Skip to main content

Patch-Clamp Fluorometry and Its Applications to the Study of Ion Channels

  • Protocol
  • First Online:
Basic Neurobiology Techniques

Part of the book series: Neuromethods ((NM,volume 152))

Abstract

Patch-clamp remains the premier technique to study ion channel properties. Among the more useful extensions of patch-clamp, is the simultaneous use of fluorescence and spectroscopic techniques and electrophysiological recording known as patch-clamp fluorometry. This technique permits the simultaneous correlation of ionic current recordings with the activity of electrically silent protein conformational changes reported by the fluorescence measurement. Several recent and ongoing advances in fluorescent probes, genetically encoded fluorescent sensors based on fluorescent proteins or fluorescent noncanonical amino acids are making these methodologies more and more useful in the study of ion channel dynamics and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA; [Great Britain]

    Google Scholar 

  2. Catterall WA, Wisedchaisri G, Zheng N (2017) The chemical basis for electrical signaling. Nat Chem Biol 13(5):455–463. https://doi.org/10.1038/nchembio.2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rasmussen T (2016) How do mechanosensitive channels sense membrane tension? Biochem Soc Trans 44(4):1019–1025. https://doi.org/10.1042/BST20160018

    Article  CAS  PubMed  Google Scholar 

  4. Zheng J, Trudeau MC (2015) Handbook of Ion channels, 1st edn. CRC Press, Boca Raton, FL. https://doi.org/10.1201/b18027

    Book  Google Scholar 

  5. Ahern CA, Payandeh J, Bosmans F, Chanda B (2016) The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J Gen Physiol 147(1):1–24. https://doi.org/10.1085/jgp.201511492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    Article  CAS  PubMed  Google Scholar 

  7. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guan B, Chen X, Zhang H (2013) Two-electrode voltage clamp. In: Gamper N (ed) Ion channels: methods and protocols. Humana Press, Totowa, NJ, pp 79–89. https://doi.org/10.1007/978-1-62703-351-0_6

    Chapter  Google Scholar 

  9. Stefani E, Bezanilla F (1998) Cut-open oocyte voltage-clamp technique. Methods Enzymol 293:300–318

    Article  CAS  PubMed  Google Scholar 

  10. Rudokas MW, Varga Z, Schubert AR, Asaro AB, Silva JR (2014) The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry. J Vis Exp (85). https://doi.org/10.3791/51040

  11. Neher E, Sakmann B, Steinbach JH (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflugers Arch 375(2):219–228

    Article  CAS  PubMed  Google Scholar 

  12. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472. https://doi.org/10.1146/annurev.ph.46.030184.002323

    Article  CAS  PubMed  Google Scholar 

  13. Auerbach A, Sachs F (1984) Patch clamp studies of single ionic channels. Annu Rev Biophys Bioeng 13:269–302. https://doi.org/10.1146/annurev.bb.13.060184.001413

    Article  CAS  PubMed  Google Scholar 

  14. Islas L (2015) Patch clamping and single-channel analysis. In: Handbook of ion channels. CRC Press, Boca Raton, FL, pp 71–81. https://doi.org/10.1201/b18027-9

    Chapter  Google Scholar 

  15. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  CAS  PubMed  Google Scholar 

  16. Neher E, Sakmann B (1992) The patch clamp technique. Sci Am 266(3):44–51

    Article  CAS  PubMed  Google Scholar 

  17. Gorostiza P, Isacoff EY (2008) Nanoengineering ion channels for optical control. Physiology (Bethesda) 23:238–247. https://doi.org/10.1152/physiol.00018.2008

    Article  Google Scholar 

  18. Pless SA, Kim RY, Ahern CA, Kurata HT (2015) Atom-by-atom engineering of voltage-gated ion channels: magnified insights into function and pharmacology. J Physiol 593(12):2627–2634. https://doi.org/10.1113/jphysiol.2014.287714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lueck JD, Mackey AL, Infield DT, Galpin JD, Li J, Roux B, Ahern CA (2016) Atomic mutagenesis in ion channels with engineered stoichiometry. Elife 5. https://doi.org/10.7554/eLife.18976

  20. Yuchi Z, Van Petegem F (2016) Ryanodine receptors under the magnifying lens: insights and limitations of cryo-electron microscopy and X-ray crystallography studies. Cell Calcium 59(5):209–227. https://doi.org/10.1016/j.ceca.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Fujiyoshi Y (2011) Electron crystallography for structural and functional studies of membrane proteins. J Electron Microsc (Tokyo) 60(Suppl 1):S149–S159. https://doi.org/10.1093/jmicro/dfr033

    Article  CAS  Google Scholar 

  22. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358. https://doi.org/10.1038/nature10238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaplan M, Pinto C, Houben K, Baldus M (2016) Nuclear magnetic resonance (NMR) applied to membrane-protein complexes. Q Rev Biophys 49:e15. https://doi.org/10.1017/S003358351600010X

    Article  PubMed  Google Scholar 

  24. Blasic JR, Worcester DL, Gawrisch K, Gurnev P, Mihailescu M (2015) Pore hydration states of KcsA potassium channels in membranes. J Biol Chem 290(44):26765–26775. https://doi.org/10.1074/jbc.M115.661819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kulleperuma K, Smith SM, Morgan D, Musset B, Holyoake J, Chakrabarti N, Cherny VV, DeCoursey TE, Pomes R (2013) Construction and validation of a homology model of the human voltage-gated proton channel hHV1. J Gen Physiol 141(4):445–465. https://doi.org/10.1085/jgp.201210856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Randolph AL, Mokrab Y, Bennett AL, Sansom MS, Ramsey IS (2016) Proton currents constrain structural models of voltage sensor activation. Elife 5. https://doi.org/10.7554/eLife.18017

  27. Blunck R (2015) Investigation of ion channel structure using fluorescence spectroscopy. In: Handbook of ion channels. CRC Press, Boca Raton, FL, pp 113–133. https://doi.org/10.1201/b18027-12

    Chapter  Google Scholar 

  28. Taraska JW, Zagotta WN (2010) Fluorescence applications in molecular neurobiology. Neuron 66(2):170–189. https://doi.org/10.1016/j.neuron.2010.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271(5246):213–216

    Article  CAS  PubMed  Google Scholar 

  30. Gandhi CS, Olcese R (2008) The voltage-clamp fluorometry technique. Methods Mol Biol 491:213–231. https://doi.org/10.1007/978-1-59745-526-8_17

    Article  CAS  PubMed  Google Scholar 

  31. Zheng J, Zagotta WN (2003) Patch-clamp fluorometry recording of conformational rearrangements of ion channels. Sci STKE 2003(176):PL7. https://doi.org/10.1126/stke.2003.176.pl7

    Article  PubMed  Google Scholar 

  32. Zheng J, Zagotta WN (2000) Gating rearrangements in cyclic nucleotide-gated channels revealed by patch-clamp fluorometry. Neuron 28(2):369–374

    Article  CAS  PubMed  Google Scholar 

  33. Kusch J, Zifarelli G (2014) Patch-clamp fluorometry: electrophysiology meets fluorescence. Biophys J 106(6):1250–1257. https://doi.org/10.1016/j.bpj.2014.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taraska JW, Zagotta WN (2007) Cyclic nucleotide-regulated ion channels: spotlight on symmetry. Structure 15(9):1023–1024. https://doi.org/10.1016/j.str.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Lee SJ, Heyman S, Enkvetchakul D, Nichols CG (2012) Structural rearrangements underlying ligand-gating in Kir channels. Nat Commun 3:617. https://doi.org/10.1038/ncomms1625

    Article  CAS  PubMed  Google Scholar 

  36. Islas LD, Zagotta WN (2006) Short-range molecular rearrangements in ion channels detected by tryptophan quenching of bimane fluorescence. J Gen Physiol 128(3):337–346. https://doi.org/10.1085/jgp.200609556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu C, Xie C, Grant K, Su Z, Gao W, Liu Q, Zhou L (2016) Patch-clamp fluorometry-based channel counting to determine HCN channel conductance. J Gen Physiol 148(1):65–76. https://doi.org/10.1085/jgp.201511559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De-la-Rosa V, Suárez-Delgado E, Rangel-Yescas GE, Islas LD (2016) Currents through Hv1 channels deplete protons in their vicinity. J Gen Physiol 147(2):127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miranda P, Giraldez T, Holmgren M (2016) Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring. Proc Natl Acad Sci U S A 113(49):14055–14060. https://doi.org/10.1073/pnas.1611415113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trudeau MC, Zagotta WN (2003) Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels. J Biol Chem 278(21):18705–18708. https://doi.org/10.1074/jbc.R300001200

    Article  CAS  PubMed  Google Scholar 

  41. Biskup C, Kusch J, Schulz E, Nache V, Schwede F, Lehmann F, Hagen V, Benndorf K (2007) Relating ligand binding to activation gating in CNGA2 channels. Nature 446(7134):440–443. https://doi.org/10.1038/nature05596

    Article  CAS  PubMed  Google Scholar 

  42. Aman TK, Gordon SE, Zagotta WN (2016) Regulation of CNGA1 channel gating by interactions with the membrane. J Biol Chem 291(19):9939–9947. https://doi.org/10.1074/jbc.M116.723932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng J (2006) Patch fluorometry: shedding new light on ion channels. Physiology (Bethesda) 21:6–12. https://doi.org/10.1152/physiol.00041.2005

    Article  CAS  Google Scholar 

  44. Geibel S, Kaplan JH, Bamberg E, Friedrich T (2003) Conformational dynamics of the Na+/K+-ATPase probed by voltage clamp fluorometry. Proc Natl Acad Sci U S A 100(3):964–969. https://doi.org/10.1073/pnas.0337336100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stuurman N, Amdodaj N, Vale R (2007) Micro-manager: open source software for light microscope imaging. Microscopy Today 15(3):42–43

    Article  Google Scholar 

  46. Molleman A (2003) Requirements. In: Patch clamping. John Wiley & Sons, Ltd., Chichester, pp 43–93. https://doi.org/10.1002/0470856521.ch3

    Chapter  Google Scholar 

  47. Goldin AL (1992) Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol 207:266–279

    Article  CAS  PubMed  Google Scholar 

  48. Soreq H, Seidman S (1992) Xenopus oocyte microinjection: from gene to protein. Methods Enzymol 207:225–265

    Article  CAS  PubMed  Google Scholar 

  49. Brown AL, Johnson BE, Goodman MB (2008) Patch clamp recording of ion channels expressed in Xenopus oocytes. J Vis Exp (20):936. https://doi.org/10.3791/936

  50. Holmgren M, Liu Y, Xu Y, Yellen G (1996) On the use of thiol-modifying agents to determine channel topology. Neuropharmacology 35(7):797–804

    Article  CAS  PubMed  Google Scholar 

  51. Lundblad RL (2004) Techniques in protein modification, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  52. Taraska JW, Puljung MC, Olivier NB, Flynn GE, Zagotta WN (2009) Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat Methods 6(7):532–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Taraska JW, Zagotta WN (2007) Structural dynamics in the gating ring of cyclic nucleotide-gated ion channels. Nat Struct Mol Biol 14(9):854–860. https://doi.org/10.1038/nsmb1281

    Article  CAS  PubMed  Google Scholar 

  54. Loots E, Isacoff EY (2000) Molecular coupling of S4 to a K(+) channel’s slow inactivation gate. J Gen Physiol 116(5):623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Puljung MC, Zagotta WN (2011) Labeling of specific cysteines in proteins using reversible metal protection. Biophys J 100(10):2513–2521. https://doi.org/10.1016/j.bpj.2011.03.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kusch J, Biskup C, Thon S, Schulz E, Nache V, Zimmer T, Schwede F, Benndorf K (2010) Interdependence of receptor activation and ligand binding in HCN2 pacemaker channels. Neuron 67(1):75–85. https://doi.org/10.1016/j.neuron.2010.05.022

    Article  CAS  PubMed  Google Scholar 

  57. Posson DJ, Ge P, Miller C, Bezanilla F, Selvin PR (2005) Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436(7052):848–851. https://doi.org/10.1038/nature03819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444. https://doi.org/10.1146/annurev.biochem.052308.105824

    Article  CAS  PubMed  Google Scholar 

  59. Serfling R, Coin I (2016) Incorporation of unnatural amino acids into proteins expressed in mammalian cells. Methods Enzymol 580:89–107. https://doi.org/10.1016/bs.mie.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  60. Lee HS, Guo J, Lemke EA, Dimla RD, Schultz PG (2009) Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J Am Chem Soc 131(36):12921–12923. https://doi.org/10.1021/ja904896s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chatterjee A, Guo J, Lee HS, Schultz PG (2013) A genetically encoded fluorescent probe in mammalian cells. J Am Chem Soc 135(34):12540–12543. https://doi.org/10.1021/ja4059553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Segev A, Garcia-Oscos F, Kourrich S (2016) Whole-cell patch-clamp recordings in brain slices. J Vis Exp (112). https://doi.org/10.3791/54024

  63. Li S, Deng Z, Wei L, Liang L, Ai W, Shou X, Chen X (2011) Reduction of large-conductance Ca2(+) -activated K(+) channel with compensatory increase of nitric oxide in insulin resistant rats. Diabetes Metab Res Rev 27(5):461–469. https://doi.org/10.1002/dmrr.1196

    Article  CAS  PubMed  Google Scholar 

  64. Cherny VV, Murphy R, Sokolov V, Levis RA, DeCoursey TE (2003) Properties of single voltage-gated proton channels in human eosinophils estimated by noise analysis and by direct measurement. J Gen Physiol 121(6):615–628. https://doi.org/10.1085/jgp.200308813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gandini MA, Sandoval A, Felix R (2014) Whole-cell patch-clamp recording of recombinant voltage-sensitive Ca2+ channels heterologously expressed in HEK-293 cells. Cold Spring Harb Protoc 2014(4):396–401. https://doi.org/10.1101/pdb.prot073213

    Article  PubMed  Google Scholar 

  66. Sontheimer H, Olsen ML (2007) Whole-cell patch-clamp recordings. In: Walz W (ed) Patch-clamp analysis: advanced techniques. Humana Press, Totowa, NJ, pp 35–68. https://doi.org/10.1007/978-1-59745-492-6_2

    Chapter  Google Scholar 

  67. Cahalan M, Neher E (1992) Patch clamp techniques: an overview. Methods Enzymol 207:3–14

    Article  CAS  PubMed  Google Scholar 

  68. Molleman A (2003) Basic theoretical principles. In: Patch clamping. John Wiley & Sons, Ltd., Chichester, pp 5–42. https://doi.org/10.1002/0470856521.ch2

    Chapter  Google Scholar 

  69. Kobrinsky E, Stevens L, Kazmi Y, Wray D, Soldatov NM (2006) Molecular rearrangements of the Kv2.1 potassium channel termini associated with voltage gating. J Biol Chem 281(28):19233–19240. https://doi.org/10.1074/jbc.M601231200

    Article  CAS  PubMed  Google Scholar 

  70. Yang F, Cui Y, Wang K, Zheng J (2010) Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc Natl Acad Sci U S A 107(15):7083–7088. https://doi.org/10.1073/pnas.1000357107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kobrinsky E, Tiwari S, Maltsev VA, Harry JB, Lakatta E, Abernethy DR, Soldatov NM (2005) Differential role of the alpha1C subunit tails in regulation of the Cav1.2 channel by membrane potential, beta subunits, and Ca2+ ions. J Biol Chem 280(13):12474–12485. https://doi.org/10.1074/jbc.M412140200

    Article  CAS  PubMed  Google Scholar 

  72. Fisher JA, Girdler G, Khakh BS (2004) Time-resolved measurement of state-specific P2X2 ion channel cytosolic gating motions. J Neurosci 24(46):10475–10487. https://doi.org/10.1523/JNEUROSCI.3250-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36(1):59–74. https://doi.org/10.1099/0022-1317-36-1-59

    Article  CAS  PubMed  Google Scholar 

  74. Jin L, Han Z, Platisa J, Wooltorton JRA, Cohen LB, Pieribone VA (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75(5):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Han Z, Jin L, Chen F, Loturco JJ, Cohen LB, Bondar A, Lazar J, Pieribone VA (2014) Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight. PLoS One 9(11):e113873

    Article  PubMed  PubMed Central  Google Scholar 

  76. Heuser J (2000) The production of ‘cell cortices’ for light and electron microscopy. Traffic 1(7):545–552. https://doi.org/10.1034/j.1600-0854.2000.010704.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the lab of LDI is supported by a grant from CONACYT No.252644; CONACYT-Fronteras de la Ciencia No.77 and DGAPA-PAPIIT IN209515.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suárez-Delgado, E., Islas, L.D. (2020). Patch-Clamp Fluorometry and Its Applications to the Study of Ion Channels. In: Wright, N. (eds) Basic Neurobiology Techniques . Neuromethods, vol 152. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9944-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9944-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9943-9

  • Online ISBN: 978-1-4939-9944-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics