Skip to main content

Fluorescent Labeling for Patch-Clamp Fluorometry (PCF) Measurements of Real-Time Protein Motion in Ion Channels

  • Protocol
  • First Online:
Site-Specific Protein Labeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1266))

Abstract

Understanding the function of ion channels is a major goal of molecular neurophysiology. While standard electrophysiological methods are invaluable tools to investigate the gating of ion channels, the structural rearrangements that mediate the way a channel senses physiological signals and opens and closes its gates cannot be measured electrically in a direct way. Here, we describe a method, based on site-specific labeling of a channel of interest with an environmentally sensitive fluorophore, which makes it possible to monitor conformational changes of ion channels in biological membranes in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213–216

    Article  CAS  PubMed  Google Scholar 

  2. Zheng J, Zagotta WN (2000) Gating rearrangements in cyclic nucleotide-gated channels revealed by patch-clamp fluorometry. Neuron 28:369–374

    Article  CAS  PubMed  Google Scholar 

  3. Asamoah OK, Wuskell JP, Loew LM, Bezanilla F (2003) A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37:85–97

    Article  CAS  PubMed  Google Scholar 

  4. Cohen BE, Pralle A, Yao X, Swaminath G, Gandhi CS, Jan YN et al (2005) A fluorescent probe designed for studying protein conformational change. Proc Natl Acad Sci U S A 102:965–970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Glauner KS, Mannuzzu LM, Gandhi CS, Isacoff EY (1999) Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402:813–817

    Article  CAS  PubMed  Google Scholar 

  6. Cha A, Snyder GE, Selvin PR, Bezanilla F (1999) Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402:809–813

    Article  CAS  PubMed  Google Scholar 

  7. Loots E, Isacoff EY (2000) Molecular coupling of S4 to a K(+) channel’s slow inactivation gate. J Gen Physiol 116:623–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gandhi CS, Clark E, Loots E, Pralle A, Isacoff EY (2000) The orientation and molecular movement of a k(+) channel voltage-sensing domain. Neuron 40:515–525

    Article  Google Scholar 

  9. Pathak MM, Yarov-Yarovoy V, Agarwal G, Roux B, Barth P, Kohout S et al (2007) Closing in on the resting state of the Shaker K(+) channel. Neuron 56:124–140

    Article  CAS  PubMed  Google Scholar 

  10. Sonnleitner A, Mannuzzu LM, Terakawa S, Isacoff EY (2002) Structural rearrangements in single ion channels detected optically in living cells. Proc Natl Acad Sci U S A 99:12759–12764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Blunck R, McGuire H, Hyde HC, Bezanilla F (2008) Fluorescence detection of the movement of single KcsA subunits reveals cooperativity. Proc Natl Acad Sci U S A 105:20263–20268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lakowicz J (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  13. Loots E, Isacoff EY (1998) Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J Gen Physiol 112:377–389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gandhi CS, Loots E, Isacoff EY (2000) Reconstructing voltage sensor-pore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron 27:585–595

    Article  CAS  PubMed  Google Scholar 

  15. Cha A, Bezanilla F (1997) Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19:1127–1140

    Article  CAS  PubMed  Google Scholar 

  16. Mannuzzu LM, Isacoff EY (2000) Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J Gen Physiol 115:257–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pathak M, Kurtz L, Tombola F, Isacoff E (2005) The cooperative voltage sensor motion that gates a potassium channel. J Gen Physiol 125:57–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tombola F, Ulbrich MH, Kohout SC, Isacoff EY (2010) The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity. Nat Struct Mol Biol 17:44–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Baker OS, Larsson HP, Mannuzzu LM, Isacoff EY (1998) Three transmembrane conformations and sequence-dependent displacement of the S4 domain in Shaker K+ channel gating. Neuron 20:1283–1294

    Article  CAS  PubMed  Google Scholar 

  20. Schönherr R, Mannuzzu LM, Isacoff EY, Heinemann SH (2002) Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel. Neuron 35:935–949

    Article  PubMed  Google Scholar 

  21. Bruening-Wright A, Elinder F, Larsson HP (2007) Kinetic relationship between the voltage sensor and the activation gate in spHCN channels. J Gen Physiol 130:71–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120:629–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gonzalez C, Koch HP, Drum BM, Larsson HP (2010) Strong cooperativity between subunits in voltage-gated proton channels. Nat Struct Mol Biol 17:51–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kohout SC, Ulbrich MH, Bell SC, Isacoff EY (2008) Subunit organization and functional transitions in Ci-VSP. Nat Struct Mol Biol 15:106–108

    Article  CAS  PubMed  Google Scholar 

  25. Villalba-Galea CA, Sandtner W, Starace DM, Bezanilla F (2008) S4-based voltage sensors have three major conformations. Proc Natl Acad Sci U S A 105:17600–17607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chang Y, Weiss DS (2002) Site-specific fluorescence reveals distinct structural changes with GABA receptor activation and antagonism. Nat Neurosci 5:1163–1168

    Article  CAS  PubMed  Google Scholar 

  27. Yao X, Parnot C, Deupi X, Ratnala VRP, Swaminath G, Farrens D et al (2006) Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat Chem Biol 2:417–422

    Article  CAS  PubMed  Google Scholar 

  28. Larsson HP, Tzingounis AV, Koch HP, Kavanaugh MP (2004) Fluorometric measurements of conformational changes in glutamate transporters. Proc Natl Acad Sci U S A 101:3951–3956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Dempski RE, Friedrich T, Bamberg E (2009) Voltage clamp fluorometry: combining fluorescence and electrophysiological methods to examine the structure–function of the Na(+)/K(+)-ATPase. Biochim Biophys Acta 1787:714–720

    Article  CAS  PubMed  Google Scholar 

  30. Blunck R, Starace DM, Correa AM, Bezanilla F (2004) Detecting rearrangements of shaker and NaChBac in real-time with fluorescence spectroscopy in patch-clamped mammalian cells. Biophys J 86:3966–3980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant R01 NS35549 (E.Y.I.), and a postdoctoral fellowship of the Swiss National Science Foundation (SNSF, PA00P3_134163) (T.K.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas K. Berger or Ehud Y. Isacoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Berger, T.K., Isacoff, E.Y. (2015). Fluorescent Labeling for Patch-Clamp Fluorometry (PCF) Measurements of Real-Time Protein Motion in Ion Channels. In: Gautier, A., Hinner, M. (eds) Site-Specific Protein Labeling. Methods in Molecular Biology, vol 1266. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2272-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2272-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2271-0

  • Online ISBN: 978-1-4939-2272-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics