Skip to main content

Fluorescent Proteins: Crystallization, Structural Determination, and Nonnatural Amino Acid Incorporation

  • Protocol
  • First Online:
Fluorescent Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2564))

  • 1906 Accesses

Abstract

Fluorescent proteins have revolutionized cell biology and cell imaging through their use as genetically encoded tags. Structural biology has been pivotal in understanding how their unique fluorescent properties manifest through the formation of the chromophore and how the spectral properties are tuned through interaction networks. This knowledge has in turn led to the construction of novel variants with new and improved properties. Here we describe the process by which fluorescent protein structures are determined, starting from recombinant protein production to structure determination by molecular replacement. We also describe how to incorporate and determine the structures of proteins containing non-natural amino acids. Recent advances in protein engineering have led to reprogramming of the genetic code to allow incorporation of new chemistry at designed residue positions, with fluorescent proteins being at the forefront of structural studies in this area. The impact of such new chemistry on protein structure is still limited; the accumulation of more protein structures will undoubtedly improve our understanding and ability to engineer proteins with new chemical functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodriguez EA, Campbell RE, Lin JY et al (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42:111–129. https://doi.org/10.1016/j.tibs.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  2. Duwe S, Dedecker P (2019) Optimizing the fluorescent protein toolbox and its use. Curr Opin Biotechnol 58:183–191. https://doi.org/10.1016/j.copbio.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  3. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909. https://doi.org/10.1038/nmeth819

    Article  CAS  PubMed  Google Scholar 

  4. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. https://doi.org/10.1146/annurev.biochem.67.1.509

    Article  CAS  PubMed  Google Scholar 

  5. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene-expression. Science (80- ) 263:802–805. https://doi.org/10.1126/science.8303295

    Article  CAS  Google Scholar 

  6. Ormo M, Cubitt AB, Kallio K et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science (80-) 273:1392–1395

    Article  CAS  Google Scholar 

  7. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251. https://doi.org/10.1038/nbt1096-1246

    Article  CAS  PubMed  Google Scholar 

  8. Matz MV, Fradkov AF, Labas YA et al (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973. https://doi.org/10.1038/13657

    Article  CAS  PubMed  Google Scholar 

  9. Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7:1133–1138

    Article  CAS  Google Scholar 

  10. Merzlyak EM, Goedhart J, Shcherbo D et al (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4:555–557. https://doi.org/10.1038/nmeth1062

    Article  CAS  PubMed  Google Scholar 

  11. Lambert TJ (2019) FPbase: a community-editable fluorescent protein database. Nat Methods 16:277–278. https://doi.org/10.1038/s41592-019-0352-8

    Article  CAS  PubMed  Google Scholar 

  12. Arpino JAJ, Rizkallah PJ, Jones DD (2012) Crystal structure of enhanced green fluorescent protein to 1.35 angstrom resolution reveals alternative conformations for Glu222. PLoS One 7. https://doi.org/10.1371/journal.pone.0047132

  13. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501–12504

    Article  CAS  Google Scholar 

  14. Reddington SC, Rizkallah PJ, Watson PD et al (2013) Different photochemical events of a genetically encoded phenyl azide define and modulate GFP fluorescence. Angew Chemie-International Ed 52:5974–5977. https://doi.org/10.1002/anie.201301490

    Article  CAS  Google Scholar 

  15. Craggs TD (2009) Green fluorescent protein: structure, folding and chromophore maturation. Chem Soc Rev 38:2865–2875. https://doi.org/10.1039/b903641p

    Article  CAS  PubMed  Google Scholar 

  16. Barondeau DP, Kassmann CJ, Tainer JA, Getzoff ED (2005) Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry. Biochemistry 44:1960–1970. https://doi.org/10.1021/bi0479205

    Article  CAS  PubMed  Google Scholar 

  17. Barondeau DP, Kassmann CJ, Tainer JA, Getzoff ED (2006) Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. J Am Chem Soc 128:4685–4693. https://doi.org/10.1021/ja056635l

    Article  CAS  PubMed  Google Scholar 

  18. Barondeau DP, Tainer JA, Getzoff ED (2006) Structural evidence for an enolate intermediate in GFP fluorophore biosynthesis. J Am Chem Soc 128:3166–3168. https://doi.org/10.1021/ja0552693

    Article  CAS  PubMed  Google Scholar 

  19. Rosenow MA, Huffman HA, Phail ME, Wachter RM (2004) The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry 43:4464–4472. https://doi.org/10.1021/bi0361315

    Article  CAS  PubMed  Google Scholar 

  20. Auhim HS, Grigorenko BL, Harris TK et al (2021) Stalling chromophore synthesis of the fluorescent protein Venus reveals the molecular basis of the final oxidation step. Chem Sci 12:7735–7745. https://doi.org/10.1039/d0sc06693a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science (80- ) 297:1873–1877. https://doi.org/10.1126/science.1074952

    Article  CAS  Google Scholar 

  22. Remington SJ (2011) Green fluorescent protein: a perspective. Protein Sci 20:1509–1519. https://doi.org/10.1002/pro.684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Thor JJ (2009) Photoreactions and dynamics of the green fluorescent protein. Chem Soc Rev 38:2935–2950. https://doi.org/10.1039/b820275n

    Article  PubMed  Google Scholar 

  24. Worthy HL, Auhim HS, Jamieson WD et al (2019) Positive functional synergy of structurally integrated artificial protein dimers assembled by Click chemistry. Commun Chem 2. https://doi.org/10.1038/s42004-019-0185-5

  25. Royant A, Noirclerc-Savoye M (2011) Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein. J Struct Biol 174:385–390. https://doi.org/10.1016/j.jsb.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  26. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baek M, DiMaio F, Anishchenko I et al (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science (80- ) 373:871–876. https://doi.org/10.1126/science.abj8754

    Article  CAS  Google Scholar 

  28. Larsson AM (2009) Preparation and crystallization of selenomethionine protein. In: Bergfors TM (ed) IUL biotechnology series 8 (protein crystallization), 2nd edn. International University Line, p 135154

    Google Scholar 

  29. Hendrickson WA, Horton JR, LeMaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J 9:1665–1672

    Article  CAS  Google Scholar 

  30. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. In: Kornberg RD, Raetz CRH, Rothman JE, Thorner JW (eds) Annual review of biochemistry, vol 79, pp 413–444

    Google Scholar 

  31. Crameri A, Whitehorn EA, Tate E, Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319. https://doi.org/10.1038/nbt0396-315

    Article  CAS  PubMed  Google Scholar 

  32. Wang F, Niu W, Guo J, Schultz PG (2012) Unnatural amino acid mutagenesis of fluorescent proteins. Angew Chemie-Int Ed 51:10132–10135. https://doi.org/10.1002/anie.201204668

    Article  CAS  Google Scholar 

  33. Hammill JT, Miyake-Stoner S, Hazen JL et al (2007) Preparation of site-specifically labeled fluorinated proteins for 19F-NMR structural characterization. Nat Protoc 2:2601–2607. https://doi.org/10.1038/nprot.2007.379

    Article  CAS  PubMed  Google Scholar 

  34. Plass T, Milles S, Koehler C et al (2011) Genetically encoded copper-free click chemistry. Angew Chemie-Int Ed 50:3878–3881. https://doi.org/10.1002/anie.201008178

    Article  CAS  Google Scholar 

  35. Winter G (2010) xia2: an expert system for macromolecular crystallography data reduction. J Appl Crystallogr 43:186–190. https://doi.org/10.1107/S0021889809045701

    Article  CAS  Google Scholar 

  36. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr Sect D 62:72–82. https://doi.org/10.1107/S0907444905036693

    Article  CAS  Google Scholar 

  37. Collaborative (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr Sect D 50:760–763. https://doi.org/10.1107/S0907444994003112

    Article  Google Scholar 

  38. McCoy AJ, Grosse-Kunstleve RW, Adams PD et al (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. https://doi.org/10.1107/S0021889807021206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jia-xing Y, Woolfson MM, Wilson KS, Dodson EJ (2005) A modified ACORN to solve protein structures at resolutions of 1.7Å or better. Acta Crystallogr Sect D 61:1465–1475. https://doi.org/10.1107/S090744490502576X

    Article  CAS  Google Scholar 

  40. Foadi J, Woolfson MM, Dodson EJ et al (2000) A flexible and efficient procedure for the solution and phase refinement of protein structures. Acta Crystallogr Sect D 56:1137–1147. https://doi.org/10.1107/S090744490000932X

    Article  CAS  Google Scholar 

  41. Jia-xing Y, Woolfson MM, Wilson KS, Dodson EJ (2002) ACORN – theory and practice. Zeitschrift für Krist – Cryst Mater 217:636–643. https://doi.org/10.1524/zkri.217.12.636.20655

    Article  Google Scholar 

  42. Yao J (2002) ACORN in CCP4 and its applications. Acta Crystallogr Sect D 58:1941–1947. https://doi.org/10.1107/S0907444902016621

    Article  CAS  Google Scholar 

  43. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D 60:2126–2132. https://doi.org/10.1107/S0907444904019158

    Article  CAS  Google Scholar 

  44. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D 53:240–255. https://doi.org/10.1107/S0907444996012255

    Article  CAS  Google Scholar 

  45. Long F, Nicholls RA, Emsley P et al (2017) AceDRG: a stereochemical description generator for ligands. Acta Crystallogr Sect D 73:112–122. https://doi.org/10.1107/S2059798317000067

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff at the Diamond Light Source (Harwell, UK) for the supply of facilities and beam time, especially beamlines I02, I03, and I04 staff, under beamtime code mx18812. This work was supported by BBSRC (BB/H003746/1 and BB/M000249/1) and EPSRC (EP/ J015318/1) grants (to DDJ). RDA was supported by KESS 2-Tenovus studentship and HSA by the Higher Committee for Education Development in Iraq. We would like to thank the Protein Technology Hub, School of Biosciences, Cardiff University, for use of facilities to generate protein and analyze protein essential to structural studies. We would also like to thank Ben Bax and Magdalena Lipka-Lloyd for help with protein crystallization. Finally, we are eternally grateful to Pierre Rizkallah for helping with all aspects of protein crystallography over the years and teaching many members of the DDJ group how to determine protein structures—we salute you, sir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dafydd Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahmed, R.D., Auhim, H.S., Worthy, H.L., Jones, D.D. (2023). Fluorescent Proteins: Crystallization, Structural Determination, and Nonnatural Amino Acid Incorporation. In: Sharma, M. (eds) Fluorescent Proteins. Methods in Molecular Biology, vol 2564. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2667-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2667-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2666-5

  • Online ISBN: 978-1-0716-2667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics