Skip to main content

Molecular Strategies to Engineer Transgenic Rice Seed Compartments for Large-Scale Production of Plant-Made Pharmaceuticals

  • Protocol
  • First Online:
Rice Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 956))

Abstract

The use of plants as bioreactors for the large-scale production of recombinant proteins has emerged as an exciting area of research. The current shortages in protein therapeutics due to the capacity and economic bottlenecks faced with modern protein production platforms (microbial, yeast, mammalian) has driven considerable attention towards molecular pharming. Utilizing plants for the large-scale production of recombinant proteins is estimated to be 2–10% the cost of microbial platforms, and up to 1,000-fold more cost effective than mammalian platforms (Twyman et al. Trends Biotechnol 21:570–578, 2003; Sharma and Sharma, Biotechnol Adv 27:811–832, 2009). In order to achieve an economically feasible plant production host, protein expression and accumulation must be optimized. The seed, and more specifically the rice seed has emerged as an ideal candidate in molecular pharming due to its low protease activity, low water content, stable protein storage environment, relatively high biomass, and the molecular tools available for manipulation (Lau and Sun, Biotechnol Adv 27:1015–1022, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Twyman RM et al (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  PubMed  CAS  Google Scholar 

  2. Sharma AK, Sharma MK (2009) Plants as ­bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27:811–832

    Article  PubMed  CAS  Google Scholar 

  3. Lau OS, Sun S (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022

    Article  PubMed  CAS  Google Scholar 

  4. IMS Health (2010) Accurate global assessment of a dynamic and complex niche market. IMS global biologics perspectives. IMS Health Incorporated

    Google Scholar 

  5. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28:917–924

    Article  PubMed  CAS  Google Scholar 

  6. Boehm R (2007) Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms. Ann NY Acad Sci 1102:121–134

    Article  PubMed  CAS  Google Scholar 

  7. Karg S, Kallio P (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27:879–894

    Article  PubMed  CAS  Google Scholar 

  8. Parl J et al (2010) Cellular engineering for the high-level production of recombinant proteins in mammalian cell systems. Kor J Chem Eng 27:1042–1048

    Article  Google Scholar 

  9. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 11:1393–1398

    Article  Google Scholar 

  10. Hiller A (2009) Fast growth foreseen for protein therapeutics. GEN 29:153–155

    Google Scholar 

  11. Cheng XY et al (1998) Agrobacterium-transformed rice plants expressing synthetic cry1A(b) and cry1A(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 6:2767–2772

    Article  Google Scholar 

  12. Ma JK et al (2003) The production of recombinant pharmaceuticals in plants. Nat Rev Genet 4:794–805

    Article  PubMed  CAS  Google Scholar 

  13. De Zoeten G et al (1989) The expression, localization, and effect of a human interferon in plants. Virology 172:213–222

    Article  PubMed  Google Scholar 

  14. Hood EE et al (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306

    Article  CAS  Google Scholar 

  15. Twyman RM et al (2005) Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 10:185–218

    Article  PubMed  CAS  Google Scholar 

  16. Boothe J et al (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606

    Article  PubMed  CAS  Google Scholar 

  17. Houdebine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:107–121

    Article  PubMed  Google Scholar 

  18. Basaran P, Rodriguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28:153–172

    Article  PubMed  Google Scholar 

  19. Yang L et al (2008) Biopharming to increase bioactive peptides in rice seed. J AOAC Int 91:957–963

    PubMed  CAS  Google Scholar 

  20. Golovina EA et al (2008) Sustained expression of human cytomegalovirus glycoprotein B (UL55) in the seeds of homozygous rice plants. Mol Biotechnol 40:1–12

    Google Scholar 

  21. Tackaberry ES et al (2008) Sustained expression of human cytomegalovirus glycoprotein B (UL55) in the seeds of homozygous rice plants. Mol Biotechnol 40:1–12

    Google Scholar 

  22. Alli Z et al (2002) Pharming vaccines for hepatitis and cytomegalovirus: towards the development of multivalent and subunit vaccines for oral delivery of antigens. Phytochem Rev 1:55–66

    Article  CAS  Google Scholar 

  23. Ganz PR et al (1996) Expression of human blood proteins in transgenic plants: the cytokine GM-CSF as a model protein. In: Transgenic plants: a production system for industrial and pharmaceutical proteins, ch 7–4. pp 281–297

    Google Scholar 

  24. Ganz PR et al (1995) Plants as factories for producing human blood proteins. Can Soc Transfus Med Bull 7:112–121

    Google Scholar 

  25. Blais DR, Altosaar I (2006) Human CD14 expressed in seeds of transgenic tobacco displays similar proteolytic resistance and bioactivity with its mammalian-produced counterpart. Transgenic Res 15:151–164

    Article  PubMed  CAS  Google Scholar 

  26. Blais DR, Altosaar I (2007) Humanizing infant milk formula to decrease postnatal HIV transmission. Trends Biotechnol 25:376–384

    Article  PubMed  CAS  Google Scholar 

  27. Stoger E et al (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 4:583–590

    Article  Google Scholar 

  28. Wang J, Oard H (2003) Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. Plant Cell Rep 22:129–134

    Article  PubMed  CAS  Google Scholar 

  29. Huang Z et al (2006) Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 24:2506–2513

    Article  PubMed  CAS  Google Scholar 

  30. Stoger E et al (2002) Practical considerations for pharmaceutical antibody production in different crop systems. Mol Breed 9:149–158

    Article  CAS  Google Scholar 

  31. Torres E et al (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8:441–449

    Article  PubMed  CAS  Google Scholar 

  32. Hood E et al (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140

    Article  PubMed  CAS  Google Scholar 

  33. Qu L, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113–125

    Article  CAS  Google Scholar 

  34. Sardana R et al (2007) Biologically active human GM-CSF produced in the seeds of transgenic rice plants. Transgenic Research 16:713–721

    CAS  Google Scholar 

  35. Wu CY et al (1998) Promoters of rice seed storage protein genes direct endosperm-specific gene expression in transgenic rice. Plant Cell Physiol 39:885–889

    Article  CAS  Google Scholar 

  36. Wakasa Y et al (2006) High accumulation of bioactive peptide in transgenic rice seeds by expression of introduced multiple genes. Plant Biotechnol J 4:499–510

    PubMed  CAS  Google Scholar 

  37. Takagi H et al (2005) Oral immunotherapy against pollen allergy using a seed-based peptide vaccine. Plant Biotechnol J 3:521–533

    Article  PubMed  CAS  Google Scholar 

  38. Zhang D et al (2010) Expression, purification, and characterization of recombinant human transferring from rice (Oryza sativa L.). Protein Expr Purif 74:69–79

    Article  PubMed  CAS  Google Scholar 

  39. Sawant S et al (2001) Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theor Appl Genet 102:635–644

    Article  CAS  Google Scholar 

  40. Rushton PJ et al (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  41. Chikwamba RK et al (2003) Localization of a bacterial protein in starch granules of transgenic maize kernels. Proc Natl Acad Sci USA 100:11127–11132

    Article  PubMed  CAS  Google Scholar 

  42. Wu CY et al (1998) The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J 14:673–683

    Article  PubMed  CAS  Google Scholar 

  43. Ye X et al (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  PubMed  CAS  Google Scholar 

  44. Li X et al (2002) Influence of matrix attachment regions from maize on transgene expression level in tobacco. Acta Botanica Sinica 44:804–808

    CAS  Google Scholar 

  45. Tetko I et al (2006) Spatiotemporal expression control correlates with intragenic matrix attachment regions (S/MARs) in Arabidopsis thaliana. PLoS Comput Biol 2:136–145

    Article  CAS  Google Scholar 

  46. Yang D et al (2001) Expression of the REB transcriptional activator in rice grains improves the yield of recombinant proteins whose genes are controlled by a Reb-responsive promoter. Proc Natl Acad Sci USA 98:11438–11443

    Article  PubMed  CAS  Google Scholar 

  47. Nakase M et al (1997) Characterization of a novel rice bZIP protein which binds to the α-globulin promoter. Plant Mol Biol 33:513–522

    Article  PubMed  CAS  Google Scholar 

  48. Comai L et al (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15:373–381

    Article  PubMed  CAS  Google Scholar 

  49. Hennegan K et al (2005) Improvement of human lysozyme expression in transgenic rice grain by combining wheat Triticum aestivum puroindoline b and rice Oryza sativa Gt1 promoters and signal peptides. Transgenic Res 14:583–592

    Article  PubMed  CAS  Google Scholar 

  50. Streatfield S (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  PubMed  CAS  Google Scholar 

  51. Futterer J, Hohn T (1996) Translation in plants—rules and exceptions. Plant Mol Biol 32:159–189

    Article  PubMed  CAS  Google Scholar 

  52. Kawaguchi R, Bailey-Serres J (2002) Regulation of translation initiation in plants. Curr Opin Plant Biol 5:460–465

    Article  PubMed  CAS  Google Scholar 

  53. Mauro VP et al (2002) The ribosome filter hypothesis. Proc Natl Acad Sci USA 99:12031–12036

    Article  PubMed  CAS  Google Scholar 

  54. Kato T et al (1991) A modified B-glucuronidase gene: sensitive detection of plant promoter activities in suspension cultured cells of tobacco and rice. Plant Mol Biol Rep 9:333–339

    Article  CAS  Google Scholar 

  55. Satoh J et al (2004) The 5′-untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant. J Biosci Bioeng 98:1–8

    PubMed  CAS  Google Scholar 

  56. Wever W et al (2010) The 5′ untranslated region of the VR-ACS1 mRNA acts as a strong translational enhancer in plants. Transgenic Res 19:667–674

    Article  PubMed  CAS  Google Scholar 

  57. Danthinne X, Emmelo J (1990) Studies on the translational properties of STNV RNA non-coding regions. In: 42nd international symposium on crop protection. Gent, Belgium

    Google Scholar 

  58. Sivamani E et al (2009) Sequence analysis of rice rubi3 promoter gene expression cassette for improved transgene expression. Plant Sci 177:549–556

    Article  CAS  Google Scholar 

  59. Sivamani E, Qu R (2006) Expression enhancement of a rice polyubiquitin gene promoter. Plant Mol Biol 60:225–239

    Article  PubMed  CAS  Google Scholar 

  60. Lu J et al (2008) Activity of the 5′ regulatory regions of the rice polyubiquitin rubi3 gene in transgenic rice plants as analyzed by both GUS and GFP reporter genes. Plant Cell Rep 27:1587–1600

    Article  PubMed  CAS  Google Scholar 

  61. Mascarenhas D et al (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15:913–920

    Article  PubMed  CAS  Google Scholar 

  62. Fiume E et al (2004) Introns are key regulatory elements of rice tubulin expression. Planta 218:693–703

    Article  PubMed  CAS  Google Scholar 

  63. Giani S et al (2009) In transgenic rice, a- and b-tubulin regulatory sequences control GUS amount and distribution through intron mediated enhancement and intron dependant spatial expression. Transgenic Res 18:151–162

    Article  PubMed  CAS  Google Scholar 

  64. Samadder P et al (2008) Transcriptional and post-transcriptional enhancement of gene expression by the 5’UTR intron of rice rubi3 gene in transgenic rice cells. Mol Genet Genomics 279:429–439

    Article  PubMed  CAS  Google Scholar 

  65. Hunt AG (2008) Messenger RNA 3’ end formation in plants. Nuclear pre-mRNA processing in plants, Curr Top Microb Immunol 326, 151–177

    Google Scholar 

  66. Green PJ (1993) Control of mRNA stability in higher plants. Plant Physiol 102:1065–1070

    PubMed  CAS  Google Scholar 

  67. Shen Y et al (2008) Genome level analysis of rice mRNA 3’-end processing signals and alternative polyadenylation. Nucleic Acids Res 36:3150–3161

    Article  PubMed  CAS  Google Scholar 

  68. Dong H et al (2006) An exploration of 3’-end processing signals and their tissue distribution in Oryza sativa. Gene 389:107–113

    Article  PubMed  Google Scholar 

  69. Ali S, Taylor W (2001) The 3’ non-coding region of a C4 photosynthesis gene increases transgene expression when combined with heterologous promoters. Plant Mol Biol 46:325–333

    Article  PubMed  CAS  Google Scholar 

  70. Knirsch L, Clerch LB (2000) A region in the 3′ UTR of MnSOD RNA enhances translation of a heterologous RNA. Biochem Biophy Res Commun 272:164–168

    Article  CAS  Google Scholar 

  71. Yang L et al (2009) The 3′-untranslated region of rice glutelin GluB-1 affects accumulation of heterologous protein in transgenic rice. Biotechnol Lett 31:1625–1631

    Article  PubMed  CAS  Google Scholar 

  72. Mishra S et al (2006) Ubiquitin fusion enhances cholera toxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptor more efficiently. J Biotechnol 127:95–108

    Article  PubMed  CAS  Google Scholar 

  73. Kang TJ et al (2004) Modification of the cholera toxin B subunit coding sequence to enhance expression in plants. Mol Breed 13:143–153

    Article  CAS  Google Scholar 

  74. Ma JK et al (2005) Plant-derived pharmaceuticals—the road forward. Trends Plant Sci 10:580–585

    Article  PubMed  CAS  Google Scholar 

  75. Stoger E et al (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    Article  PubMed  CAS  Google Scholar 

  76. Vitale A, Pedrazzini E (2005) Recombinant pharmaceuticals from plants: the plant endomembrane system as bioreactor. Mol Interv 5:216–225

    Article  PubMed  CAS  Google Scholar 

  77. Avesani L et al (2003) Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Res 12:203–212

    Article  PubMed  CAS  Google Scholar 

  78. Garbarino JE et al (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378

    Article  PubMed  CAS  Google Scholar 

  79. Benchabane M et al (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648

    Article  PubMed  CAS  Google Scholar 

  80. Jiang L, Sun SS (2002) Membrane anchors for vacuolar targeting: applications in plant bioreactors. Trends Biotechnol 20:99–102

    Article  PubMed  CAS  Google Scholar 

  81. Kawagoe Y et al (2005) The critical role of disulfide bond formation in protein sorting in the endosperm of rice. Plant Cell 17:1141–1153

    Article  PubMed  CAS  Google Scholar 

  82. Hashizume F et al (2008) Development and evaluation of transgenic rice seeds accumulating a type II-collagen tolerogenic peptide. Transgenic Res 17:1117–1129

    Article  PubMed  CAS  Google Scholar 

  83. Sugita K et al (2005) Genetically modified rice seeds accumulating GLP-1 analogue stimulate insulin secretion from a mouse pancreatic beta-cell line. FEBS Lett 579:1085–1088

    Article  PubMed  CAS  Google Scholar 

  84. Wu G et al (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  PubMed  CAS  Google Scholar 

  85. Takaiwa F et al (2008) Co-expression of soybean glycinins A1aB1b and A3B4 enhances their accumulation levels in transgenic rice seed. Plant Cell Physiol 49:1589–1599

    Article  PubMed  CAS  Google Scholar 

  86. Naqvi S et al (2009) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56

    Google Scholar 

  87. Abbadi A et al (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  88. Wada N et al (2009) Bioactive beads-mediated transformation of rice with large DNA fragments containing Aegilops tauschii genes. Plant Cell Rep 28:759–768

    Article  PubMed  CAS  Google Scholar 

  89. Chen L et al (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1059–1064

    Article  Google Scholar 

  90. Obembe O et al (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

    Article  PubMed  Google Scholar 

  91. Yang L et al (2007) Development of transgenic rice seed accumulating a major Japanese cedar pollen allergen (Cry j 1) structurally disrupted for oral immunotherapy. Plant Biotechnol J 5:815–826

    Article  PubMed  CAS  Google Scholar 

  92. Takaiwa F et al (2007) Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J 5:84–92

    Article  PubMed  CAS  Google Scholar 

  93. Xie T et al (2008) A biologically active rhIGF-1 fusion accumulated in transgenic rice seeds can reduce blood glucose in diabetic mice via oral delivery. Peptides 29:1862–1870

    Article  PubMed  CAS  Google Scholar 

  94. Oszvald M et al (2008) Expression of cholera toxin B subunit in transgenic rice endosperm. Mol Biotechnol 40:261–268

    Article  PubMed  CAS  Google Scholar 

  95. Yasuda H et al (2009) Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant Cell Physiol 50:1532–1543

    Article  PubMed  CAS  Google Scholar 

  96. Matsumoto Y et al (2009) Oral immunogenicity and protective efficacy in mice of transgenic rice plants producing a vaccine candidate antigen (As16) of Ascaris suum fused with cholera toxin B subunit. Transgenic Res 18:185–192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Illimar Altosaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Greenham, T., Altosaar, I. (2013). Molecular Strategies to Engineer Transgenic Rice Seed Compartments for Large-Scale Production of Plant-Made Pharmaceuticals. In: Yang, Y. (eds) Rice Protocols. Methods in Molecular Biology, vol 956. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-194-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-194-3_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-193-6

  • Online ISBN: 978-1-62703-194-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics