Skip to main content

Genetic Encoding of a Fluorescent Noncanonical Amino Acid as a FRET Donor for the Analysis of Deubiquitinase Activities

  • Protocol
  • First Online:
Genetically Incorporated Non-Canonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2676))

Abstract

The genetic code expansion technology enables the genetic encoding of fluorescent noncanonical amino acids (ncAAs) for site-specific fluorescent labeling of proteins. These co-translational and internal fluorescent tags have been harnessed to establish genetically encoded Förster resonance energy transfer (FRET) probes for studying protein structural changes and interactions. Here, we describe the protocols for site-specific incorporation of an aminocoumarin-derived fluorescent ncAA into proteins in E. coli and preparation of a fluorescent ncAA-based FRET probe for assaying the activities of deubiquitinases, a key class of enzymes involved in ubiquitination. We also describe the deployment of an in vitro fluorescence assay to screen and analyze small-molecule inhibitors against deubiquitinases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550(7674):53–60. https://doi.org/10.1038/nature24031

    Article  CAS  PubMed  Google Scholar 

  2. Young DD, Schultz PG (2018) Playing with the molecules of life. ACS Chem Biol 13(4):854–870. https://doi.org/10.1021/acschembio.7b00974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kyung Jin L, Deokhee K, Hee-Sung P (2019) Site-specific labeling of proteins using unnatural amino acids. Mol Cells 42(5):386–396. https://doi.org/10.14348/molcells.2019.0078

    Article  CAS  Google Scholar 

  4. Lee S, Kim J, Koh M (2022) Recent advances in fluorescence imaging by genetically encoded non-canonical amino acids. J Mol Biol 434(8):167248. https://doi.org/10.1016/j.jmb.2021.167248

    Article  CAS  PubMed  Google Scholar 

  5. Lang K, Chin JW (2014) Bioorthogonal reactions for labeling proteins. ACS Chem Biol 9(1):16–20. https://doi.org/10.1021/cb4009292

    Article  CAS  PubMed  Google Scholar 

  6. Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wießler M, Schultz C, Lemke EA (2012) Amino acids for Diels–Alder reactions in living cells. Angew Chem Int Ed 51(17):4166–4170. https://doi.org/10.1002/anie.201108231

    Article  CAS  Google Scholar 

  7. Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 4(4):298–304. https://doi.org/10.1038/nchem.1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uttamapinant C, Howe JD, Lang K, Beránek V, Davis L, Mahesh M, Barry NP, Chin JW (2015) Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc 137(14):4602–4605. https://doi.org/10.1021/ja512838z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blizzard RJ, Backus DR, Brown W, Bazewicz CG, Li Y, Mehl RA (2015) Ideal bioorthogonal reactions using a site-specifically encoded Tetrazine amino acid. J Am Chem Soc 137(32):10044–10047. https://doi.org/10.1021/jacs.5b03275

    Article  CAS  PubMed  Google Scholar 

  10. Peng T, Hang HC (2016) Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J Am Chem Soc 138(43):14423–14433. https://doi.org/10.1021/jacs.6b08733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG (2006) A genetically encoded fluorescent amino acid. Proc Natl Acad Sci U S A 103(26):9785–9789. https://doi.org/10.1073/pnas.0603965103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang J, Xie J, Schultz PG (2006) A genetically encoded fluorescent amino acid. J Am Chem Soc 128(27):8738–8739. https://doi.org/10.1021/ja062666k

    Article  CAS  PubMed  Google Scholar 

  13. Lee HS, Guo J, Lemke EA, Dimla RD, Schultz PG (2009) Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in saccharomyces cerevisiae. J Am Chem Soc 131(36):12921–12923. https://doi.org/10.1021/ja904896s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chatterjee A, Guo J, Lee HS, Schultz PG (2013) A genetically encoded fluorescent probe in mammalian cells. J Am Chem Soc 135(34):12540–12543. https://doi.org/10.1021/ja4059553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Speight LC, Muthusamy AK, Goldberg JM, Warner JB, Wissner RF, Willi TS, Woodman BF, Mehl RA, Petersson EJ (2013) Efficient synthesis and in vivo incorporation of Acridon-2-ylalanine, a fluorescent amino acid for lifetime and Förster resonance energy transfer/luminescence resonance energy transfer studies. J Am Chem Soc 135(50):18806–18814. https://doi.org/10.1021/ja403247j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo J, Uprety R, Naro Y, Chou C, Nguyen DP, Chin JW, Deiters A (2014) Genetically encoded optochemical probes for simultaneous fluorescence reporting and light activation of protein function with two-photon excitation. J Am Chem Soc 136(44):15551–15558. https://doi.org/10.1021/ja5055862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lampkowski JS, Uthappa DM, Young DD (2015) Site-specific incorporation of a fluorescent terphenyl unnatural amino acid. Bioorg Med Chem Lett 25(22):5277–5280. https://doi.org/10.1016/j.bmcl.2015.09.050

    Article  CAS  PubMed  Google Scholar 

  18. Jones CM, Robkis DM, Blizzard RJ, Munari M, Venkatesh Y, Mihaila TS, Eddins AJ, Mehl RA, Zagotta WN, Gordon SE, Petersson EJ (2021) Genetic encoding of a highly photostable, long lifetime fluorescent amino acid for imaging in mammalian cells. Chem Sci 12(36):11955–11964. https://doi.org/10.1039/D1SC01914G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li M, Wang F, Yan L, Lu M, Zhang Y, Peng T (2022) Genetically encoded fluorescent unnatural amino acids and FRET probes for detecting deubiquitinase activities. Chem Commun 58(73):10186–10189. https://doi.org/10.1039/D2CC03623A

    Article  CAS  Google Scholar 

  20. Cheng Z, Kuru E, Sachdeva A, Vendrell M (2020) Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 4(6):275–290. https://doi.org/10.1038/s41570-020-0186-z

    Article  CAS  PubMed  Google Scholar 

  21. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7(9):730–734. https://doi.org/10.1038/78948

    Article  CAS  PubMed  Google Scholar 

  22. Ko W, Kim S, Lee S, Jo K, Lee HS (2016) Genetically encoded FRET sensors using a fluorescent unnatural amino acid as a FRET donor. RSC Adv 6(82):78661–78668. https://doi.org/10.1039/C6RA17375F

    Article  CAS  Google Scholar 

  23. Gordon SE, Munari M, Zagotta WN (2018) Visualizing conformational dynamics of proteins in solution and at the cell membrane. eLife 7:e37248. https://doi.org/10.7554/eLife.37248

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zagotta WN, Gordon MT, Senning EN, Munari MA, Gordon SE (2016) Measuring distances between TRPV1 and the plasma membrane using a noncanonical amino acid and transition metal ion FRET. J Gen Physiol 147(2):201–216. https://doi.org/10.1085/jgp.201511531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park H, Kang H, Ko W, Lee W, Jo K, Lee HS (2015) FRET-based analysis of protein-nucleic acid interactions by genetically incorporating a fluorescent amino acid. Amino Acids 47(4):729–734. https://doi.org/10.1007/s00726-014-1900-2

    Article  CAS  PubMed  Google Scholar 

  26. Park S-H, Ko W, Lee HS, Shin I (2019) Analysis of protein–protein interaction in a single live cell by using a FRET system based on genetic code expansion technology. J Am Chem Soc 141(10):4273–4281. https://doi.org/10.1021/jacs.8b10098

    Article  CAS  PubMed  Google Scholar 

  27. Hostetler ZM, Cory MB, Jones CM, Petersson EJ, Kohli RM (2020) The kinetic and molecular basis for the interaction of LexA and activated RecA revealed by a fluorescent amino acid probe. ACS Chem Biol 15(5):1127–1133. https://doi.org/10.1021/acschembio.9b00886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mitchell AL, Addy PS, Chin MA, Chatterjee A (2017) A unique genetically encoded FRET pair in mammalian cells. Chembiochem 18(6):511–514. https://doi.org/10.1002/cbic.201600668

    Article  CAS  PubMed  Google Scholar 

  29. Clague MJ, Urbé S, Komander D (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 20(6):338–352. https://doi.org/10.1038/s41580-019-0099-1

    Article  CAS  PubMed  Google Scholar 

  30. Harrigan JA, Jacq X, Martin NM, Jackson SP (2018) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 17(1):57–78. https://doi.org/10.1038/nrd.2017.152

    Article  CAS  PubMed  Google Scholar 

  31. Dang LC, Melandri FD, Stein RL (1998) Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry 37(7):1868–1879. https://doi.org/10.1021/bi9723360

    Article  CAS  PubMed  Google Scholar 

  32. Hassiepen U, Eidhoff U, Meder G, Bulber J-F, Hein A, Bodendorf U, Lorthiois E, Martoglio B (2007) A sensitive fluorescence intensity assay for deubiquitinating proteases using ubiquitin-rhodamine110-glycine as substrate. Anal Biochem 371(2):201–207. https://doi.org/10.1016/j.ab.2007.07.034

    Article  CAS  PubMed  Google Scholar 

  33. Ohayon S, Spasser L, Aharoni A, Brik A (2012) Targeting deubiquitinases enabled by chemical synthesis of proteins. J Am Chem Soc 134(6):3281–3289. https://doi.org/10.1021/ja2116712

    Article  CAS  PubMed  Google Scholar 

  34. Cho J, Park J, Kim EE, Song EJ (2020) Assay systems for profiling deubiquitinating activity. Int J Mol Sci 21(16):5638. https://doi.org/10.3390/ijms21165638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Varca AC, Casalena D, Chan WC, Hu B, Magin RS, Roberts RM, Liu X, Zhu H, Seo H-S, Dhe-Paganon S, Marto JA, Auld D, Buhrlage SJ (2021) Identification and validation of selective deubiquitinase inhibitors. Cell Chem Biol 28(12):1758–1771.e1713. https://doi.org/10.1016/j.chembiol.2021.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Shenzhen Science and Technology Innovation Committee (GXWD20201231165807007-20200814103057002) and National Natural Science Foundation of China (22277008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, M., Peng, T. (2023). Genetic Encoding of a Fluorescent Noncanonical Amino Acid as a FRET Donor for the Analysis of Deubiquitinase Activities. In: Tsai, YH., Elsässer, S.J. (eds) Genetically Incorporated Non-Canonical Amino Acids. Methods in Molecular Biology, vol 2676. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3251-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3251-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3250-5

  • Online ISBN: 978-1-0716-3251-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics