Skip to main content

Computational Peptide Vaccinology

  • Protocol
  • First Online:
Computational Peptidology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1268))

Abstract

Immunoinformatics focuses on modeling immune responses for better understanding of the immune system and in many cases for proposing agents able to modify the immune system. The most classical of these agents are vaccines derived from living organisms such as smallpox or polio. More modern vaccines comprise recombinant proteins, protein domains, and in some cases peptides. Generating a vaccine from peptides however requires technologies and concepts very different from classical vaccinology. Immunoinformatics therefore provides the computational tools to propose peptides suitable for formulation into vaccines. This chapter introduces the essential biological concepts affecting design and efficacy of peptide vaccines and discusses current methods and workflows applied to design successful peptide vaccines using computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gonzalez-Galarza FF, Christmas S, Middleton D et al (2011) Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res 39:D913–D919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Thomsen M, Lundegaard C, Buus S et al (2013) MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics 65:655–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hunzeker JT, Elftman MD, Mellinger JC et al (2011) A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells. J Immunol (Baltimore, MD : 1950) 186:183–194

    CAS  Google Scholar 

  4. Tomar N, De RK (2010) Immunoinformatics: an integrated scenario. Immunology 131:153–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Dowd KA, Pierson TC (2011) Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology 411:306–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Meyer K, Banerjee A, Frey SE et al (2011) A weak neutralizing antibody response to hepatitis C virus envelope glycoprotein enhances virus infection. PLoS One 6:e23699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Schietinger A, Philip M, Schreiber H (2008) Specificity in cancer immunotherapy. Semin Immunol 20:276–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Black M, Trent A, Tirrell M et al (2010) Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists. Expert Rev Vaccines 9:157–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Caoili SEC (2012) On the meaning of affinity limits in B-cell epitope prediction for antipeptide antibody-mediated immunity. Adv Bioinformatics 2012:346765

    Article  PubMed Central  PubMed  Google Scholar 

  10. Rose PW, Bi C, Bluhm WF et al (2013) The RCSB protein data bank: new resources for research and education. Nucleic Acids Res 41:D475–D482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gutmanas A, Alhroub Y, Battle GM et al (2014) PDBe: protein data bank in Europe. Nucleic Acids Res 42:D285–D291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Haas J, Roth S, Arnold K et al (2013) The protein model portal: a comprehensive resource for protein structure and model information. Database 2013:bat031

    Article  PubMed Central  PubMed  Google Scholar 

  13. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol (Clifton, NJ) 1137:1–15

    Article  Google Scholar 

  15. Kaufmann KW, Lemmon GH, Deluca SL et al (2010) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49:2987–2998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kabsch W, Sander C, Scharff M et al. DSSP. http://www.cmbi.ru.nl/hsspsoap/

  17. Winn MD, Ballard CC, Cowtan KD et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Joo K, Lee SJ, Lee J (2012) Sann: solvent accessibility prediction of proteins by nearest neighbor method. Proteins 80:1791–1797

    CAS  PubMed  Google Scholar 

  19. Petersen B, Petersen TN, Andersen P et al (2009) A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 9:51

    Article  PubMed Central  PubMed  Google Scholar 

  20. Dor O, Zhou Y (2007) Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties. Proteins 68:76–81

    Article  CAS  PubMed  Google Scholar 

  21. Yachdav G, Kloppmann E, Kajan L et al (2014) PredictProtein: an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42:W337–W343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Go EP, Irungu J, Zhang Y et al (2008) Glycosylation site-specific analysis of HIV envelope proteins (JR-FL and CON-S) reveals major differences in glycosylation site occupancy, glycoform profiles, and antigenic epitopes’ accessibility. J Proteome Res 7:1660–1674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198

    Article  Google Scholar 

  24. Xu Y, Wang X, Wang Y et al (2014) Prediction of posttranslational modification sites from amino acid sequences with kernel methods. J Theor Biol 344:78–87

    Article  PubMed  Google Scholar 

  25. Steentoft C, Vakhrushev SY, Joshi HJ et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32:1478–1488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lam PVN, Goldman R, Karagiannis K et al (2013) Structure-based comparative analysis and prediction of N-linked glycosylation sites in evolutionarily distant eukaryotes. Genomics Proteomics Bioinformatics 11:96–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Buchan DWA, Minneci F, Nugent TCO et al (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41:W349–W357

    Article  PubMed Central  PubMed  Google Scholar 

  28. Pryor EE Jr, Wiener MC (2014) A critical evaluation of in silico methods for detection of membrane protein intrinsic disorder. Biophys J 106:1638–1649

    Article  CAS  PubMed  Google Scholar 

  29. Wilkins MR, Gasteiger E, Bairoch A et al (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol (Clifton, NJ) 112:531–552

    CAS  Google Scholar 

  30. Kawashima S, Pokarowski P, Pokarowska M et al (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36:D202–D205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174

    Article  CAS  PubMed  Google Scholar 

  32. Söllner J, Mayer B (2006) Machine learning approaches for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19:200–208

    Article  PubMed  Google Scholar 

  33. Ashkenazy H, Erez E, Martz E et al (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38:W529–W533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gillet L, May JS, Colaco S et al (2007) The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS One 2:e705

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sollner J, Grohmann R, Rapberger R et al (2008) Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res 4:1

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ojosnegros S, Beerenwinkel N (2010) Models of RNA virus evolution and their roles in vaccine design. Immunome Res 6(Suppl 2):S5

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kim Y, Ponomarenko J, Zhu Z et al (2012) Immune epitope database analysis resource. Nucleic Acids Res 40:W525–W530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ponomarenko J, Bui H-H, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514

    Article  PubMed Central  PubMed  Google Scholar 

  40. Hopp TP (1993) Retrospective: 12 years of antigenic determinant predictions, and more. Pept Res 6:183–190

    CAS  PubMed  Google Scholar 

  41. Yao B, Zhang L, Liang S et al (2012) SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One 7:e45152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Davydov II, Tonevitskiĭ AG (2009) Linear B-cell epitope prediction. Mol Biol 43:166–174

    Article  Google Scholar 

  43. Gao J, Faraggi E, Zhou Y et al (2012) BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One 7:e40104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Costa JG, Faccendini PL, Sferco SJ et al (2013) Evaluation and comparison of the ability of online available prediction programs to predict true linear B-cell epitopes. Protein Pept Lett 20:724–730

    Article  CAS  PubMed  Google Scholar 

  45. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21:243–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Saha S, Raghava GPS (2007) Prediction methods for B-cell epitopes. Methods Mol Biol (Clifton, NJ) 409:387–394

    Article  CAS  Google Scholar 

  47. Bergmann-Leitner ES, Chaudhury S, Steers NJ et al (2013) Computational and experimental validation of B and T-cell epitopes of the in vivo immune response to a novel malarial antigen. PLoS One 8:e71610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lin SY-H, Cheng C-W, Su EC-Y (2013) Prediction of B-cell epitopes using evolutionary information and propensity scales. BMC Bioinformatics 14(Suppl 2):S10

    Article  PubMed Central  PubMed  Google Scholar 

  49. Lundegaard C, Lund O, Buus S et al (2010) Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology 130:309–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7:131

    Article  PubMed Central  PubMed  Google Scholar 

  51. Larsen MV, Lundegaard C, Lamberth K et al (2005) An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303

    Article  CAS  PubMed  Google Scholar 

  52. Ivanov S, Dimitrov I, Doytchinova I (2013) Quantitative prediction of peptide binding to HLA-DP1 protein. IEEE/ACM Trans Comput Biol Bioinform 10:811–815

    Article  CAS  PubMed  Google Scholar 

  53. Lundegaard C, Lund O, Nielsen M (2011) Prediction of epitopes using neural network based methods. J Immunol Methods 374:26–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hoof I, Peters B, Sidney J et al (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Liao Y-C, Lin H-H, Lin C-H et al (2013) Identification of cytotoxic T lymphocyte epitopes on swine viruses: multi-epitope design for universal T cell vaccine. PLoS One 8:e84443

    Article  PubMed Central  PubMed  Google Scholar 

  56. Larsen MV, Lundegaard C, Lamberth K et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:424

    Article  PubMed Central  PubMed  Google Scholar 

  57. Zhang GL, Bozic I, Kwoh CK et al (2007) Prediction of supertype-specific HLA class I binding peptides using support vector machines. J Immunol Methods 320:143–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Wang S, Bai Z, Han J et al (2014) Improving the prediction of HLA class I-binding peptides using a supertype-based method. J Immunol Methods 405:109–120

    Article  CAS  PubMed  Google Scholar 

  59. Flower DR, Phadwal K, Macdonald IK et al (2010) T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges. Immunome Res 6(Suppl 2):S4

    Article  PubMed Central  PubMed  Google Scholar 

  60. Chakraborty S, Rahman T, Chakravorty R et al (2013) HLA supertypes contribute in HIV type 1 cytotoxic T lymphocyte epitope clustering in Nef and Gag proteins. AIDS Res Hum Retroviruses 29:270–278

    CAS  PubMed  Google Scholar 

  61. Xie J, Xu Z, Zhou S et al (2013) The VHSE-based prediction of proteasomal cleavage sites. PLoS One 8:e74506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ferrington DA, Gregerson DS (2012) Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci 109:75–112

    Article  CAS  PubMed  Google Scholar 

  63. Zhang GL, Khan AM, Srinivasan KN et al (2008) Hotspot Hunter: a computational system for large-scale screening and selection of candidate immunological hotspots in pathogen proteomes. BMC Bioinformatics 9(Suppl 1):S19

    Article  PubMed Central  PubMed  Google Scholar 

  64. Schubert B, Lund O, Nielsen M (2013) Evaluation of peptide selection approaches for epitope-based vaccine design. Tissue Antigens 82:243–251

    Article  CAS  PubMed  Google Scholar 

  65. Söllner J, Heinzel A, Summer G et al (2010) Concept and application of a computational vaccinology workflow. Immunome Res 6(Suppl 2):S7

    Article  PubMed Central  PubMed  Google Scholar 

  66. Donati C, Rappuoli R (2013) Reverse vaccinology in the 21st century: improvements over the original design. Ann N Y Acad Sci 1285:115–132

    Article  CAS  PubMed  Google Scholar 

  67. Etz H, Minh DB, Henics T et al (2002) Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc Natl Acad Sci U S A 99:6573–6578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Flower DR, Macdonald IK, Ramakrishnan K et al (2010) Computer aided selection of candidate vaccine antigens. Immunome Res 6(Suppl 2):S1

    Article  PubMed Central  PubMed  Google Scholar 

  69. Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8:4

    Article  PubMed Central  PubMed  Google Scholar 

  70. Jaiswal V, Chanumolu SK, Gupta A et al (2013) Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions. BMC Bioinformatics 14:211

    Article  PubMed Central  PubMed  Google Scholar 

  71. He Y, Racz R, Sayers S et al (2014) Updates on the web-based VIOLIN vaccine database and analysis system. Nucleic Acids Res 42:D1124–D1132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Vivona S, Bernante F, Filippini F (2006) NERVE: new enhanced reverse vaccinology environment. BMC Biotechnol 6:35

    Article  PubMed Central  PubMed  Google Scholar 

  73. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Aiyegbo MS, Sapparapu G, Spiller BW et al (2013) Human rotavirus VP6-specific antibodies mediate intracellular neutralization by binding to a quaternary structure in the transcriptional pore. PLoS One 8:e61101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Nakaya HI, Li S, Pulendran B (2012) Systems vaccinology: learning to compute the behavior of vaccine induced immunity. Wiley Interdiscip Rev Syst Biol Med 4:193–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Kaushik S, Mutt E, Chellappan A et al (2013) Improved detection of remote homologues using cascade PSI-BLAST: influence of neighbouring protein families on sequence coverage. PLoS One 8:e56449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Söllner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Söllner, J. (2015). Computational Peptide Vaccinology. In: Zhou, P., Huang, J. (eds) Computational Peptidology. Methods in Molecular Biology, vol 1268. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2285-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2285-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2284-0

  • Online ISBN: 978-1-4939-2285-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics