Skip to main content

Peptide-Modified Gemini Surfactants: Preparation and Characterization for Gene Delivery

  • Protocol
  • First Online:
Pharmaceutical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2000))

Abstract

Diquaternary ammonium-based gemini surfactants have been investigated widely as nonviral gene delivery systems. These unique cationic lipids have versatility in their chemical structure, show relatively low toxicity, are able to compact genetic material (pDNA, RNA) into nano-sized lipoplexes, and can be easily produced. In addition, the gemini surfactants show significant improvement in the transfection activity and biocompatibility compared to other cationic lipids used as nonviral gene delivery agents. The successful applications of gemini surfactant-based lipoplexes as topical gene delivery systems in animal models indicate their potential as noninvasive carriers for genetic immunization, theranostic agents, and in other gene therapy treatments. Detailed physicochemical characterization of gemini surfactant lipoplexes is a key factor in terms of formulation optimization and elucidation of the cellular uptake and stability of the lipoplexes system. In this chapter, we describe in detail different formulation methods to prepare gemini surfactant lipoplexes and comprehensive physicochemical characterization. In addition, we illustrate general protocols for in vitro evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin L, Zeng X, Liu M, Deng Y, He N (2014) Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 4:240–255

    Article  Google Scholar 

  2. Singh J, Mohammed-Saied W, Kaur R, Badea I (2013) Nanoparticles in gene therapy: from design to clinical applications. Rev Nanosci Nanotechnol 2:275–299

    Article  CAS  Google Scholar 

  3. Menger FM, Littau C (1991) Gemini-surfactants: synthesis and properties. J Am Chem Soc 113:1451–1452

    Article  CAS  Google Scholar 

  4. Rosen MJ, Tracy DJ (1998) Gemini surfactants. J Surfactant Deterg 1:547–554

    Article  CAS  Google Scholar 

  5. Badea I, Verrall R, Baca-Estrada M et al (2005) In vivo cutaneous interferon-γ gene delivery using novel dicationic (gemini) surfactant–plasmid complexes. J Gene Med 7:1200–1214

    Article  CAS  Google Scholar 

  6. Badea I, Wettig S, Verrall R, Foldvari M (2007) Topical non-invasive gene delivery using gemini nanoparticles in interferon-γ-deficient mice. Eur J Pharm Biopharm 65:414–422

    Article  CAS  Google Scholar 

  7. Badea I, Virtanen C, Verrall R, Rosenberg A, Foldvari M (2011) Effect of topical interferon-γ gene therapy using gemini nanoparticles on pathophysiological markers of cutaneous scleroderma in Tsk/+ mice. Gene Ther 19:978–987

    Article  Google Scholar 

  8. Garcia MT, Kaczerewska O, Ribosa I, Brycki B, Materna P, Drgas M (2016) Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: effect of the spacer on their ecological properties. Chemosphere 154:155–160

    Article  CAS  Google Scholar 

  9. Wasungu L, Scarzello M, van Dam G et al (2006) Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for in vivo gene therapy applications. J Mol Med 84:774–784

    Article  CAS  Google Scholar 

  10. Kim B-K, Doh K-O, Bae Y-U, Seu Y-B (2011) Synthesis and optimization of cholesterol-based diquaternary ammonium gemini surfactant (chol-gs) as a new gene delivery vector. J Microbiol Biotechnol 21:93–99

    Article  CAS  Google Scholar 

  11. Pérez L, Pinazo A, Pons R, Infante M (2014) Gemini surfactants from natural amino acids. Adv Colloid Interf Sci 205:134–155

    Article  Google Scholar 

  12. Yang P, Singh J, Wettig S, Foldvari M, Verrall RE, Badea I (2010) Enhanced gene expression in epithelial cells transfected with amino acid-substituted gemini nanoparticles. Eur J Pharm Biopharm 75:311–320

    Article  CAS  Google Scholar 

  13. Singh J, Yang P, Michel D, E Verrall R, Foldvari M, Badea I (2011) Amino acid-substituted gemini surfactant-based nanoparticles as safe and versatile gene delivery agents. Curr Drug Deliv 8:299–306

    Article  CAS  Google Scholar 

  14. Al-Dulaymi MA, Chitanda JM, Mohammed-Saeid W et al (2016) Di-peptide-modified gemini surfactants as gene delivery vectors: exploring the role of the alkyl tail in their physicochemical behavior and biological activity. Am Assoc Pharm Scient J 18:1168–1181

    CAS  Google Scholar 

  15. Al-Dulaymi M, Michel D, Mohammed Saeid W et al (2016) Novel peptide-modified gemini surfactants as gene carriers structure activity relationship, physicochemical characterizations and mass spectrometric dissociation behaviour. American Association of Pharmaceutical Scientists Annual Meeting and Exhibition, Denver, CO

    Google Scholar 

  16. Singh J, Michel D, Getson HM, Chitanda JM, Verrall RE, Badea I (2015) Development of amino acid substituted gemini surfactant-based mucoadhesive gene delivery systems for potential use as noninvasive vaginal genetic vaccination. Nanomedicine 10:405–417

    Article  CAS  Google Scholar 

  17. Singh J, Michel D, Chitanda JM, Verrall RE, Badea I (2012) Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles. J Nanobiotechnol 10:7

    Article  CAS  Google Scholar 

  18. Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S (2014) Effect of size on biological properties of nanoparticles employed in gene delivery. Artif Cell Nanomed Biotechnol 44:1–9

    Google Scholar 

  19. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577

    Article  Google Scholar 

  20. Ma B, Zhang S, Jiang H, Zhao B, Lv H (2007) Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 123:184–194

    Article  CAS  Google Scholar 

  21. Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549

    Article  CAS  Google Scholar 

  22. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Chem 4:17

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2013) Gaussian 09, revision D.01. Gaussian, Wallingford, CT

    Google Scholar 

  24. Gratton SE, Ropp PA, Pohlhaus PD et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105:11613–11618

    Article  CAS  Google Scholar 

  25. Foged C, Brodin B, Frokjaer S, Sundblad A (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298:315–322

    Article  CAS  Google Scholar 

  26. Zantl R, Baicu L, Artzner F, Sprenger I, Rapp G, Rädler JO (1999) Thermotropic phase behavior of cationic lipid-DNA complexes compared to binary lipid mixtures. J Phys Chem B 103:10300–10310

    Article  CAS  Google Scholar 

  27. Dauty E, Remy J-S, Blessing T, Behr J-P (2001) Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J Am Chem Soc 123:9227–9234

    Article  CAS  Google Scholar 

  28. Harkins WD, Jordan HF (1930) Surface tension by the ring method. Science 72:73–75

    Article  CAS  Google Scholar 

  29. Carpena P, Aguiar J, Bernaola-Galván P, Carnero Ruiz C (2002) Problems associated with the treatment of conductivity–concentration data in surfactant solutions: simulations and experiments. Langmuir 18:6054–6058

    Article  CAS  Google Scholar 

  30. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 72:1525–1568

    Article  CAS  Google Scholar 

  31. Kumar V (1991) Complementary molecular shapes and additivity of the packing parameter of lipids. Proc Natl Acad Sci 88:444–448

    Article  CAS  Google Scholar 

  32. Moghaddam B, Mcneil SE, Zheng Q, Mohammed AR, Perrie Y (2011) Exploring the correlation between lipid packaging in lipoplexes and their transfection efficacy. Pharmaceutics 3:848–864

    Article  CAS  Google Scholar 

  33. Burgess DJ, Duffy E, Etzler F, Hickey AJ (2004) Particle size analysis: American Association of Pharmaceutical Scientists workshop report, cosponsored by the Food and Drug Administration and the United States Pharmacopeia. Am Assoc Pharm Scient J 6:23–34

    Google Scholar 

  34. Pérez-Rodríguez M, Prieto G, Rega C, Varela LM, Sarmiento F, Mosquera V (1998) A comparative study of the determination of the critical micelle concentration by conductivity and dielectric constant measurements. Langmuir 14:4422–4426

    Article  Google Scholar 

  35. Garcia-Mateos I, Mercedes Velazquez M, Rodriguez LJ (1990) Critical micelle concentration determination in binary mixtures of ionic surfactants by deconvolution of conductivity/concentration curves. Langmuir 6:1078–1083

    Article  CAS  Google Scholar 

  36. Koenig BW, Gawrisch K (2005) Specific volumes of unsaturated phosphatidylcholines in the liquid crystalline lamellar phase. Biochim Biophys Acta 1715:65–70

    Article  CAS  Google Scholar 

  37. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildiko Badea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Al-Dulaymi, M., Mohammed-Saeid, W., El-Aneed, A., Badea, I. (2019). Peptide-Modified Gemini Surfactants: Preparation and Characterization for Gene Delivery. In: Weissig, V., Elbayoumi, T. (eds) Pharmaceutical Nanotechnology. Methods in Molecular Biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9516-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9515-8

  • Online ISBN: 978-1-4939-9516-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics