038/s41598-018-25154-9

    Article  CAS  Google Scholar 

  111. Amin M, Montazeri EA, Mashhadizadeh MA, Sheikh AF (2009) Characterization of shallot, an antimicrobial extract of Allium ascalonicum. Pak J Med Sci 25:948–952

    Google Scholar 

  112. Nasiri Kashani MJ, Mehraban F, Motevalian M, Yazdanparast SA, Fateh RA (2009) In vitro antifungal activity extract and its comparison with miconazole. Qom Univ Med Sci J 3:13–18

    Google Scholar 

  113. Falahati M, Fateh R, Sharifinia S (2011) Anti-candidal effect of shallot against chronic candidiasis. Iran J Pharmacol Ther 10:49–51

    Google Scholar 

  114. Lee JB, Miyake S, Umetsu R, Hayashi K, Chijimatsu T, Hayashi T (2012) Anti-influenza A virus effects of fructan from Welsh onion (Allium fistulosum L.). Food Chem 134:2164–2168

    Article  CAS  Google Scholar 

  115. Chen C-H, Chou T-W, Cheng L-H, Ho C-W (2011) In vitro anti-adenoviral activity of five Allium plants. J Taiwan Inst Chem Eng 42(2):228–232

    Article  CAS  Google Scholar 

  116. Shirani M, Samimi A, Kalantari H, Madani M, Zanganeh AK (2017) Chemical composition and antifungal effect of hydroalcoholic extract of Allium tripedale (Tvautv) against Candida species. Curr Med Mycol 3(1):6–12

    Article  CAS  Google Scholar 

  117. Rattanachaikunsopon P, Phumkhachorn P (2008) Diallyl sulfide content and antimicrobial activity against food-borne pathogenic bacteria of chives (Allium schoenoprasum). Biosci Biotechnol Biochem 72:2987–2991

    Article  CAS  Google Scholar 

  118. Goodarzi M, Nanekarani S, Landy N (2014) Effect of dietary supplementation with onion (Allium cepa L.) on performance, carcass traits and intestinal microflora composition in broiler chickens. Asian Pac J Trop Dis 4:297–301

    Article  CAS  Google Scholar 

  119. Shargh MS, Dastar B, Zerehdaran S, Khomeiri M, Moradi A (2012) Effects of using plant extracts and a probiotic on performance, intestinal morphology, and microflora population in broilers. J Appl Poult Res 21:201–208

    Article  CAS  Google Scholar 

  120. Ghasemian A, Mostafavi S, Kh S (2018) Antimicrobial effects of aqueous and alcoholic extracts of Allium schoenoprasum on some bacterial pathogens. Infect Epidemiol Microbiol 4:1–5

    CAS  Google Scholar 

  121. Velsankara K, Aswin Kumara RM, Preethia R, Muthulakshmib V, Sudhahara S (2020) Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J Environ Chem Eng 8:104123. https://doi.org/10.1016/j.jece.2020.104123

    Article  CAS  Google Scholar 

  122. Tataringa G, Spac A, Sathyamurthy B, Zbancioc A (2020) In silico studies on some dengue viral proteins with selected Allium cepa oil constituents from Romanian source. Farmacia 68(1):48–55

    Article  CAS  Google Scholar 

  123. Donma MM, Donma O (2020) The effects of Allium sativum on immunity within the scope of COVID-19 infection. Med Hypotheses 144:109934. https://doi.org/10.1016/j.mehy.2020.109934

    Article  CAS  Google Scholar 

  124. Qureshi AA, Abuirmeileh N, Din ZZ, Elson CE, Burger WC (1983) Inhibition of cholesterol and fatty acid biosynthesis in liver enzymes and chicken hepatocytes by polar fractions of garlic. Lipids 18:343–348

    Article  CAS  Google Scholar 

  125. Kim HY (2007) Effects of onion (Allium cepa) skin extract on pancreatic lipase and body weight-related parameters. Food Sci Biotechnol 16:434–438

    CAS  Google Scholar 

  126. Baragob AE, Al-Wabel NA, Ahmed NA, Babiker MF, Abdalkarim AS, Elboshra MI (2015) Study to investigate the pancreatic regeneration and evaluation of the antidiabetic and antihyperlipidemic potential of aerial parts of Allium cepa. Biochem Biotechnol Res 3:19–29

    Google Scholar 

  127. Gebhardt R, Beck H (1996) Differential inhibitory effects of garlic-derived organosulfur compounds on cholesterol biosynthesis in primary rat hepatocyte cultures. Lipids 31: 1269–1276

    Article  CAS  Google Scholar 

  128. Martin N, Bardisa L, Pantoja C, Román R, Vargas M (1992) Experimental cardiovascular depressant effects of garlic (Allium sativum) dialysate. J Ethnopharmacol 37:145–149

    Article  CAS  Google Scholar 

  129. Sobolewska D, Michalska K, Podolak I, Grabowska K (2016) Steroidal saponins from the genus Allium. Phytochem Rev 15:1–35

    Article  CAS  Google Scholar 

  130. Rahman MS (2007) Allicin and other functional active components in garlic: health benefits and bioavailability. Int J Food Prop 10:245–268

    Article  CAS  Google Scholar 

  131. Kumar R, Chhatwal S, Arora S, Sharma S, Singh J, Singh N, Bhandari V, Khurana A (2013) Antihyperglycemic, antihyperlipidemic, anti-inflammatory and adenosine deaminase-lowering effects of garlic in patients with type 2 diabetes mellitus with obesity. Diabetes Metab Syndr Obes 6:49–56

    Article  CAS  Google Scholar 

  132. Jung ES, Park SH, Choi EK, Ryu BH, Park BH, Kim DS, Kim YG, Chae SW (2014) Reduction of blood lipid parameters by a 12-wk supplementation of aged black garlic: a randomized controlled trial. Nutrition 30:1034–1039

    Article  CAS  Google Scholar 

  133. Kwak JS, Kim JY, Paek JE et al (2014) Garlic powder intake and cardiovascular risk factors: a meta-analysis of randomized controlled clinical trials. Nutr Res Pract 8(6):644–654

    Article  Google Scholar 

  134. Ried K (2016) Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: an updated meta-analysis and review. J Nutr 146(2):389S–396S. https://doi.org/10.3945/jn.114.202192

    Article  CAS  Google Scholar 

  135. Xiong XJ, Wang PQ, Li SJ, Li XK, Zhang YQ, Wang J (2015) Garlic for hypertension: a systematic review and meta-analysis of randomized controlled trials. Phytomedicine 22(3):352–361. https://doi.org/10.1016/j.phymed.2014.12.013

    Article  CAS  Google Scholar 

  136. Khaksarian M, Gholami E, Alipour M, Sabooteh T, Asadi-Samani M (2017) Investigation of the effects of the essence and extract of Allium jesdianum on the activity of COX-1 and COX-2 enzymes. Int J Adv Biotechnol Res 8:1095–1101

    CAS  Google Scholar 

  137. Krejcova P, Kucerova P, Stafford GI, Jager AK, Kubec R (2014) Antiinflammatory and neurological activity of pyrithione and related sulfur-containing pyridine N-oxides from Persian shallot (Allium stipitatum). J Ethnopharmacol 154:176–182

    Article  CAS  Google Scholar 

  138. Parvu AE, Parvu M, Vlase L, Miclea P, Mot AC, Silaghi-Dumitrescu R (2014) Anti-inflammatory effects of Allium schoenoprasum L. leaves. J Physiol Pharmacol 65:309–315

    CAS  Google Scholar 

  139. Amalia L, Sukandar EY, Roesli RMA, Sigit JI (2008) The effect of ethanol extract of kucai (Allium schoenoprasum L.) bulbs on serum nitric oxide level in male Wistar rats. Int J Pharmacol 4:487–491

    Article  Google Scholar 

  140. Bae CR, Park YK, Cha YS (2014) Quercetin-rich onion peel extract suppresses adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 adipocytes. J Sci Food Agric 94:2655–2660

    Article  CAS  Google Scholar 

  141. Moon J, Do HJ, Kim OY, Shin MJ (2013) Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol 58:347–354

    Article  CAS  Google Scholar 

  142. Yoshinari O, Shiojima Y, Igarashi K (2012) Anti-obesity effects of onion extract in Zucker diabetic fatty rats. Nutrients 4:1518–1526

    Article  Google Scholar 

  143. Kim HJ, Lee MJ, Jang JY, Lee SH (2019) Allium hookeri root extract inhibits adipogenesis by promoting lipolysis in high fat diet-induced obese mice. Nutrients 11(10):2262. Published 2019 Sep 20. https://doi.org/10.3390/nu11102262

    Article  CAS  Google Scholar 

  144. Cavagnaro PF, Camargo A, Galmarini CR, Simon PW (2007) Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. J Agric Food Chem 55:1280–1288

    Article  CAS  Google Scholar 

  145. Goldman I, Kopelberg M, Debaene JP, Schwartz BS (1996) Antiplatelet activity in onion (Allium cepa L.) is sulfur dependent. Thromb Haemost 76:450–452

    Article  CAS  Google Scholar 

  146. González R, Carolina S, María S, Alejandra C, Claudio G (2009) Variability of solids, organosulfur compounds, pungency and health-enhancing traits in garlic (Allium sativum L.) cultivars belonging to different ecophysiological groups. J Agric Food Chem 57:10282–10288

    Article  CAS  Google Scholar 

  147. Fattorusso E, Lanzotti V, Taglialatela-Scafati O, Cicala C (2001) The flavonoids of leek, Allium porrum. Phytochemistry 57:565–569

    Article  CAS  Google Scholar 

  148. Apitz-Castro R, Badimon JJ, Badimon L (1992) Effect of ajoene, the major antiplatelet compound from garlic, on platelet thrombus formation. Thromb Res 68:145–155

    Article  CAS  Google Scholar 

  149. Klimpel S, Abdel-Ghaffar F, Al-Rasheid KA, Aksu G, Fischer K, Strassen B, Mehlhorn H (2011) The effects of different plant extracts on nematodes. Parasitol Res 108:1047–1054

    Article  Google Scholar 

  150. Wongmekiat O, Leelarugrayub N, Thamprasert K (2008) Beneficial effect of shallot (Allium ascalonicum L.) extract on cyclosporine nephrotoxicity in rats. Food Chem Toxicol 46(5): 1844–1850

    Article  CAS  Google Scholar 

  151. Seyfi P, Mostafaie A, Mansouri K, Arshadi D, Mohammadi-Motlagh HR, Kiani A (2010) In vitro and in vivo anti-angiogenesis effect of shallot (Allium ascalonicum): a heat-stable and flavonoid-rich fraction of shallot extract potently inhibits angiogenesis. Toxicol In Vitro 24:1655–1661

    Article  CAS  Google Scholar 

  152. Kratchanova M, Nikolova M, Pavlova E, Yanakieva I, Kussovski V (2010) Composition and properties of biologically active pectic polysaccharides from leek (Allium porrum). J Sci Food Agric 90:2046–2051

    CAS  Google Scholar 

  153. Kamtchouing PG, Mbongue-Fandio TS, Dimo HL, Jasta BN (2002) Evaluation of androgenic activity of Leek extract in male rats. Asian J Androl 4:299–301

    Google Scholar 

  154. Morakino AO, Adeniyi OS, Arikawem AP (2008) Effects of Allium ampeloprasum on reproductive functions of the male rat. Afr J Biomed Res 2:329–339

    Google Scholar 

  155. Roghani M, Aghaie M (2007) The effect of Allium ampeloprasum on nociceptive response intensity in diabetic rats. J Gorgan Uni Med Sci 9:96

    Google Scholar 

  156. Chen Y, Ding Z, Wu Y et al (2019) Effects of Allium mongolicum Regel and its flavonoids on constipation. Biomolecules 10(1):14. Published Dec 20. https://doi.org/10.3390/biom10010014

    Article  CAS  Google Scholar 

  157. Arpornchayanon W, Klinprung S, Chansakaow S et al (2019) Antiallergic activities of shallot (Allium ascalonicum L.) and its therapeutic effects in allergic rhinitis. Asian Pac J Allergy Immunol. https://doi.org/10.12932/AP-300319-0529

  158. Kothari D, Lee WD, Niu KM, Kim SK (2019) The genus Allium as poultry feed additive: a review. Animals (Basel) 9(12):1032. https://doi.org/10.3390/ani9121032

    Article  Google Scholar 

  159. Galland-Decker C, Charmoy A, Jolliet P, Spertini O, Hugli O, Pantet O (2016) Progressive organ failure after ingestion of wild garlic juice. J Emerg Med 50:55–60

    Article  Google Scholar 

  160. Peterson RP (1982) A field guide to edible wild plants: Eastern and Central North America. Houghton Mifflin, Boston

    Google Scholar 

  161. Aslani MR, Mohri M, Movassaghi AR (2005) Heinz body anemia associated with onion (Allium cepa) toxicosis in a flock of sheep. Comp Clin Pathol 14:118–120

    Article  Google Scholar 

  162. Hutchinson TW (1977) Onions as cause of Heinz body anemia and death in cattle. Can Vet J 18:358–360

    Google Scholar 

  163. Munday R, Munday JS, Munday CM (2003) Comparative effects of mono-, di-, tri-, and tetrasulfides derived from plants of the Allium family: redox cycling in vitro and hemolytic activity and phase 2 enzyme induction in vivo. Free Radic Biol Med 34:1200–1211

    Article  CAS  Google Scholar 

  164. Smith CH, Ellison RS (1986) Concurrent onion poisoning and haematuria in a dog. N Z Vet J 34:77–78

    Article  CAS  Google Scholar 

  165. Tang X, Xia Z, Yu J (2008) An experimental study of hemolysis induced by onion (Allium cepa) poisoning in dogs. J Vet Pharmacol Ther 31(2):143–149

    Article  CAS  Google Scholar 

  166. Yamato O, Kasai E, Katsura T, Takahashia S, Shiota T, Tajima M et al (2005) Heinz body hemolytic anemia with eccentrocytosis from ingestion of Chinese chive (Allium tuberosum) and garlic (Allium sativum) in a dog. J Am Anim Hosp Assoc 41(1):68–73

    Article  Google Scholar 

  167. Houston DM, Myers SL (1993) A review of Heinz-body anemia in the dog induced by toxins. Vet Hum Toxicol 35:158–161

    CAS  Google Scholar 

  168. Yamato O, Hayashi M, Yamasaki M, Maede Y (1998) Induction of onion-induced haemolytic anemia in dogs with sodium n-propylthiosulphate. Vet Rec 142(9):216–219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The theme of this chapter is based on ongoing project VALORTECH, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bhat, R. (2020). Bioactive Compounds of Allium Species. In: Murthy, H.N., Paek, K.Y. (eds) Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-44578-2_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44578-2_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44578-2

  • Online ISBN: 978-3-030-44578-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics