Skip to main content

Investigating Histone Modification Dynamics by Mechanistic Computational Modeling

  • Protocol
  • First Online:
Histone Methyltransferases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2529))

Abstract

The maintenance of transcriptional states regulated by histone modifications and controlled switching between these states are fundamental concepts in our understanding of nucleosome-mediated epigenetic memory. Any approach relying on genome-wide bioinformatic analyses alone offers limited scope for dissecting the molecular mechanisms involved in maintenance and switching. Mechanistic mathematical models—describing the dynamics of histone modifications at individual genomic loci—offer an alternative way to investigate these mechanisms. These models, in conjunction with quantitative experimental data—ChIP data, quantification of mRNA levels, and single-cell fluorescence tracking in clonal lineages—can generate predictions that drive more targeted experiments, allowing us to understand mechanisms that would be challenging to unravel by a purely experimental approach. In this chapter, we describe a generic stochastic modeling framework that can be used to capture histone modification dynamics and associated molecular processes—including transcription and read–write feedback by chromatin modifying complexes—at individual genomic loci. Using a specific example—transcriptional silencing by Polycomb-mediated H3K27 methylation—we demonstrate how to construct and simulate a stochastic histone modification model. We provide a step-by-step guide to programming simulations for such a model and discuss how to analyze the simulation output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berry S, Dean C, Howard M (2017) Slow chromatin dynamics allow polycomb target genes to filter fluctuations in transcription factor activity. Cell Syst 4(4):445–457.e8. https://doi.org/10.1016/j.cels.2017.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dodd IB, Micheelsen MA, Sneppen K, Thon G (2007) Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129(4):813–822. https://doi.org/10.1016/j.cell.2007.02.053

    Article  CAS  PubMed  Google Scholar 

  3. Obersriebnig MJ, Pallesen EM, Sneppen K, Trusina A, Thon G (2016) Nucleation and spreading of a heterochromatic domain in fission yeast. Nat Commun 7:11518. https://doi.org/10.1038/ncomms11518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Angel A, Song J, Dean C, Howard M (2011) A polycomb-based switch underlying quantitative epigenetic memory. Nature 476(7358):105–108. https://doi.org/10.1038/nature10241

    Article  CAS  PubMed  Google Scholar 

  5. Questa JI, Antoniou-Kourounioti RL, Rosa S, Li P, Duncan S, Whittaker C, Howard M, Dean C (2020) Noncoding SNPs influence a distinct phase of Polycomb silencing to destabilize long-term epigenetic memory at Arabidopsis FLC. Genes Dev 34(5–6):446–461. https://doi.org/10.1101/gad.333245.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Angel A, Song J, Yang H, Questa JI, Dean C, Howard M (2015) Vernalizing cold is registered digitally at FLC. Proc Natl Acad Sci U S A 112(13):4146–4151. https://doi.org/10.1073/pnas.1503100112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alabert C, Barth TK, Reveron-Gomez N, Sidoli S, Schmidt A, Jensen ON, Imhof A, Groth A (2015) Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29(6):585–590. https://doi.org/10.1101/gad.256354.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ng KK, Yui MA, Mehta A, Siu S, Irwin B, Pease S, Hirose S, Elowitz MB, Rothenberg EV, Kueh HY (2018) A stochastic epigenetic switch controls the dynamics of T-cell lineage commitment. elife 7:e37851. https://doi.org/10.7554/eLife.37851

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nishio H, Buzas DM, Nagano AJ, Iwayama K, Ushio M, Kudoh H (2020) Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature. Nat Commun 11(1):2065. https://doi.org/10.1038/s41467-020-15896-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alabert C, Loos C, Voelker-Albert M, Graziano S, Forne I, Reveron-Gomez N, Schuh L, Hasenauer J, Marr C, Imhof A, Groth A (2020) Domain model explains propagation dynamics and stability of histone H3K27 and H3K36 methylation landscapes. Cell Rep 30(4):1223–1234.e8. https://doi.org/10.1016/j.celrep.2019.12.060

    Article  CAS  PubMed  Google Scholar 

  11. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  CAS  Google Scholar 

  12. McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y, Smitheman KN, Ott HM, Pappalardi MB, Allen KE, Chen SB, Della Pietra A 3rd, Dul E, Hughes AM, Gilbert SA, Thrall SH, Tummino PJ, Kruger RG, Brandt M, Schwartz B, Creasy CL (2012) Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci U S A 109(8):2989–2994. https://doi.org/10.1073/pnas.1116418109

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T, Pasini D (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell 53(1):49–62. https://doi.org/10.1016/j.molcel.2013.10.030

    Article  CAS  PubMed  Google Scholar 

  14. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734. https://doi.org/10.1038/nature06145

    Article  CAS  PubMed  Google Scholar 

  15. Sneppen K, Ringrose L (2019) Theoretical analysis of polycomb-trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat Commun 10(1):2133. https://doi.org/10.1038/s41467-019-10130-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27(12):1318–1338. https://doi.org/10.1101/gad.219626.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hyun K, Jeon J, Park K, Kim J (2017) Writing, erasing and reading histone lysine methylations. Exp Mol Med 49(4):e324. https://doi.org/10.1038/emm.2017.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ 3rd, Voigt P, Martin SR, Taylor WR, De Marco V, Pirrotta V, Reinberg D, Gamblin SJ (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461(7265):762–767. https://doi.org/10.1038/nature08398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen S, Ma J, Wu F, Xiong LJ, Ma H, Xu W, Lv R, Li X, Villen J, Gygi SP, Liu XS, Shi Y (2012) The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes Dev 26(12):1364–1375. https://doi.org/10.1101/gad.186056.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deaton AM, Gomez-Rodriguez M, Mieczkowski J, Tolstorukov MY, Kundu S, Sadreyev RI, Jansen LE, Kingston RE (2016) Enhancer regions show high histone H3.3 turnover that changes during differentiation. elife 5:e15316. https://doi.org/10.7554/eLife.15316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brookes E, de Santiago I, Hebenstreit D, Morris KJ, Carroll T, Xie SQ, Stock JK, Heidemann M, Eick D, Nozaki N, Kimura H, Ragoussis J, Teichmann SA, Pombo A (2012) Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell 10(2):157–170. https://doi.org/10.1016/j.stem.2011.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, Skotte J, Wutz A, Porse B, Jensen ON, Helin K (2010) Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res 38(15):4958–4969. https://doi.org/10.1093/nar/gkq244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA (2010) In vivo residue-specific histone methylation dynamics. J Biol Chem 285(5):3341–3350. https://doi.org/10.1074/jbc.M109.063784

    Article  CAS  PubMed  Google Scholar 

  24. Ietswaart R, Rosa S, Wu Z, Dean C, Howard M (2017) Cell-size-dependent transcription of FLC and its antisense long non-coding RNA COOLAIR explain cell-to-cell expression variation. Cell Syst 4(6):622–635.e9. https://doi.org/10.1016/j.cels.2017.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jadhav U, Manieri E, Nalapareddy K, Madha S, Chakrabarti S, Wucherpfennig K, Barefoot M, Shivdasani RA (2020) Replicational dilution of H3K27me3 in mammalian cells and the role of poised promoters. Mol Cell 78(1):141–151.e5. https://doi.org/10.1016/j.molcel.2020.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8(1):3–30. https://doi.org/10.1145/272991.272995

    Article  Google Scholar 

  27. Sneppen K, Dodd IB (2012) A simple histone code opens many paths to epigenetics. PLoS Comput Biol 8(8):e1002643. https://doi.org/10.1371/journal.pcbi.1002643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ludwig CH, Bintu L (2019) Mapping chromatin modifications at the single cell level. Development 146(12):dev170217. https://doi.org/10.1242/dev.170217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reinig J, Ruge F, Howard M, Ringrose L (2020) A theoretical model of polycomb/trithorax action unites stable epigenetic memory and dynamic regulation. Nat Commun 11(1):4782. https://doi.org/10.1038/s41467-020-18507-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Menon, G., Howard, M. (2022). Investigating Histone Modification Dynamics by Mechanistic Computational Modeling. In: Margueron, R., Holoch, D. (eds) Histone Methyltransferases. Methods in Molecular Biology, vol 2529. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2481-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2481-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2480-7

  • Online ISBN: 978-1-0716-2481-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics